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Abstract. LetG = (V,E) be a connected graph with vertex set V (G) and edge setE(G). The
sum connectivity Banhatti index of a graph G is defined as SB(G) =

∑
ue

1√
dG(u)+dG(e)

, where

ue means that the vertex u and edge e are incident in G. In this paper, we obtain lower and upper
bounds of SB(G) in terms order, size, minimum / maximum degrees and minimal non-pendant
vertex degree by using some classical inequalities. Also, we obtain the relationship between
SB(G) in terms of some degree based topological indices such as sum connectivity, product
connectivity, K Banhatti and Zagreb-type indices of G. Additionally, we give the Nordhaus-
Gaddum-type result for SB(G).

1 Introduction

All graphs considered in this paper are finite, connected, undirected without loops and multiple
edges. For all further notation and terminology, we refer the reader to [5].

Let G = (V,E) be a connected graph with n vertices and m edges. The degree dG(v) of a
vertex v is the number of vertices adjacent to v. The degree of an edge e = uv in G is defined by
dG(e) = dG(u) + dG(v)− 2.

A molecular graph is a graph such that its vertices correspond to the atoms and the edges to
the bonds. Chemical graph theory is a branch of Mathematical chemistry which has an important
effect on the development of the chemical sciences. A single number that can be used to char-
acterize some property of the graph of a molecular is called a topological index for that graph.
There are numerous molecular descriptors, which are also referred to as topological indices,
see [3] that have found some applications in theoretical chemistry, especially in QSPR/QSAR
research.

One of the best known and widely used topological index is the product-connectivity in-
dex (or Randić index, connectivity index) by Randić [11], who has shown this index to re-
flect molecular branching. The product connectivity index of a graph G is defined as P (G) =∑

uv∈E(G)
1√

dG(u)dG(v)
. Motivated by Randić definition of the product connectivity index, the

sum connectivity index was initiated by Zhou and Trinajstic [16] and [17], which is defined by
S(G) =

∑
uv∈E(G)

1√
dG(u)+dG(v)

. For more details on these type of connectivity indices, we

refer to [1], [2] and [9].
The first and second K Banhatti indices of G are defined as B1(G) =

∑
ue[dG(u) + dG(e)]

and B2(G) =
∑

ue[dG(u)dG(e)], where ue means that the vertex u and edge e are incident in
G. The K Banhatti indices were introduced by Kulli in [6]. The K Banhatti indices are closely
related to Zagreb - types indices. For more details on these two types of indices refer to Gutman
et al., [4].

In [7], Kulli et al., introduce the sum connectivity Banhatti index of G, which is defined as
SB(G) =

∑
ue

1√
dG(u)+dG(e)

, where ue means that the vertex u and edge e are incident in G.

2 Existing Results

Here, we use the following existing results of the sum connectivity Banhatti index of some
standard classes of graphs such as Cycle Cn, Complete graph Kn and Complete bipartite graph
Kr,s,.
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Theorem 2.1. [8]

(i) SB(Cn) = n , for n ≥ 3 vertices,

(ii) SB(Kn) =
n(n− 1)√

3n− 5
, for n ≥ 3 vertices,

(iii) SB(Kr,s) = rs

[
1√

r + 2s− 2
+

1√
2r + s− 2

]
, for 1 ≤ r ≤ s and s ≥ 2 vertices,

(iv) SB(G) =
nr√

3r − 2
, where G is a r-regular graph with r ≥ 1.

In order to prove some bounds on the product connectivity Banhatti index PB(G), we make
use of the following results.

Theorem 2.2. [7] For any connected graph G with n ≥ 3 vertices and no pendant vertices,

n
√

2√
(n− 1)(n− 2)

≤ PB(G) ≤ n.

Further, equality holds in lower bound if and only if G ∼= C3 and an equality holds in upper
bound if and only if G ∼= Cn;n ≥ 3.

3 Bounds on sum connectivity Banhatti index

First, we start with upper bound of SB(G) in terms of the sum connectivity index S(G) of a
graph G.

Theorem 3.1. For any (n,m)- connected graph G with δ(G) ≥ 2 and n ≥ 3 vertices,

SB(G) ≤ 2 S(G).

Further, equality is attained if and only if G ∼= Cn.

Proof. Let G be a connected graph with δ(G) ≥ 2 and n ≥ 3 vertices. Consider the sum
connectivity Banhatti index of G is

SB(G) =
∑
ue

1√
dG(u) + dG(e)

and the sum connectivity index of G is

S(G) =
∑

uv∈E(G)

1√
dG(u) + dG(v)

.

Since δ(G) ≥ 2, dG(uv) ≥ dG(u) and dG(uv) ≥ dG(v) for any edge e = uv ∈ E(G).
Therefore

√
dG(u) + dG(uv) ≥

√
dG(u) + dG(v).

Hence

SB(G) =
∑

uv∈E(G)

[
1√

dG(u) + dG(uv)
+

1√
dG(v) + dG(uv)

]

≤
∑

uv∈E(G)

2√
dG(u) + dG(v)

.

Thus the upper bound of SB(G) follows.
The equality case attains directly from (i) of Theorem 2.1.
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In order to prove the lower bound along with characterization of SB(G) in terms of the size
m and first K Banhatti index B1(G) of G, we recall the following facts.

If real valued function f(x) defined on an interval has a second derivative f
′′
(x) then a neces-

sary and sufficient condition for it to be strictly convex on that interval is that f
′′
(x) > 0. For pos-

itive integer k, if f(x) is strictly convex, then (by Jensen’s inequality) we have f
(∑k

i=1
xi

k

)
≤

f(xi) with equality if and only if x1 = x2 = · · · = xk, and if −f(x) is strictly convex, then the
inequality is reversed.

Theorem 3.2. For any (n,m)-connected graph G with n ≥ 3 vertices,

SB(G) ≥ (2m)
3
2√

B1(G)
.

Further, equality is attained if and only if G is a regular graph.

Proof. Let G be a connected graph with n ≥ 3 vertices. Then

SB(G) =
∑
ue

1√
dG(u) + dG(e)

=
∑
ue

[dG(u) + dG(e)]
− 1

2 .

By Jensen’s inequality,
1√
x

is a convex function for x > 0, we have

∑
ue

[dG(u) + dG(e)]
− 1

2

2m
≥

[∑
ue

dG(u) + dG(e)

2m

]− 1
2

.

Therefore

SB(G) ≥ 2m

[∑
ue

dG(u) + dG(e)

2m

]− 1
2

≥ 2
√

2 m
√
m√∑

ue [dG(u) + dG(e)]
.

Thus the result follows.
The equality case attains directly from (iv) of Theorem 2.1.

Now, we obtain lower and upper bounds of SB(G) in terms of the minimum and maximum
degrees, the number of pendant vertices and minimal non-pendant vertices of G.

Theorem 3.3. For any (n,m)- connected graph G with η pendant vertices and minimal non-
pendant vertex degree δ1(G),

SB(G) ≤ η

[√
2δ1(G)− 1 +

√
δ1(G)√

δ1(G)(2δ1(G)− 1)

]
+

[
2(m− η)√
3δ1(G)− 2

]

and

SB(G) ≥ η

[√
2∆(G)− 1 +

√
∆(G)√

∆(G)(2∆(G)− 1)

]
+

[
2(m− η)√
3∆(G)− 2

]
.
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Proof. We have

SB(G) =
∑

e=uv∈E(G)

[
1√

dG(u) + dG(e)
+

1√
dG(v) + dG(e)

]

=
∑

e=uv∈E(G);dG(u)=1

[
1√
dG(v)

+
1√

2dG(v)− 1

]

+
∑

e=uv∈E(G);dG(u),dG(v)6=1

[
1√

dG(u) + dG(e)
+

1√
dG(v) + dG(e)

]

=
∑

e=uv∈E(G);dG(u)=1

√
2dG(v)− 1 +

√
dG(v)√

dG(v)
√

2dG(v)− 1

+
∑

e=uv∈E(G);dG(u),dG(v)6=1

[
1√

dG(u) + dG(e)
+

1√
dG(v) + dG(e)

]
.

Since 3(∆(G)− 2) ≥ dG(u) + dG(e) ≥ 3(δ1(G)− 2)

⇒ 1√
3∆(G)− 2

≤ 1√
dG(u) + dG(e)

≤ 1√
3δ1(G)− 1

and
1√

∆(G)
≤ 1√

dG(u)
≤ 1√

δ1(G)
.

Thus the upper bound follows.
Similarly, the lower bound of

SB(G) ≥ η

[√
2∆(G)− 1 +

√
∆(G)√

∆(G)(2∆(G)− 1)

]
+

[
2(m− η)√
3∆(G)− 2

]

follows.

Remark 3.4. Equality is attained on both sides if and only if dG(u) = dG(v) = ∆(G) = δ1(G)
for each uv ∈ E(G) with dG(u), dG(v) 6= 1 and dG(v) = ∆(G) = δ1(G) for each uv ∈ E(G)
with dG(u) = 1.

To obtain the relation between sum and product connectivity Banhatti indices, we make use
of the following definition:

The product connectivity Banhatti index of a graph G is defined as

PB(G) =
∑
ue

1√
dG(u) dG(e)

,

where ue means that the vertex u and edge e are incident in G. This connectivity based index is
put forward by Kulli et al., [7].

Theorem 3.5. For any (n,m)- connected graph G with δ(G) ≥ 2 and n ≥ 3 vertices,

PB(G) ≤ SB(G) ≤
√
mPB(G).

Further, equality in both lower and upper bounds is attained if and only if G ∼= Cn.

Proof. Let G be a connected graph with δ(G) ≥ 2 and n ≥ 3 vertices. Then

dG(u) dG(e) ≥ dG(u) + dG(e)∑
ue

1√
dG(u) dG(e)

≤
∑
ue

1√
dG(u) + dG(e)

.
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Thus the lower bound follows.
To prove the upper bound of SB(G), we consider

SB(G) =
∑
ue

1√
dG(u) + dG(e)

.

By Cauchy-Schwartz inequality, we have

SB(G) ≤
√

2m
∑
ue

1√
dG(u) + dG(e)

and ∑
ue

1√
dG(u) + dG(e)

≤
∑
ue

1
2
√
dG(u) dG(e)

=
PB(G)

2
.

Therefore

SB(G) ≤
√

2m× PB(G)

2
.

Thus the upper bound follows.
Clearly, equality in both lower and upper bounds is attained

⇔ dG(u) dG(e) = dG(u) + dG(e)

⇔ dG(u) = dG(v) = 2

⇔ G ∼= Cn.

In order to prove our next result (lower and upper bounds) of SB(G) in terms of order n and
size m, we recall the following facts.

If real valued function f(x) defined on an interval has a second derivative f
′′
(x) then a neces-

sary and sufficient condition for it to be strictly convex on that interval is that f
′′
(x) > 0. For pos-

itive integer k, if f(x) is strictly convex, then (by Jensen’s inequality) we have f
(∑k

i=1
xi

k

)
≤

1
k

∑k
i=1 f(xi) with equality if and only if x1 = x2 = · · · = xk, and if −f(x) is strictly convex,

then the inequality is reversed.

Theorem 3.6. For any (n,m)- connected graph G with δ(G) ≥ 2 and n ≥ 3 vertices,

n
√

2√
(n− 1)(n− 2)

≤ SB(G) ≤
√
mn.

Further, equality holds in lower bound if and only if G ∼= C3 and an equality holds in upper
bound if and only if G ∼= Cn;n ≥ 3.

Proof. From Theorems 2.2 and 3.4, the lower bound follows.
For positive integer k, if f(x) is strictly convex, then by Jensen’s inequality we have f

(∑k
i=1

xi

k

)
≤

f(xi). Let xi = 1√
dG(u)+dG(e)

and f(x) = x2. Clearly, f(x) is convex. Therefore

f

(∑
ue

1
2m

1√
dG(u) + dG(e)

)
≤ 1

2m

∑
ue

f

(
1√

dG(u) + dG(e)

)

1
4m2

[∑
ue

1√
dG(u) + dG(e)

]2

≤ 1
2m

∑
ue

1√
dG(u) + dG(e)

.

We know that for all a, b > 0,

a+ b

ab
≥ 4
a+ b

⇒ 1
a+ b

≤ 1
4

(
a+ b

ab

)
.
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1
4m2 [SB(G)]

2 ≤ 1
8m

∑
ue

dG(u) + dG(e)

dG(u) dG(e)

[SB(G)]
2 ≤ m

2

∑
ue

(
1

dG(e)
+

1
dG(u)

)
.

Since δ(G) ≥ 2, dG(e) ≥ dG(v) for all v ∈ V (G) and e ∈ E(G). Therefore

[SB(G)]
2 ≤ m

2

∑
uv∈E(G)

2
(

1
dG(u)

+
1

dG(v)

)
[SB(G)]

2 ≤ mn,

since n ≥
∑

uv∈E(G)

(
1

dG(u)
+

1
dG(v)

)
.

Hence the upper bound follows.

The equality case attains directly from (i) of Theorem 2.1.

In order to prove our next result (lower bound) of SB(G) in terms of size, degrees and inverse
edge degree of G, we make use of the following definition.

An inverse edge degree [12] of G with no isolated edges is defined as

IED(G) =
∑

e=uv∈E(G)

1
dG(e)

.

In addition, we apply the Polya-Szego Inequality [10] as follows.

Theorem 3.7. Let a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) be two sequences of positive
numbers. If 0 < α ≤ ai ≤ A <∞ and 0 < β ≤ bi ≤ B <∞ for each i ∈ {1, 2, . . . , n}, then

n∑
i=1

a2
i ·

n∑
i=1

b2
i ≤

(αβ +AB)2

4αβAB

(
n∑

i=1

aibi

)2

.

The equality holds iff p = n.
A

α

/(A
α
+
B

β

)
and q = n.

B

β

/(A
α
+
B

β

)
are integers and p of

the numbers a1, a2, . . . , an are equal to α and q of these numbers are equal to A, and if the
corresponding numbers bi are equal to B and β, respectively.

Theorem 3.8. For any (n,m)- connected graph G with δ(G) ≥ 2 and n ≥ 3 vertices,

SB(G) ≥
2
√

2m× IED(G) [(3∆(G)− 2)(3δ(G)− 2)] frac14

(
√

3∆(G)− 2 +
√

3δ(G)− 2)
.

Proof. Let G be a connected graph with δ(G) ≥ 2 and n ≥ 3 vertices. Then

1√
3∆(G)− 2

≤ 1√
dG(u) + dG(e)

1√
3δ(G)− 2

.

Let ai =
1√

dG(u) + dG(e)
and bi = 1 in the Polya-Szego inequality. Clearly, α =

1
3∆(G)− 2

,
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A =
1√

3δ(G)− 2
, β = 1 and B = 1. We have

∑
uv

a2
i ·
∑
uv

b2
i ≤ (αβ +AB)2

4αβAB

(∑
uv

aibi

)2

2m
1

dG(u) + dG(e)
≤

(
1√

3∆(G)− 2
+

1√
3δ(G)− 2

)2

4√
(3∆(G)− 2)(3δ(G)− 2)

[SB(G)]2

[
SB(G)

]2 ≥
8m
√
(3∆(G)− 2)(3δ(G)− 2)(√

3∆(G)− 2 +
√

3δ(G)− 2
)2

∑
uv

1
dG(u) + dG(e)

Since δ(G) ≥ 2, dG(u) ≤ dG(e) for all u ∈ V (G) and e ∈ E(G), where e = uv ∈ E(G).

Therefore dG(u) + dG(e) ≤ 2dG(e) implies
1

dG(u) + dG(e)
≤ 1
dG(e)

.

∑
uv

1
dG(u) + dG(e)

=
∑

e=uv∈E(G)

1
dG(u) + dG(e)

+
∑

e=uv∈E(G)

1
dG(v) + dG(e)

≥
∑

e=uv∈E(G)

1
2dG(e)

+
∑

e=uv∈E(G)

1
2dG(e)

≥
∑

e=uv∈E(G)

1
dG(e)

= IED(G).

Hence the lower bound of SB(G) follows.

In order to prove our next results (upper bounds) of SB(G) in terms of Randić (or, product
connectivity) index P (G), the first Zagreb index [3] is defined as M1(G) =

∑
uv∈E(G)

[
dG(u)+

dG(v)
]

and the modified second Zagreb index [14] is defined asM∗2 (G) =
∑

uv∈E(G)
1

dG(u) dG(v)

of a graph G. In addition, we make use of the well known Chebyschev’s inequality [13] as
follows.

Theorem 3.9. Let a1 ≥ a2 ≥ · · · ≥ an and b1 ≥ b2 ≥ · · · ≥ bn be real numbers. Then

n

n∑
i=1

aibi ≥
n∑

i=1

ai ·
n∑

i=1

bi

with equality if and only if a1 = a2 = · · · = an or b1 = b2 = · · · = bn.

Theorem 3.10. For any (n,m)- connected graph G with δ(G) ≥ 2 and n ≥ 3 vertices,

(i) SB(G) ≤
√
m(m+ 1)P (G),

(ii) SB(G) ≤
√
mM1(G),

(iii) SB(G) ≤
√
m(m+ 1)M∗2 (G).

Proof. Let G be a connected graph with δ(G) ≥ 2 and n ≥ 3 vertices. If ai =
1√

dG(u) + dG(e)

and bi =
1√

dG(u) + dG(e)
. Then by Chebyschev’s inequality, we have

(∑
ue

1√
dG(u) + dG(e)

)2

≤ 2m×
∑
ue

1
dG(u) + dG(e)

.
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Consider ∑
ue

1
dG(u) + dG(e)

≤ 1
4

∑
ue

dG(u) + dG(e)

dG(u)dG(e)
.

Since
a+ b

2
≥ 2ab
a+ b

or
1

a+ b
≥ a+ b

4ab
for any two positive integers,

∑
ue

1
dG(u) + dG(e)

≤ 1
4

∑
ue

(
1

dG(e)
+

1
dG(u)

)

≤ 1
4

∑
e=uv∈E(G)

[(
1

dG(e)
+

1
dG(u)

)
+

(
1

dG(e)
+

1
dG(v)

)]
.

But as δ(G) ≥ 2, we have dG(u) ≤ dG(e) implies
1

dG(e)
≤ 1
dG(u)

.

Therefore ∑
ue

1
dG(u) + dG(e)

≤ 1
4

∑
uv∈E(G)

2
[

1
dG(u)

+
1

dG(v)

]

≤ 1
2

∑
uv∈E(G)

[
dG(u) + dG(v)

dG(u)dG(v)

]
.

By above inequality, we have
(i) Since for any e = uv ∈ E(G), dG(u) + dG(v) ≤ m+ 1, implies∑

ue

1
dG(u) + dG(e)

≤ m+ 1
2

∑
uv∈E(G)

1
dG(u)dG(v)

≤ m+ 1
2

P (G).

Since ∑
uv∈E(G)

1
dG(u)dG(v)

≤
∑

uv∈E(G)

1√
dG(u)dG(v)

,

[SB(G)]
2 ≤ 2m× m+ 1

2
P (G)

SB(G) ≤
√
m(m+ 1)P (G).

(ii) Since G is connected with n ≥ 3, we have dG(u)dG(v) ≥ 1 implies

dG(u) + dG(v)

2dG(u)dG(v)
≤ dG(u) + dG(v)

2
.

Since ∑
uv∈E(G)

1
dG(u) + dG(v)

≤ 1
2

∑
uv∈E(G)

(
dG(u) + dG(v)

)
=

1
2
M1(G).

Therefore

[SB(G)]
2 ≤ 2m× 1

2
M1(G)

SB(G) ≤
√
mM1(G).
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(iii) Since for any e = uv ∈ E(G), dG(u) + dG(v) ≤ m+ 1, implies∑
ue

1
dG(u) + dG(e)

≤ m+ 1
2

∑
uv∈E(G)

1
dG(u)dG(v)

≤ m+ 1
2

M∗2 (G).

Therefore

[SB(G)]
2 ≤ m(m+ 1)M∗2 (G)

SB(G) ≤
√
m(m+ 1)M∗2 (G).

4 Nordhaus- Gaddum Type Inequality

In [15], E. A. Nordhaus and J. W. Gaddum gave tight bounds on the sum and product of the
chromatic numbers of a graph and its complement. Since then, such type of results have been
derived for several other graph invariants. Here, we derive such kind of relation for SB(G).

Theorem 4.1. For any (n,m)- connected graph G on δ(G) ≥ 2 and n ≥ 5 vertices with a
connected G,

(i)
n(n− 1)√

3n− 5
≤ SB(G) + SB(G) ≤ n

√
n− 1,

(ii)
2n2

(n− 1)(n− 2)
≤ SB(G)× SB(G) ≤ n2(n− 1)

4
.

Proof. (i) Since m + m =
n(n− 1)

2
, dG(u) + dG(u) = n − 1 and dG(v) + dG(v) = n − 1.

Hence, we have

SB(G) + SB(G) =
∑

uv∈E(G)

[
(dG(u) + dG(u) + dG(v)− 2)−

1
2

+ (dG(v) + dG(u) + dG(v)− 2)−
1
2
]

+
∑

uv∈E(G)

[
(n− 1− dG(u) + n− 1− dG(u)

+ n− 1− dG(v)− 2)−
1
2 + (n− 1− dG(v)

+ n− 1− dG(u) + n− 1− dG(v)− 2)−
1
2
]

≥ 2(3n− 5)−
1
2 m+ 2(3n− 5)−

1
2 m

≥ n(n− 1)√
3n− 5

.

Thus the lower bound follows.
From the Theorem 3.5, we have SB(G) ≤

√
mn and SB(G) ≤

√
mn. Therefore

SB(G) + SB(G) ≤
√
mn+

√
mn

≤
√
n (
√
m+

√
m)

≤
√
n (
√

2(m+m)

≤ n
√
n− 1.

Thus the upper bound follows.
(ii) From the right hand side of Theorem 3.5 with due to the fact of mm ≥ m+m, we have the
upper bound of SB(G)× SB(G).
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(2006).

[10] G. Polya and G. Szego, Inequalities for the capacity of a condenser, Amer. J. Math. 67 (1945), 1–32.
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[13] D. S. Miltrinović and P. M. Vasić, Analytic Inequality, Springer-Verlag, Berlin, 1970.
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