Some bounds on sum Connectivity Banhatti Index of graphs

V. R. Kulli, ${ }^{\dagger}$ B. Chaluvaraju and ${ }^{\dagger \dagger}$ H.S. Boregowda
Communicated by Ayman Badawi

MSC 2010 Classifications: 05C05, 05C012, 05C35.
Keywords: Graph; Molecular descriptor; Sum connectivity Banhatti index.

Abstract

Let $G=(V, E)$ be a connected graph with vertex set $V(G)$ and edge set $E(G)$. The sum connectivity Banhatti index of a graph G is defined as $S B(G)=\sum_{u e} \frac{1}{\sqrt{d_{G}(u)+d_{G}(e)}}$, where $u e$ means that the vertex u and edge e are incident in G. In this paper, we obtain lower and upper bounds of $S B(G)$ in terms order, size, minimum / maximum degrees and minimal non-pendant vertex degree by using some classical inequalities. Also, we obtain the relationship between $S B(G)$ in terms of some degree based topological indices such as sum connectivity, product connectivity, K Banhatti and Zagreb-type indices of G. Additionally, we give the Nordhaus-Gaddum-type result for $S B(G)$.

1 Introduction

All graphs considered in this paper are finite, connected, undirected without loops and multiple edges. For all further notation and terminology, we refer the reader to [5].

Let $G=(V, E)$ be a connected graph with n vertices and m edges. The degree $d_{G}(v)$ of a vertex v is the number of vertices adjacent to v. The degree of an edge $e=u v$ in G is defined by $d_{G}(e)=d_{G}(u)+d_{G}(v)-2$.

A molecular graph is a graph such that its vertices correspond to the atoms and the edges to the bonds. Chemical graph theory is a branch of Mathematical chemistry which has an important effect on the development of the chemical sciences. A single number that can be used to characterize some property of the graph of a molecular is called a topological index for that graph. There are numerous molecular descriptors, which are also referred to as topological indices, see [3] that have found some applications in theoretical chemistry, especially in QSPR/QSAR research.

One of the best known and widely used topological index is the product-connectivity index (or Randić index, connectivity index) by Randić [11], who has shown this index to reflect molecular branching. The product connectivity index of a graph G is defined as $P(G)=$ $\sum_{u v \in E(G)} \frac{1}{\sqrt{d_{G}(u) d_{G}(v)}}$. Motivated by Randić definition of the product connectivity index, the sum connectivity index was initiated by Zhou and Trinajstic [16] and [17], which is defined by $S(G)=\sum_{u v \in E(G)} \frac{1}{\sqrt{d_{G}(u)+d_{G}(v)}}$. For more details on these type of connectivity indices, we refer to [1], [2] and [9].

The first and second K Banhatti indices of G are defined as $B_{1}(G)=\sum_{u e}\left[d_{G}(u)+d_{G}(e)\right]$ and $B_{2}(G)=\sum_{u e}\left[d_{G}(u) d_{G}(e)\right]$, where $u e$ means that the vertex u and edge e are incident in G. The K Banhatti indices were introduced by Kulli in [6]. The K Banhatti indices are closely related to Zagreb - types indices. For more details on these two types of indices refer to Gutman et al., [4].

In [7], Kulli et al., introduce the sum connectivity Banhatti index of G, which is defined as $S B(G)=\sum_{u e} \frac{1}{\sqrt{d_{G}(u)+d_{G}(e)}}$, where $u e$ means that the vertex u and edge e are incident in G.

2 Existing Results

Here, we use the following existing results of the sum connectivity Banhatti index of some standard classes of graphs such as Cycle C_{n}, Complete graph K_{n} and Complete bipartite graph $K_{r, s,}$.

Theorem 2.1. [8]
(i) $S B\left(C_{n}\right)=n$, for $n \geq 3$ vertices,
(ii) $S B\left(K_{n}\right)=\frac{n(n-1)}{\sqrt{3 n-5}}$, for $n \geq 3$ vertices,
(iii) $S B\left(K_{r, s}\right)=r s\left[\frac{1}{\sqrt{r+2 s-2}}+\frac{1}{\sqrt{2 r+s-2}}\right]$, for $1 \leq r \leq s$ and $s \geq 2$ vertices,
(iv) $S B(G)=\frac{n r}{\sqrt{3 r-2}}$, where G is a r-regular graph with $r \geq 1$.

In order to prove some bounds on the product connectivity Banhatti index $P B(G)$, we make use of the following results.

Theorem 2.2. [7] For any connected graph G with $n \geq 3$ vertices and no pendant vertices,

$$
\frac{n \sqrt{2}}{\sqrt{(n-1)(n-2)}} \leq P B(G) \leq n .
$$

Further, equality holds in lower bound if and only if $G \cong C_{3}$ and an equality holds in upper bound if and only if $G \cong C_{n} ; n \geq 3$.

3 Bounds on sum connectivity Banhatti index

First, we start with upper bound of $S B(G)$ in terms of the sum connectivity index $S(G)$ of a graph G.

Theorem 3.1. For any (n, m)- connected graph G with $\delta(G) \geq 2$ and $n \geq 3$ vertices,

$$
S B(G) \leq 2 S(G)
$$

Further, equality is attained if and only if $G \cong C_{n}$.
Proof. Let G be a connected graph with $\delta(G) \geq 2$ and $n \geq 3$ vertices. Consider the sum connectivity Banhatti index of G is

$$
S B(G)=\sum_{u e} \frac{1}{\sqrt{d_{G}(u)+d_{G}(e)}}
$$

and the sum connectivity index of G is

$$
S(G)=\sum_{u v \in E(G)} \frac{1}{\sqrt{d_{G}(u)+d_{G}(v)}}
$$

Since $\delta(G) \geq 2, d_{G}(u v) \geq d_{G}(u)$ and $d_{G}(u v) \geq d_{G}(v)$ for any edge $e=u v \in E(G)$. Therefore $\sqrt{d_{G}(u)+d_{G}(u v)} \geq \sqrt{d_{G}(u)+d_{G}(v)}$.
Hence

$$
\begin{aligned}
S B(G) & =\sum_{u v \in E(G)}\left[\frac{1}{\sqrt{d_{G}(u)+d_{G}(u v)}}+\frac{1}{\sqrt{d_{G}(v)+d_{G}(u v)}}\right] \\
& \leq \sum_{u v \in E(G)} \frac{2}{\sqrt{d_{G}(u)+d_{G}(v)}}
\end{aligned}
$$

Thus the upper bound of $S B(G)$ follows.
The equality case attains directly from (i) of Theorem 2.1.

In order to prove the lower bound along with characterization of $S B(G)$ in terms of the size m and first K Banhatti index $B_{1}(G)$ of G, we recall the following facts.

If real valued function $f(x)$ defined on an interval has a second derivative $f^{\prime \prime}(x)$ then a necessary and sufficient condition for it to be strictly convex on that interval is that $f^{\prime \prime}(x)>0$. For positive integer k, if $f(x)$ is strictly convex, then (by Jensen's inequality) we have $f\left(\sum_{i=1}^{k} \frac{x_{i}}{k}\right) \leq$ $f\left(x_{i}\right)$ with equality if and only if $x_{1}=x_{2}=\cdots=x_{k}$, and if $-f(x)$ is strictly convex, then the inequality is reversed.

Theorem 3.2. For any (n, m)-connected graph G with $n \geq 3$ vertices,

$$
S B(G) \geq \frac{(2 m)^{\frac{3}{2}}}{\sqrt{B_{1}(G)}}
$$

Further, equality is attained if and only if G is a regular graph.
Proof. Let G be a connected graph with $n \geq 3$ vertices. Then

$$
S B(G)=\sum_{u e} \frac{1}{\sqrt{d_{G}(u)+d_{G}(e)}}=\sum_{u e}\left[d_{G}(u)+d_{G}(e)\right]^{-\frac{1}{2}} .
$$

By Jensen's inequality, $\frac{1}{\sqrt{x}}$ is a convex function for $x>0$, we have

$$
\sum_{u e} \frac{\left[d_{G}(u)+d_{G}(e)\right]^{-\frac{1}{2}}}{2 m} \geq\left[\sum_{u e} \frac{d_{G}(u)+d_{G}(e)}{2 m}\right]^{-\frac{1}{2}}
$$

Therefore

$$
\begin{aligned}
S B(G) & \geq 2 m\left[\sum_{u e} \frac{d_{G}(u)+d_{G}(e)}{2 m}\right]^{-\frac{1}{2}} \\
& \geq \frac{2 \sqrt{2} m \sqrt{m}}{\sqrt{\sum_{u e}\left[d_{G}(u)+d_{G}(e)\right]}}
\end{aligned}
$$

Thus the result follows.
The equality case attains directly from (iv) of Theorem 2.1.

Now, we obtain lower and upper bounds of $S B(G)$ in terms of the minimum and maximum degrees, the number of pendant vertices and minimal non-pendant vertices of G.

Theorem 3.3. For any (n, m) - connected graph G with η pendant vertices and minimal nonpendant vertex degree $\delta_{1}(G)$,

$$
S B(G) \leq \eta\left[\frac{\sqrt{2 \delta_{1}(G)-1}+\sqrt{\delta_{1}(G)}}{\sqrt{\delta_{1}(G)\left(2 \delta_{1}(G)-1\right)}}\right]+\left[\frac{2(m-\eta)}{\sqrt{3 \delta_{1}(G)-2}}\right]
$$

and

$$
S B(G) \geq \eta\left[\frac{\sqrt{2 \Delta(G)-1}+\sqrt{\Delta(G)}}{\sqrt{\Delta(G)(2 \Delta(G)-1)}}\right]+\left[\frac{2(m-\eta)}{\sqrt{3 \Delta(G)-2}}\right]
$$

Proof. We have

$$
\begin{aligned}
S B(G) & =\sum_{e=u v \in E(G)}\left[\frac{1}{\sqrt{d_{G}(u)+d_{G}(e)}}+\frac{1}{\sqrt{d_{G}(v)+d_{G}(e)}}\right] \\
& =\sum_{e=u v \in E(G) ; d_{G}(u)=1}\left[\frac{1}{\sqrt{d_{G}(v)}}+\frac{1}{\sqrt{2 d_{G}(v)-1}}\right] \\
& +\sum_{e=u v \in E(G) ; d_{G}(u), d_{G}(v) \neq 1}\left[\frac{1}{\sqrt{d_{G}(u)+d_{G}(e)}}+\frac{1}{\sqrt{d_{G}(v)+d_{G}(e)}}\right] \\
& =\sum_{e=u v \in E(G) ; d_{G}(u)=1} \frac{\sqrt{2 d_{G}(v)-1}+\sqrt{d_{G}(v)}}{\sqrt{d_{G}(v)} \sqrt{2 d_{G}(v)-1}} \\
& +\sum_{e=u v \in E(G) ; d_{G}(u), d_{G}(v) \neq 1}\left[\frac{1}{\sqrt{d_{G}(u)+d_{G}(e)}}+\frac{1}{\sqrt{d_{G}(v)+d_{G}(e)}}\right] .
\end{aligned}
$$

Since $3(\Delta(G)-2) \geq d_{G}(u)+d_{G}(e) \geq 3\left(\delta_{1}(G)-2\right)$

$$
\Rightarrow \frac{1}{\sqrt{3 \Delta(G)-2}} \leq \frac{1}{\sqrt{d_{G}(u)+d_{G}(e)}} \leq \frac{1}{\sqrt{3 \delta_{1}(G)-1}}
$$

and $\frac{1}{\sqrt{\Delta(G)}} \leq \frac{1}{\sqrt{d_{G}(u)}} \leq \frac{1}{\sqrt{\delta_{1}(G)}}$.
Thus the upper bound follows.
Similarly, the lower bound of

$$
S B(G) \geq \eta\left[\frac{\sqrt{2 \Delta(G)-1}+\sqrt{\Delta(G)}}{\sqrt{\Delta(G)(2 \Delta(G)-1)}}\right]+\left[\frac{2(m-\eta)}{\sqrt{3 \Delta(G)-2}}\right]
$$

follows.
Remark 3.4. Equality is attained on both sides if and only if $d_{G}(u)=d_{G}(v)=\Delta(G)=\delta_{1}(G)$ for each $u v \in E(G)$ with $d_{G}(u), d_{G}(v) \neq 1$ and $d_{G}(v)=\Delta(G)=\delta_{1}(G)$ for each $u v \in E(G)$ with $d_{G}(u)=1$.

To obtain the relation between sum and product connectivity Banhatti indices, we make use of the following definition:

The product connectivity Banhatti index of a graph G is defined as

$$
P B(G)=\sum_{u e} \frac{1}{\sqrt{d_{G}(u) d_{G}(e)}},
$$

where $u e$ means that the vertex u and edge e are incident in G. This connectivity based index is put forward by Kulli et al., [7].

Theorem 3.5. For any (n, m)- connected graph G with $\delta(G) \geq 2$ and $n \geq 3$ vertices,

$$
P B(G) \leq S B(G) \leq \sqrt{m P B(G)}
$$

Further, equality in both lower and upper bounds is attained if and only if $G \cong C_{n}$.
Proof. Let G be a connected graph with $\delta(G) \geq 2$ and $n \geq 3$ vertices. Then

$$
\begin{aligned}
d_{G}(u) d_{G}(e) & \geq d_{G}(u)+d_{G}(e) \\
\sum_{u e} \frac{1}{\sqrt{d_{G}(u) d_{G}(e)}} & \leq \sum_{u e} \frac{1}{\sqrt{d_{G}(u)+d_{G}(e)}}
\end{aligned}
$$

Thus the lower bound follows.
To prove the upper bound of $S B(G)$, we consider

$$
S B(G)=\sum_{u e} \frac{1}{\sqrt{d_{G}(u)+d_{G}(e)}}
$$

By Cauchy-Schwartz inequality, we have

$$
S B(G) \leq \sqrt{2 m \sum_{u e} \frac{1}{\sqrt{d_{G}(u)+d_{G}(e)}}}
$$

and

$$
\sum_{u e} \frac{1}{\sqrt{d_{G}(u)+d_{G}(e)}} \leq \sum_{u e} \frac{1}{2 \sqrt{d_{G}(u) d_{G}(e)}}=\frac{P B(G)}{2}
$$

Therefore

$$
S B(G) \leq \sqrt{2 m \times \frac{P B(G)}{2}}
$$

Thus the upper bound follows.
Clearly, equality in both lower and upper bounds is attained

$$
\begin{aligned}
& \Leftrightarrow \quad d_{G}(u) d_{G}(e)=d_{G}(u)+d_{G}(e) \\
& \Leftrightarrow \quad d_{G}(u)=d_{G}(v)=2 \\
& \Leftrightarrow \quad G \cong C_{n}
\end{aligned}
$$

In order to prove our next result (lower and upper bounds) of $S B(G)$ in terms of order n and size m, we recall the following facts.

If real valued function $f(x)$ defined on an interval has a second derivative $f^{\prime \prime}(x)$ then a necessary and sufficient condition for it to be strictly convex on that interval is that $f^{\prime \prime}(x)>0$. For positive integer k, if $f(x)$ is strictly convex, then (by Jensen's inequality) we have $f\left(\sum_{i=1}^{k} \frac{x_{i}}{k}\right) \leq$ $\frac{1}{k} \sum_{i=1}^{k} f\left(x_{i}\right)$ with equality if and only if $x_{1}=x_{2}=\cdots=x_{k}$, and if $-f(x)$ is strictly convex, then the inequality is reversed.

Theorem 3.6. For any (n, m) - connected graph G with $\delta(G) \geq 2$ and $n \geq 3$ vertices,

$$
\frac{n \sqrt{2}}{\sqrt{(n-1)(n-2)}} \leq S B(G) \leq \sqrt{m n}
$$

Further, equality holds in lower bound if and only if $G \cong C_{3}$ and an equality holds in upper bound if and only if $G \cong C_{n} ; n \geq 3$.

Proof. From Theorems 2.2 and 3.4, the lower bound follows.
For positive integer k, if $f(x)$ is strictly convex, then by Jensen's inequality we have $f\left(\sum_{i=1}^{k} \frac{x_{i}}{k}\right) \leq$ $f\left(x_{i}\right)$. Let $x_{i}=\frac{1}{\sqrt{d_{G}(u)+d_{G}(e)}}$ and $f(x)=x^{2}$. Clearly, $f(x)$ is convex. Therefore

$$
\begin{aligned}
& f\left(\sum_{u e} \frac{1}{2 m} \frac{1}{\sqrt{d_{G}(u)+d_{G}(e)}}\right) \leq \frac{1}{2 m} \sum_{u e} f\left(\frac{1}{\sqrt{d_{G}(u)+d_{G}(e)}}\right) \\
& \frac{1}{4 m^{2}}\left[\sum_{u e} \frac{1}{\sqrt{d_{G}(u)+d_{G}(e)}}\right]^{2} \leq \frac{1}{2 m} \sum_{u e} \frac{1}{\sqrt{d_{G}(u)+d_{G}(e)}}
\end{aligned}
$$

We know that for all $a, b>0$,

$$
\frac{a+b}{a b} \geq \frac{4}{a+b} \Rightarrow \frac{1}{a+b} \leq \frac{1}{4}\left(\frac{a+b}{a b}\right)
$$

$$
\begin{aligned}
\frac{1}{4 m^{2}}[S B(G)]^{2} & \leq \frac{1}{8 m} \sum_{u e} \frac{d_{G}(u)+d_{G}(e)}{d_{G}(u) d_{G}(e)} \\
{[S B(G)]^{2} } & \leq \frac{m}{2} \sum_{u e}\left(\frac{1}{d_{G}(e)}+\frac{1}{d_{G}(u)}\right)
\end{aligned}
$$

Since $\delta(G) \geq 2, d_{G}(e) \geq d_{G}(v)$ for all $v \in V(G)$ and $e \in E(G)$. Therefore

$$
\begin{aligned}
& {[S B(G)]^{2} \leq \frac{m}{2} \sum_{u v \in E(G)} 2\left(\frac{1}{d_{G}(u)}+\frac{1}{d_{G}(v)}\right)} \\
& {[S B(G)]^{2} \leq m n}
\end{aligned}
$$

since $n \geq \sum_{u v \in E(G)}\left(\frac{1}{d_{G}(u)}+\frac{1}{d_{G}(v)}\right)$.
Hence the upper bound follows.
The equality case attains directly from (i) of Theorem 2.1.

In order to prove our next result (lower bound) of $S B(G)$ in terms of size, degrees and inverse edge degree of G, we make use of the following definition.

An inverse edge degree [12] of G with no isolated edges is defined as

$$
\operatorname{IED}(G)=\sum_{e=u v \in E(G)} \frac{1}{d_{G}(e)}
$$

In addition, we apply the Polya-Szego Inequality [10] as follows.

Theorem 3.7. Let $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $b=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ be two sequences of positive numbers. If $0<\alpha \leq a_{i} \leq A<\infty$ and $0<\beta \leq b_{i} \leq B<\infty$ for each $i \in\{1,2, \ldots, n\}$, then

$$
\sum_{i=1}^{n} a_{i}^{2} \cdot \sum_{i=1}^{n} b_{i}^{2} \leq \frac{(\alpha \beta+A B)^{2}}{4 \alpha \beta A B}\left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{2}
$$

The equality holds iff $p=n \cdot \frac{A}{\alpha} /\left(\frac{A}{\alpha}+\frac{B}{\beta}\right)$ and $q=n \cdot \frac{B}{\beta} /\left(\frac{A}{\alpha}+\frac{B}{\beta}\right)$ are integers and p of the numbers $a_{1}, a_{2}, \ldots, a_{n}$ are equal to α and q of these numbers are equal to A, and if the corresponding numbers b_{i} are equal to B and β, respectively.

Theorem 3.8. For any (n, m)- connected graph G with $\delta(G) \geq 2$ and $n \geq 3$ vertices,

$$
S B(G) \geq \frac{2 \sqrt{2 m \times I E D(G)}[(3 \Delta(G)-2)(3 \delta(G)-2)]^{\text {frac14 }}}{(\sqrt{3 \Delta(G)-2}+\sqrt{3 \delta(G)-2})}
$$

Proof. Let G be a connected graph with $\delta(G) \geq 2$ and $n \geq 3$ vertices. Then

$$
\frac{1}{\sqrt{3 \Delta(G)-2}} \leq \frac{1}{\sqrt{d_{G}(u)+d_{G}(e)}} \frac{1}{\sqrt{3 \delta(G)-2}}
$$

Let $a_{i}=\frac{1}{\sqrt{d_{G}(u)+d_{G}(e)}}$ and $b_{i}=1$ in the Polya-Szego inequality. Clearly, $\alpha=\frac{1}{3 \Delta(G)-2}$,

$$
\begin{aligned}
& A=\frac{1}{\sqrt{3 \delta(G)-2}}, \beta=1 \text { and } B=1 \text {. We have } \\
& \sum_{u v} a_{i}^{2} \cdot \sum_{u v} b_{i}^{2} \leq \frac{(\alpha \beta+A B)^{2}}{4 \alpha \beta A B}\left(\sum_{u v} a_{i} b_{i}\right)^{2} \\
& 2 m \frac{1}{d_{G}(u)+d_{G}(e)} \leq \frac{\left(\frac{1}{\sqrt{3 \Delta(G)-2}}+\frac{1}{\sqrt{3 \delta(G)-2}}\right)^{2}}{\frac{4}{\sqrt{(3 \Delta(G)-2)(3 \delta(G)-2)}}}[S B(G)]^{2} \\
& {[S B(G)]^{2} \geq \frac{8 m \sqrt{(3 \Delta(G)-2)(3 \delta(G)-2)}}{(\sqrt{3 \Delta(G)-2}+\sqrt{3 \delta(G)-2})^{2}} \sum_{u v} \frac{1}{d_{G}(u)+d_{G}(e)} }
\end{aligned}
$$

Since $\delta(G) \geq 2, d_{G}(u) \leq d_{G}(e)$ for all $u \in V(G)$ and $e \in E(G)$, where $e=u v \in E(G)$. Therefore $d_{G}(u)+d_{G}(e) \leq 2 d_{G}(e)$ implies $\frac{1}{d_{G}(u)+d_{G}(e)} \leq \frac{1}{d_{G}(e)}$.

$$
\begin{aligned}
\sum_{u v} \frac{1}{d_{G}(u)+d_{G}(e)} & =\sum_{e=u v \in E(G)} \frac{1}{d_{G}(u)+d_{G}(e)}+\sum_{e=u v \in E(G)} \frac{1}{d_{G}(v)+d_{G}(e)} \\
& \geq \sum_{e=u v \in E(G)} \frac{1}{2 d_{G}(e)}+\sum_{e=u v \in E(G)} \frac{1}{2 d_{G}(e)} \\
& \geq \sum_{e=u v \in E(G)} \frac{1}{d_{G}(e)}=\operatorname{IED}(G) .
\end{aligned}
$$

Hence the lower bound of $S B(G)$ follows.
In order to prove our next results (upper bounds) of $S B(G)$ in terms of Randić (or, product connectivity) index $P(G)$, the first Zagreb index [3] is defined as $M_{1}(G)=\sum_{u v \in E(G)}\left[d_{G}(u)+\right.$ $d_{G}(v)$] and the modified second Zagreb index [14] is defined as $M_{2}^{*}(G)=\sum_{u v \in E(G)} \frac{1}{d_{G}(u) d_{G}(v)}$ of a graph G. In addition, we make use of the well known Chebyschev's inequality [13] as follows.

Theorem 3.9. Let $a_{1} \geq a_{2} \geq \cdots \geq a_{n}$ and $b_{1} \geq b_{2} \geq \cdots \geq b_{n}$ be real numbers. Then

$$
n \sum_{i=1}^{n} a_{i} b_{i} \geq \sum_{i=1}^{n} a_{i} \cdot \sum_{i=1}^{n} b_{i}
$$

with equality if and only if $a_{1}=a_{2}=\cdots=a_{n}$ or $b_{1}=b_{2}=\cdots=b_{n}$.
Theorem 3.10. For any (n, m)-connected graph G with $\delta(G) \geq 2$ and $n \geq 3$ vertices,
(i) $S B(G) \leq \sqrt{m(m+1) P(G)}$,
(ii) $S B(G) \leq \sqrt{m M_{1}(G)}$,
(iii) $S B(G) \leq \sqrt{m(m+1) M_{2}^{*}(G)}$.

Proof. Let G be a connected graph with $\delta(G) \geq 2$ and $n \geq 3$ vertices. If $a_{i}=\frac{1}{\sqrt{d_{G}(u)+d_{G}(e)}}$ and $b_{i}=\frac{1}{\sqrt{d_{G}(u)+d_{G}(e)}}$. Then by Chebyschev's inequality, we have

$$
\left(\sum_{u e} \frac{1}{\sqrt{d_{G}(u)+d_{G}(e)}}\right)^{2} \leq 2 m \times \sum_{u e} \frac{1}{d_{G}(u)+d_{G}(e)}
$$

Consider

$$
\sum_{u e} \frac{1}{d_{G}(u)+d_{G}(e)} \leq \frac{1}{4} \sum_{u e} \frac{d_{G}(u)+d_{G}(e)}{d_{G}(u) d_{G}(e)}
$$

Since $\frac{a+b}{2} \geq \frac{2 a b}{a+b}$ or $\frac{1}{a+b} \geq \frac{a+b}{4 a b}$ for any two positive integers,

$$
\begin{aligned}
\sum_{u e} \frac{1}{d_{G}(u)+d_{G}(e)} & \leq \frac{1}{4} \sum_{u e}\left(\frac{1}{d_{G}(e)}+\frac{1}{d_{G}(u)}\right) \\
& \leq \frac{1}{4} \sum_{e=u v \in E(G)}\left[\left(\frac{1}{d_{G}(e)}+\frac{1}{d_{G}(u)}\right)+\left(\frac{1}{d_{G}(e)}+\frac{1}{d_{G}(v)}\right)\right]
\end{aligned}
$$

But as $\delta(G) \geq 2$, we have $d_{G}(u) \leq d_{G}(e)$ implies $\frac{1}{d_{G}(e)} \leq \frac{1}{d_{G}(u)}$.
Therefore

$$
\begin{aligned}
\sum_{u e} \frac{1}{d_{G}(u)+d_{G}(e)} & \leq \frac{1}{4} \sum_{u v \in E(G)} 2\left[\frac{1}{d_{G}(u)}+\frac{1}{d_{G}(v)}\right] \\
& \leq \frac{1}{2} \sum_{u v \in E(G)}\left[\frac{d_{G}(u)+d_{G}(v)}{d_{G}(u) d_{G}(v)}\right]
\end{aligned}
$$

By above inequality, we have
(i) Since for any $e=u v \in E(G), d_{G}(u)+d_{G}(v) \leq m+1$, implies

$$
\begin{aligned}
\sum_{u e} \frac{1}{d_{G}(u)+d_{G}(e)} & \leq \frac{m+1}{2} \sum_{u v \in E(G)} \frac{1}{d_{G}(u) d_{G}(v)} \\
& \leq \frac{m+1}{2} P(G)
\end{aligned}
$$

Since

$$
\begin{aligned}
\sum_{u v \in E(G)} \frac{1}{d_{G}(u) d_{G}(v)} & \leq \sum_{u v \in E(G)} \frac{1}{\sqrt{d_{G}(u) d_{G}(v)}} \\
{[S B(G)]^{2} } & \leq 2 m \times \frac{m+1}{2} P(G) \\
S B(G) & \leq \sqrt{m(m+1) P(G)}
\end{aligned}
$$

(ii) Since G is connected with $n \geq 3$, we have $d_{G}(u) d_{G}(v) \geq 1$ implies

$$
\frac{d_{G}(u)+d_{G}(v)}{2 d_{G}(u) d_{G}(v)} \leq \frac{d_{G}(u)+d_{G}(v)}{2}
$$

Since

$$
\sum_{u v \in E(G)} \frac{1}{d_{G}(u)+d_{G}(v)} \leq \frac{1}{2} \sum_{u v \in E(G)}\left(d_{G}(u)+d_{G}(v)\right)=\frac{1}{2} M_{1}(G)
$$

Therefore

$$
\begin{aligned}
{[S B(G)]^{2} } & \leq 2 m \times \frac{1}{2} M_{1}(G) \\
S B(G) & \leq \sqrt{m M_{1}(G)}
\end{aligned}
$$

(iii) Since for any $e=u v \in E(G), d_{G}(u)+d_{G}(v) \leq m+1$, implies

$$
\begin{aligned}
\sum_{u e} \frac{1}{d_{G}(u)+d_{G}(e)} & \leq \frac{m+1}{2} \sum_{u v \in E(G)} \frac{1}{d_{G}(u) d_{G}(v)} \\
& \leq \frac{m+1}{2} M_{2}^{*}(G)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
{[S B(G)]^{2} } & \leq m(m+1) M_{2}^{*}(G) \\
S B(G) & \leq \sqrt{m(m+1) M_{2}^{*}(G)}
\end{aligned}
$$

4 Nordhaus- Gaddum Type Inequality

In [15], E. A. Nordhaus and J. W. Gaddum gave tight bounds on the sum and product of the chromatic numbers of a graph and its complement. Since then, such type of results have been derived for several other graph invariants. Here, we derive such kind of relation for $S B(G)$.

Theorem 4.1. For any (n, m)- connected graph G on $\delta(G) \geq 2$ and $n \geq 5$ vertices with a connected \bar{G},
(i) $\frac{n(n-1)}{\sqrt{3 n-5}} \leq S B(G)+S B(\bar{G}) \leq n \sqrt{n-1}$,
(ii) $\frac{2 n^{2}}{(n-1)(n-2)} \leq S B(G) \times S B(\bar{G}) \leq \frac{n^{2}(n-1)}{4}$.

Proof. (i) Since $m+\bar{m}=\frac{n(n-1)}{2}, d_{G}(u)+d_{\bar{G}}(u)=n-1$ and $d_{G}(v)+d_{\bar{G}}(v)=n-1$. Hence, we have

$$
\begin{aligned}
S B(G)+S B(\bar{G}) & =\sum_{u v \in E(G)}\left[\left(d_{G}(u)+d_{G}(u)+d_{G}(v)-2\right)^{-\frac{1}{2}}\right. \\
& \left.+\left(d_{G}(v)+d_{G}(u)+d_{G}(v)-2\right)^{-\frac{1}{2}}\right] \\
& +\sum_{u v \in E(G)}\left[\left(n-1-d_{G}(u)+n-1-d_{G}(u)\right.\right. \\
& \left.+n-1-d_{G}(v)-2\right)^{-\frac{1}{2}}+\left(n-1-d_{G}(v)\right. \\
& \left.\left.+n-1-d_{G}(u)+n-1-d_{G}(v)-2\right)^{-\frac{1}{2}}\right] \\
& \geq 2(3 n-5)^{-\frac{1}{2}} m+2(3 n-5)^{-\frac{1}{2}} \bar{m} \\
& \geq \frac{n(n-1)}{\sqrt{3 n-5}}
\end{aligned}
$$

Thus the lower bound follows.
From the Theorem 3.5, we have $S B(G) \leq \sqrt{m n}$ and $S B(\bar{G}) \leq \sqrt{\bar{m} n}$. Therefore

$$
\begin{aligned}
S B(G)+S B(\bar{G}) & \leq \sqrt{m n}+\sqrt{\bar{m} n} \\
& \leq \sqrt{n}(\sqrt{m}+\sqrt{\bar{m}}) \\
& \leq \sqrt{n}(\sqrt{2(m+\bar{m}}) \\
& \leq n \sqrt{n-1}
\end{aligned}
$$

Thus the upper bound follows.
(ii) From the right hand side of Theorem 3.5 with due to the fact of $m \bar{m} \geq m+\bar{m}$, we have the upper bound of $S B(G) \times S B(\bar{G})$.

References

[1] K. C. Das, S. Das and B. Zhou, Sum-connectivity index of a graph, Front. Math., China, 11(1) (2016), 47-54.
[2] I. Gutman and B. Furtula (eds.), Recent Results in the Theory of Randić Index, Univ. Kragujevac, Kragujevac, 2008.
[3] I. Gutman and N. Trinajstic, Graph Theory and molecular orbitals, Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972), 535-538.
[4] I. Gutman, V. R. Kulli, B. Chaluvaraju and H. S. Boregowda, On Banhatti and Zagreb Indices. J. Int. Math. Virtual Inst. 7 (2017), 53-67.
[5] V. R. Kulli, College Graph Theory, Vishwa International Publications, Gulbarga, India (2012).
[6] V. R. Kulli, On K Banhatti indices of graphs, Journal of Computer and Mathematical Sciences, 7(4) (2016), 213-218.
[7] V. R. Kulli, B. Chaluvaraju and H.S. Boregowda, The product connectivity Banhatti index of a graph, Discussion Mathematicae-Graph theory, to appear (2018).
[8] V. R. Kulli, B. Chaluvaraju and H.S. Boregowda, On sum-connectivity Banhatti index of some nanostructures, Submitted.
[9] X. Li and I. Gutman, Mathematical aspects of Randić-type molecular structure descriptors, Kragujevac (2006).
[10] G. Polya and G. Szego, Inequalities for the capacity of a condenser, Amer. J. Math. 67 (1945), 1-32.
[11] M. Randić, On characterization of molecular branching, J. Am. Chem. Soc., 97 (1975), 6609 - 6615.
[12] T. Mansour, M. A. Rostami, E. Suresh and G. B. A. Xavier, On the Bounds of the First Reformulated Zagreb Index, Turkish Journal of Analysis and Number Theory, 4 (1) (2016), 8-15.
[13] D. S. Miltrinović and P. M. Vasić, Analytic Inequality, Springer-Verlag, Berlin, 1970.
[14] S. Nikolić, G. Kovačević, A. Miličević, and N. Trinajstić, The Zagreb indices 30 years after, Croat Chem Acta. 76 (2) (2003), 113-124.
[15] E. A. Nordhaus and J. W. Gaddum, On complementary graphs, Amer. Math. Monthly 63 (1956), 175 177.
[16] B. Zhou and N. Trinajstić, On a novel connectivity index. J. Math. Chem., 46 (2009), 1252 - 1270.
[17] B. Zhou and N. Trinajstić, On general sum connectivity index. J. Math. Chem., 47 (1) (2010), $210-218$.

Author information

V. R. Kulli, ${ }^{\dagger}$ B. Chaluvaraju and ${ }^{\dagger \dagger}$ H.S. Boregowda, Department of Mathematics, Gulbarga University, Gulbarga - 585 106, ${ }^{\dagger}$ Department of Mathematics, Bangalore University, Jnana Bharathi Campus, Bangalore-560 $056,{ }^{\dagger \dagger}$ Department of Studies and Research in Mathematics, University Constituent College Campus, Tumkur University, Tumkur - 571 103, INDIA.
E-mail: vrkulli@gmail.com; bchaluvaraju@gmail.com; bgsamarasa@gmail.com

