
Palestine Journal of Mathematics

Vol. 8(2)(2019) , 45–52 © Palestine Polytechnic University-PPU 2019

A NOTE ON THE GENERALIZED ORDER-k MODIFIED
PELL AND PELL-LUCAS NUMBERS

Ahmet Daşdemir
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Abstract. This paper deals with the generalized order-k Pell, Modified Pell and Pell-Lucas
numbers. Certain important properties and sum formulae of the generalized order-k Modified
Pell and Pell-Lucas numbers are obtained. Moreover, their the generalized Binet formulae, com-
binatorial representations and the generating functions are developed via matrix approach.

1 Introduction

Over the years, several articles have been appeared in many journals relating to Fibonacci and
Pell numbers. The Pell numbers and their generalization have marvelous properties and ap-
plications to nearly every fields in the modern science and art. Monograph [1] presents the
well-known systematic investigations on the subject.

The usual Pell numbers {Pn} is defined by the following recursive relation:

Pn = 2Pn−1 + Pn−2 for n ≥ 2,

where P0 = 0 and P1 = 1. In addition, the Pell-Lucas {Qn} and the Modified Pell {qn}
numbers are defined by the same recurrence but with initial terms such that Q0 = Q1 = 2 and
q0 = q1 = 1 respectively. It should be noted that due to the equation Qn = 2qn given in [2],
the known properties of the Pell-Lucas numbers can be written for the Modified Pell numbers.
Hence, a study of the one involves inevitably familiarity with the other one.

Many investigations on the Pell, Pell-Lucas and Modified Pell numbers have been presented
by a great number of researchers. Ercolano gave the generating matrices for the Pell numbers [3].
Horadam presented many properties of the Modified Pell numbers [4]. Melham introduced many
sum formulae and properties of both Fibonacci and Pell numbers [5]. Kilic and Tasci derived
the generalizations of the usual Pell numbers and obtain their generating matrices and certain
sum formulae [6]. Daşdemir investigated some properties of the Pell, Pell-Lucas and Modified
Pell numbers by employing the matrix approach [7]. Catarino obtained the Binet formulae, the
generating functions and some properties of k-Pell numbers [8]. Vasco and Catarino developed
some sums and certain products involving terms of k-Pell, k-Pell-Lucas and Modified k-Pell
sequences [9]. Daşdemir gave the recurrence relations corresponding to a generalizations of the
Pell-Lucas and Modified Pell numbers [10].

In this paper, the generalized order-k Pell, Modified Pell and Pell-Lucas numbers are con-
sidered, and certain properties, sum formulae, the generalized Binet formulae, combinatorial
representations and the generating functions of the generalized order-k Modified Pell and Pell-
Lucas numbers are presented by employing the matrix method.

2 Preliminaries

In this section, certain results given before are recalled.
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In [6], Kilic and Tasci presented a generating matrix to obtain all the terms of the generalized
order-k Pell numbers as follows:

En = Rn, (2.1)

where

R =



2 1 · · · 1 1
1 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...
0 0 · · · 1 0

 and En =


P 1
n P 2

n · · · P k
n

P 1
n−1 P 2

n−1 · · · P 1
n−1

...
...

...
...

P 1
n−k+1 P 1

n−k+1 · · · P 1
n−k+1

 . (2.2)

In addition, in the same paper, the generalized Binet formulae of the generalized order-k Pell
numbers were investigated as follows: Let f (λ) be the characteristic polynomial of the generat-
ing matrixR such as f (λ) = λk−2λk−1−· · ·−λ−1, where λ1, λ2, . . . , λk’s are the eigenvalues
of the matrix R. In [6], it is shown that λ1, λ2, . . . , λk’s are distinct, and a k × k Vandermonde
matrix denoted by V and a k × 1 column vector denoted by wi

k are defined as follows:

V =



λk−1
1 λk−1

2 λk−1
3 · · · λk−1

k

λk−2
1 λk−2

2 λk−2
3 · · · λk−2

k
...

...
...

...
λ1 λ2 λ3 · · · λk

1 1 1 · · · 1

 and wi
k =


λn+k−i

1

λn+k−i
2

...
λn+k−i
k

 .

Hence, the following theorem was given.

Theorem 2.1. ([6]) Let P i
n be the nth term of ith Pell sequence, for 1 ≤ i ≤ k. Then,

P j
n−i+1 =

det
(
V

(i)
j

)
det (V )

, (2.3)

where V (i)
j denotes a k × k matrix obtained from V by replacing the jth column of V by wi

k.

By the same token, Daşdemir gave the following generating matrix for the generalized order-
k Pell-Lucas and Modified Pell numbers by aid of an auxiliary matrix [10]:

Kn = Rn.S or Kn = En.S, (2.4)

where

Kn =


q1
n q2

n · · · qkn
q1
n−1 q2

n−1 · · · q1
n−1

...
...

...
...

q1
n−k+1 q1

n−k+1 · · · q1
n−k+1

 and S =



1 1 1 · · · 1
0 −1 0 · · · 0

0 0 −1
. . .

...
...

...
. . . −1 0

0 0 · · · 0 −1


. (2.5)

In addition, the author showed that there exist the following relationships [10]: for all n,m ∈ Z+

and 1 6 i 6 k,
qin = P i

n+1 − P i
n (2.6)

Qi
n = 2qin (2.7)

Finally, the following theorem is recalled.
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Theorem 2.2. ([11]) The (i, j) entry anij (c1, c2, . . . , ck) in the matrix An
k (c1, c2, . . . , ck) is given

by the following formula:

a
(n)
ij (c1, c2, . . . , ck) =

∑
(t1,...,tk)

tj + tj+1 + · · ·+ tk
t1 + t2 + · · ·+ tk

×

(
t1 + t2 + · · ·+ tk

t1, t2, . . . , tk

)
ct1

1 . . . c
tk
k , (2.8)

where the summation is over nonnegative integers satisfying t1 + 2t2 + · · · + ktk = n − i + j,
and the coefficients are defined as 1 for n = i− j.

3 Main Results

In this section, certain relationships between the generalized order-k Pell, Pell-Lucas and Mod-
ified Pell numbers and their Binet formulae and combinatorial representations are presented by
employing the matrix method. Beginning of this section, the following theorem is given.

Theorem 3.1. Let P k
n and qkn be the generalized order-k Pell and Modified Pell numbers, re-

spectively. For n > 0,

i. qkn = P k
n−1 + qk−1

n

ii. qkn − qk−1
n = P k−1

n + P k
n

iii. qkn − qkn−1 = P k
n + P k

n−k

Proof. Only the proof of Theorem 3.1.i is given here, because the others are analogous. To
prove Theorem 3.1.i, the induction method on n is used. Consider the recurrence relations of the
generalized order-k Pell and Modified Pell numbers given in [6, 10]. It is seen that

qk1 = P k
0 + qk−1

1 = 1.

Let it be true for i = 1, 2, · · · , n− 1. It must be shown that this equation holds for i = n. Hence,

qkn = 2qkn−1 + qkn−2 + · · ·+ qkn−k−1

= 2
(
P k
n−2 + qk−1

n−1

)
+
(
P k
n−3 + qk−1

n−2

)
+ · · ·+

(
P k
n−k−2 + qk−1

n−k−1

)
=
(
2P k

n−2 + P k
n−3 + · · ·+ P k

n−k−2
)
+
(

2qk−1
n−1 + qk−1

n−2 + · · ·+ qk−1
n−k−1

)
= P k

n−1 + qk−1
n

can be written. This completes the proof.

Now certain sum formulae consisting of convolutions of the generalized order-k Pell and
Modified Pell numbers are given.

Theorem 3.2. Let P k
n and qkn be the generalized order-k Pell and Modified Pell numbers, re-

spectively. For n, p,m ∈ Z+,

i. qkn =
k∑

i=1
P k
n−i+1

ii. qin+m+p =
k∑

j=1
P j
nq

i
m+p+1−j =

k∑
j=1

P j
n+mq

i
p+1−j

iii. qin+m =
k∑

j=1
P j
n+pq

i
m+1−p−j =

k∑
j=1

P j
n−pq

i
m+p+1−j

iv.
n∑

j=1
qj

i = Pn+1
i − 1

Proof. Each case is separately investigated.
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i. Consider the induction method on n. By the definition of the generalized order-k Pell and
Modified Pell numbers,

qk1 =
k∑

i=1

P k
n−i+1 = P k

1 + P k
0 + · · ·+ P k

2−k = 1

is obtained for the case where n = 1. Assume that the considered equation holds for first n
term. From the assumption and Eq. (2.6),

k∑
i=1

P k
n−i+2 = P k

n+1 + P k
n + · · ·+ P k

n−k+2 = P k
n+2 − P k

n+1 = qkn+1

is written for n+ 1. Thus the proof is completed.

ii. Consider Eq. (2.4). Hence, for all n, p,m ∈ Z+,

Kn+m+p = EnKm+p = En+mKp

can be written. Consequently, by the matrix multiplication, the proof can directly be com-
pleted.

iii. As in the proof of ii, from Eq. (2.4),

Kn+m = En−pKm+p = En+pKm−p

can be obtained. Hence, the proof is completed by employing the matrix multiplication.

iv. Summing all the equations after writing equation (2.6) from 1 to n, the result follows.

So, the proof is completed.

Now the generalized Binet formalae of the generalized order-k Modified Pell numbers are
investigated. To do this, the following theorem is given.

Theorem 3.3. Let qin be the nth term of ith generalized Modified Pell sequence. Then for 1 ≤
i ≤ k,

qin =
det
(
V

(1)
1

)
− det

(
V

(1)
i

)
det (V )

. (3.1)

Proof. Taking the cases separately where i = j = 1 and i = 1 in Theorem 2.1 and Eq. (2.6) into
account, the proof is completed.

To present the combinatorial representations of the generalized order-k Modified Pell num-
bers, the following corollary is given as a result of Theorem 2.2 without the proof.

Corollary 3.4. Let qin be the generalized order-k Modified Pell number, for 1 ≤ i ≤ k. Then,

qin =
∑

(d1,d2,··· ,dk)

(
d1 + d2 + · · ·+ dk

d1, d2, · · · , dk

)
2d1

−
∑

r1,r2,··· ,rk

rk
r1+r2+···+rk

×

(
r1 + r2 + · · ·+ rk

r1, r2, · · · , rk

)
2r1

(3.2)

where the summation is over nonnegative integers satisfying r1 + 2r2 + · · · + krk = n − i + k
and d1 + 2d2 + · · ·+ kdk = n.

It should be noted that all the results presented above can be expressed in terms of the gener-
alized order-k Pell-Lucas numbers. It is enough to consider Eq. (2.7) to do this. Consequently,
the following statements can be given.

Theorem 3.5. Let P k
n and Qk

n be the generalized order-k Pell and Pell-Lucas numbers, respec-
tively. For n > 0,
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i. Qk
n = 2P k

n−1 +Qk−1
n

ii. Qk
n −Qk−1

n = 2
(
P k−1
n + P k

n

)
iii. Qk

n −Qk
n−1 = 2

(
P k
n + P k

n−k
)

Theorem 3.6. Let P k
n and Qk

n be the generalized order-k Pell and Pell-Lucas numbers, respec-
tively. For n, p,m ∈ Z+,

i. 1
2Q

k
n =

k∑
i=1

P k
n−i+1

ii. Qi
n+m+p =

k∑
j=1

P j
nQ

i
m+p+1−j =

k∑
j=1

P j
n+mQ

i
p+1−j

iii. Qi
n+m =

k∑
j=1

P j
n+pQ

i
m+1−p−j =

k∑
j=1

P j
n−pQ

i
m+p+1−j

iv.
n∑

j=1
Qj

i = 2(Pn+1
i − 1)

Theorem 3.7. Let Qi
n be the nth term of ith Pell-Lucas sequences, for 1 ≤ i ≤ k. Then,

1
2
Qi

n =
det
(
V

(1)
1

)
− det

(
V

(1)
i

)
det (V )

. (3.3)

Corollary 3.8. Let Qi
n be the generalized order-k Pell-Lucas numbers, for 1 ≤ i ≤ k. Then,

1
2Q

i
n =

∑
(d1,d2,··· ,dk)

(
d1 + d2 + · · ·+ dk

d1, d2, · · · , dk

)
2d1

−
∑

r1,r2,··· ,rk

rk
r1+r2+···+rk

×

(
r1 + r2 + · · ·+ rk

r1, r2, · · · , rk

)
2r1

(3.4)

where the summation is over nonnegative integers satisfying r1 + 2r2 + · · · + krk = n − i + k
and d1 + 2d2 + · · ·+ kdk = n.

Now, the generating functions of the generalized order-k Modified Pell numbers are derived.
To do this, the limit of the adjacent generalized order-k Modified Pell numbers qkn

qkn−1
is considered

under the case where n→∞. First of all, the following definition is introduced:

lim
n→∞

qkn
qkn−1

= x. (3.5)

The ratio of the adjacent generalized order-k Modified Pell numbers can be written as follows:

qkn
qkn−1

=
2qkn−1 + qkn−2 + · · ·+ qkn−k

qkn−1
=

3qkn−1 − qkn−k−2 − qkn−2

qkn−1

or more smoothly
qkn
qkn−1

= 3− 1
qkn−1

qkn−2

− 1
qkn−1q

k
n−2q

k
n−3...q

k
n−k

qkn−2q
k
n−3...q

k
n−kq

k
n−k−1

. (3.6)

Substituting Eq. (3.6) into Eq. (3.5), the following algebraic equation for the generalized order-k
Modified Pell numbers is obtained:

xk+1 − 3xk + xk−1 + 1 = 0 (3.7)

or equally
(x− 1)

(
xk − 2xk−1 − xk−2 − · · · − x− 1

)
= 0. (3.8)
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According to the famous Fundamental Theorem of Algebra, Eq. (3.7) possesses (k + 1)
roots such as x1, x2, . . . , xk+1 and from [6], each is different from the other. It is clear that since
x− 1 6= 0 for k > 1,

xk − 2xk−1 − xk−2 − · · · − x− 1 = 0 (3.9)

is obtained. When k = 2, Eq. (3.9) is reduced to well-known form for the usual Pell numbers
(or Modified Pell numbers).

4 Algorithms

The recurrence relations and the initial conditions of the considered number sequences vary de-
pending the selection of i, k and n. Hence, it is troublesome and not economical to compute
the terms of the generalized order-k Pell, Modified Pell and Pell-Lucas numbers and their sums.
Consequently, certain algorithms for PC are given to address the issue. Fig. 1 displays an algo-
rithm to obtain the terms of the generalized order-k Pell numbers and their sums. Furthermore,
Figs. 2 and 3 show the algorithms for the generalized order-k Modified Pell and Pell-Lucas
numbers, respectively. Note that the algorithms given in this paper are composed for Mathemat-
ica 8.0 and later versions. They may give errors for older versions. It should be recalled to get
1 6 i 6 k while running the algorithms. In addition, introduce the notations

P (i, k, n) = Pn
i q (i, k, n) = qn

i and Q (i, k, n) = Qn
i, (4.1)

S (n) =
n∑

j=0

P (i, k, n) H (n) =
n∑

j=0

q (i, k, n) and T (n) =
n∑

j=0

Q (i, k, n.) (4.2)

These notations will appear in the output of the program.

Figure 1. Algorithm for computing the terms of the generalized order-k Pell numbers and their
sums.
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Figure 2. Algorithm for computing the terms of the generalized order-k Modified Pell numbers
and their sums.

Figure 3. Algorithm for computing the terms of the generalized order-k Pell-Lucas numbers and
their sums.

5 Conclusions

In this study, the generalized order-k Pell, Modified Pell and Pell-Lucas numbers are investi-
gated, and their certain important properties, interrelationships and sum formulae are given. In
addition, their the generalized Binet formulae, combinatorial representations and the generating
functions are developed via the matrix approach.
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