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Abstract In this paper we study the group of homeomorphisms of a topological space. A
subgroup H of the group S(X) of all permutations of a set X is called t-representable on X
if there exists a topology τ on X such that the group of homeomorphisms of (X, τ) = K.
It is proved that the group generated by a permutation which is an arbitrary product of infinite
cycles is a t-representable subgroup of S(X). It is also proved that the group generated by a
permutation which is a product of two disjoint finite cycles is not a t-representable subgroup of
S(X) when the order of the group is greater than two.

1 Introduction

Consider the topological space (X, τ), the set of all homeomorphisms on (X,T ) onto itself
form a group under composition which is a subgroup of the symmetric group S(X). Many
authors studied the concept of group of homeomorphisms. In 1959, J. De Groot proved that
for any group G, there is a topological space (X, τ) such that the group of homeomorphisms of
(X, τ) is isomorphic to G [4]. The problem of representing a subgroup of S(X) as the group of
homeomorphisms of some topology on X was considered by P. T. Ramachandran. In [6, 7], P. T.
Ramachandran showed that nontrivial proper normal subgroups of the group of all permutations
of a set X can not be represented as the group of homeomorphisms of (X, τ) for any topology
τ on X . If X = {a1, a2, . . . , an}, n ≥ 3, the group of permutations of X generated by the
cycle (a1, a2, . . . , an) cannot be represented as the group of homeomorphisms of (X, τ) for any
topology τ on X whereas if X is an infinite set, then the cyclic group generated by an infinite
cycle can be represented as the group of homeomorphisms of (X, τ) for a topology τ on X
[6, 8].

A subgroupH of the group S(X) of all permutations of a setX is called t-representable onX
if there exists a topology τ onX such that the group of homeomorphisms of (X, τ) = H . In [9]
it is proved that the direct sum of finite t-representable permutation groups is t-representable, ev-
ery permutation group of order two is t-representable and also determined the t-representability
of finite transitive permutation groups. In [10], we determined the t-representability of group
generated by a permutation which is a product of disjoint cycles having equal lengths.

The aim of this paper is to continue the study in [10]. In the second section we determine
the t-representability of groups generated by an arbitrary product of infinite cycles. In the third
section we prove that the group generated by a permutation which is a product of two disjoint
finite cycles is not a t-representable subgroup of S(X) provided the order of the group is greater
than two.

We use an order theoretic method to determine the t-representability of permutation groups.
Susan J. Andima and W. J Thron [1] associated each topology τ on a set X with a preorder
relation ‘≤’ on X defined by a ≤ b if and only if every open set containing b contains a. Then
any homeomorphisms of (X, τ) onto itself is also an order isomorphisms of (X, ≤). Also we
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have the group of homeomorphisms of (X, τ) which is denoted byH(X, τ) is equal to the group
of order isomorphisms of (X, ≤) if X is finite [9].

A topological space (X, τ) is said to be a T0 space if given any two distinct points in X ,
there exist an open set which contains one of them but not the other [11]. So (X, τ) is a T0
space if and only if the corresponding preordered set (X, ≤) is a partially ordered set. If X
is a finite nonempty set, then the partially ordered set (X, ≤) has both maximal and minimal
elements. Also an order isomorphism of (X, ≤) maps maximal elements to maximal elements
and minimal elements to minimal elements.

The basic concepts to be used in our proofs will be introduced as needed and reference for
each concept will be mentioned along with. In particular for the basic notions of topological
spaces and groups we refer to [3] and [11].

2 t-representability of the groups generated by a product of disjoint infinite
cycles

In this section we investigate the t-representability of infinite cyclic subgroups of symmetric
groups. Here we prove that if X is an infinite set and σ is a permutation on X which can be
written as an arbitrary product of disjoint infinite cycles, then the cyclic group generated by σ,
〈σ〉 is t-representable on X .

We need the following definition.

Definition 2.1. [2] Let G1 and G2 be two permutation groups on X1 and X2 respectively. The
direct product G1 ×G2 acts on the disjoint union X1 ∪X2 by the rule

(g1, g2)(x) =

{
g1(x) if x ∈ X1

g2(x) if x ∈ X2.

First we prove an important property of a t-representable permutation group.

Theorem 2.2. Let X be any set and Y be a nonempty subset of X . If H is a t-representable
permutation group on Y , then the permutation group {IX\Y }×H is t-representable on X where
IX\Y is the identity permutation on X \ Y .

Proof. Let τ1 be a topology on Y such thatH(Y, τ1) = H . The result is trivially true ifX\Y = ∅.
So we assume that X \ Y 6= ∅. Define

τ ′ = {(X \ Y ) ∪ U : U ∈ τ1}

By using the well-ordering Theorem, well-order the set X \ Y by the order relation <. Define a
topology τ2 on X \ Y as

τ2 = {X \ Y } ∪ {{y ∈ X \ Y : y < x} : x ∈ X \ Y }.

Let
τ = τ2 ∪ τ ′.

It is easy to see that τ is a topology on X .
Claim: H(X, τ) = {IX\Y } ×H .

Let h ∈ {IX\Y } × H . This gives that h = (IX\Y , h1) for some h1 ∈ H . Let U ∈ τ . If
U ∈ τ2, then we have h(U) = U and h−1(U) = U and hence h(U), h−1(U) ∈ τ . If U ∈ τ ′, then
U = (X \Y )∪U1 for some U1 in τ1 . Since h1 is a homeomorphism on (Y, τ1), h1(U1) ∈ τ1 and
h−1

1 (U1) ∈ τ1. This implies that both h(U) = (X \Y )∪h1(U1) and h−1(U) = (X \Y )∪h−1
1 (U1)

are in τ . Since U is arbitrary, h is a homeomorphism on (X, τ). So

{IX\Y } ×H ⊆ H(X, τ). (2.1)

Conversely assume that h ∈ H(X, τ). First we prove that h(x) = x for all x ∈ X \ Y . Now
we consider the case |X \ Y | = 1. If X \ Y = {x}, then x is isolated in X and no point of Y is
isolated in X , so h(x) = x.
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Now we assume that |X \Y | ≥ 2. Let x0 and x1 be the first and the second elements of the set
X \Y and U = {y ∈ X \Y : y < x1}. Then U = {x0} and U ∈ τ . Since h is a homeomorphism,
h(U) ∈ τ and hence h(x0) = x0. Let xα be any element of X \ Y such that h(x) = x for all x
in X \ Y such that x < xα.

If xα has an immediate successor xβ in X \ Y , consider U = {x ∈ X \ Y : x < xβ}, which
is an open set and hence h(U) is open in τ . Now

h(U) = {x ∈ X \ Y : x < xα} ∪ {h(xα)}.

If X \Y ⊆ h(U), then xα and xβ are both in h(U) \ {x ∈ X \Y : x < xα}, which is impossible.
So h(U) = {x ∈ X \ Y : x < z} for some z ∈ X \ Y and hence h(U) = {x ∈ X \ Y : x < xβ}.
Consequently h(xα) = xα.

If xα has no immediate successor, then xα is the last element of the set X \Y . Since X \Y ∈
τ2, X \ Y ∈ τ . Therefore h(X \ Y ) ∈ τ and h(X \ Y ) = {x ∈ X \ Y : x < xα} ∪ {h(xα)}.
For any z ∈ X \ Y , {x ∈ X \ Y : x < z} is a proper subset of h(X \ Y ). This implies that
X \ Y ⊆ h(X \ Y ) and hence h(xα) = xα.

Thus h|X\Y = IX\Y and h|Y will be a homeomorphism of (Y, τ1). Clearly h|Y ∈ H and we
get h = (IX\Y , h1) where h1 = h|Y ∈ H . So h ∈ {IX\Y } ×H . Thus we get

H(X,T ) ⊆ {IX\Y } ×H. (2.2)

From equations 2.1 and 2.2, we have H(X, τ) = {IX\Y } ×H . This completes the proof. 2

Remark 2.3. Let H be a non-trivial permutation group on a set X . Let Y = X \ {x ∈ X :
h(x) = x for all h ∈ H}. Define H ′ = {h|Y : h ∈ H}, which is a permutation group on
Y . Note that H ′ moves all the elements of Y and H = H ′ × {IX\Y }. By Theorem 2.2, it
follows that, if H ′ is a t-representable permutation group on Y , then H is t-representable on X .
So if (X, τ) is a topological space which is not rigid and H = H(X, τ) then without loss of
generality we can assume that H moves all the elements of X .

Let X be the infinite set {. . . , a−2, a−1, a0, a1, a2, . . .} and σ be the infinite cycle
(. . . , a−2, a−1, a0, a1, a2, . . .) on X . Then the group generated by σ is t-representable on X by
defining a topology τ = {∅, X} ∪ {{aj : j ≤ i} : i ∈ Z} where Z is the set of integers [8]. It
follows that, the permutation group generated by an infinite cycle is t-representable.

A topological space (X, τ) is called an Alexandroff discrete space if arbitrary intersections
of open sets are open in X [1]. A topological space (X, τ) is Alexandroff discrete if and only if
it has a minimal open neighbourhood at every point in X .

First we consider the t-representability of cyclic group generated by a permutation which is
a product of two disjoint infinite cycles. Here we prove that the subgroup of S(X) generated by
a permutation which is a product of two disjoint infinite cycles is t-representable on X .

Theorem 2.4. Let X be an infinite set and σ be a permutation on X which can be written
as a product of two disjoint infinite cycles. Then the cyclic group generated by σ, 〈σ〉 is t-
representable on X .

Proof. Let σ = σ1σ2 where

σ1 = (. . . , a−1, a0, a1, . . .) and σ2 = (. . . , b−1, b0, b1, . . .).

By Theorem 2.2, without loss of generality we can assume that X = X1 ∪ X2, where X1 =
{ai : i ∈ Z} and X2 = {bi : i ∈ Z}. Now define a base B by

B = {Ai : i ∈ Z} ∪ {Ai ∪Bi : i ∈ Z}

where Ai = {aj ∈ X1 : j ≤ i} and Bi = {bj ∈ X2 : j ≤ i}. Let τ be the topology having base
B. Then

τ = {∅, X, X1} ∪ {Ai : i ∈ Z} ∪ {Ai ∪Bj : i, j ∈ Z and j ≤ i}.
Now we prove that H(X, τ) = 〈σ〉. It is routine to verify that if U ∈ τ , then σ(U) ∈ τ and
σ−1(U) ∈ τ . Hence

〈σ〉 ⊆ H(X, τ). (2.3)
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For the other inclusion let h ∈ H(X, τ). First we prove that h(X1) = X1. Suppose instead
that h(X1) 6= X1. Then either X1 \ h(X1) 6= ∅ or h(X1) \ X1 6= ∅. Assume first that h(X1) \
X1 6= ∅ and pick i, k ∈ Z such that h(ai) = bk. Then Ai is the smallest open set with ai
as a member and hence h(Ai) = Ak ∪ Bk, the smallest open set with bk as a member. Now
h(Ai+1) = h(Ai ∪ {ai+1}) = Ak ∪ Bk ∪ h((ai+1). Now h(ai+1) 6= h(ai) = bk. So the smallest
open set with h(ai+1) as a member is either Aj for some j or Aj ∪ Bj for some j 6= k. This is
impossible.

Now assume that X1 \h(X1) 6= ∅. Then h−1(X1)\X1 6= ∅. So we get a contradiction exactly
as before. Therefore h(X1) = X1 and consequently h(X2) = X2.

We have that h(a0) = aj for some j ∈ Z. We show by induction that for all k ∈ N ∪ {0},
h(ak) = aj+k and h(a−k) = aj−k. So let k ∈ N ∪ {0} and assume that h(ak) = aj+k and
h(a−k) = aj−k. Then h(Ak) = Aj+k and h(A−k) = Aj−k.

Let V be the smallest open set with h(a−k−1) as a member. Then V = h(A−k−1) =
h(A−k \ {a−k}) = h(A−k) \ {h(a−k)} = Aj−k \ {aj−k} = Aj−k−1. So h(a−k−1) = aj−k−1.

Now pick l ∈ Z such that h(ak+1) = al. Then Al = h(Ak+1) = h(Ak ∪ {ak+1}) =
Aj+k∪{h(ak+1)}. ThusAj+k ⊆ Al andAl\Aj+k ⊆ {h(ak+1)}. Now h(ak+1) 6= h(ak) = aj+k.
This implies that l 6= j + k and hence l = j + k + 1. Thus we get h(ak+1) = aj+k+1.

Now let bk ∈ X2 and let bm = h(bk). Then Am ∪Bm = h(Ak ∪Bk) = h(Ak) ∪ h(Bk) =
Aj+k ∪ h(Bk). So j + k = m and h(bk) = bj+k. Therefore h = σj for some j ∈ Z . So

H(X, τ) ⊆ 〈σ〉. (2.4)

From equations 2.3 and 2.4, we get H(X, τ) = 〈σ〉. This completes the proof. 2

If σ is a permutation on X which is a product of more than two disjoint infinite cycles, we
can define a topology τ on X such that H(X, τ) is the group generated by σ.

Theorem 2.5. If σ is a permutation on X which is a product of more than two disjoint infinite
cycles, then the cyclic group generated by σ, 〈σ〉 is t-representable on X .

Proof. Let σ = Πß∈ICi where I is a set, |I| > 2 and for i ∈ I

Ci = (. . . , ai,−2, ai,−1, ai,0, ai,1, ai,2, . . .)

which is an infinite cycle. Let Xi be the set of all terms of the cycle Ci. In view of Theorem 2.2
we can assume without loss of generality that X =

⋃
i∈I Xi. Well order I by the relation <. Let

i0 be the first element of I and i1 denote the first element of the set I \ {i0}.
Define a base B by

B = {Bi,j : i ∈ I, j ∈ Z}

where for j ∈ Z, Bi0,j = {ai0,j}, Bi1,j = {ai0,j , ai1,j}, and for i > i1, Bi,j = {ak,j : k ≤
i} ∪ {ai0,j−1}. It is easy to verify that B is a base for a topology τ on X . Since for each i ∈ I
and j ∈ Z, σ(Bi,j) = Bi,j+1. Thus

〈σ〉 ⊆ H(X, τ). (2.5)

For the other inclusion, let h ∈ H(X, τ). Note that for each i ∈ I and j ∈ Z, Bi,j is
the smallest open set with ai,j as a member. Given q ∈ Z, there is some f(q) ∈ Z such that
h(Bi0,q) = Bi0,f(q). We shall show that for each i ∈ I and q ∈ Z, h(ai,q) = ai,f(q) and
f(q − 1) = f(q)− 1. This will suffice for then letting n = f(0), one has h = σn.

So let q ∈ Z and let r = f(q). Then h(ai0,q) ∈ Bi0,r and so h(ai0,q) = ai0,r. Now h(Bi1,q) =
Bi1,m for some m ∈ Z and so {ai0,r, h(ai1,q)} = h(Bi1,q) = {ai0,m, ai1,m}. It follows that
m = r and h(ai1,q) = ai1,r

Now let i > i1 and assume that for all k < i, h(ak,q) = ak,r. Let s = f(q − 1). The
smallest open set with ai,q as a member is Bi,q and h(Bi,q) = {ak,r : k < i} ∪ {h(ai,q), ai0,s}.
If k < i, then h(ai,q) 6= h(ak,q) = ak,r. So h(Bi,q) has at least three members and hence we
can pick l > i and m ∈ Z such that h(Bi,q) = Bl,m. Then {ak,r : k < i} ∪ {h(ai,q), ai0,s} =
{ak,m : k < l} ∪ {al,m, ai0,m−1}. Now ai1,r ∈ {ak,r : k < i} and ai1,r /∈ {al,m, ai0,m−1}. So



GROUP OF HOMEOMORPHISMS 57

r = m. Consequently {ak,r : k < i} ∪ {h(ai,q), ai0,s} = {ak,r : k < l} ∪ {al,r, ai0,r−1}. Since
h(Bi,q) 6= Bi0,r−1, h(ai,q) 6= ai0,r−1. So ai0,r−1 = ai0,s and thus s = r − 1. (Note that we have
established that f(q − 1) = f(q)− 1

Now we have that {ak,r : k < i} ∪ {h(ai,q), ai0,r−1} = {ak,r : k ≤ l} ∪ {ai0,r−1}. So
h(ai,q) = ap,r for some p with i ≤ p ≤ l. Suppose that i < l and pick j 6= p with i ≤ j ≤ l.
Then aj,r /∈ {ak,r : k < i} ∪ {h(ai,q), ai0,r−1}, a contradiction. So i = l and h(ai,q) = ai,r as
required. Hence h ∈ 〈σ〉. Thus

H(X, τ) ⊆ 〈σ〉. (2.6)

From equations 2.5 and 2.6, we get 〈σ〉 = H(X, τ). Hence 〈σ〉 is a t-representable permutation
group on X . 2

We conclude this section by the following theorem.

Theorem 2.6. Let X be an infinite set and σ be a permutation on X which can be written as
an arbitrary product of disjoint infinite cycles. Then the cyclic group generated by σ, 〈σ〉 is
t-representable on X .

Proof. Proof follows from Theorems 2.4 and 2.5 and the paragraph after Remark 2.3. 2

3 t-representability of the groups generated by a permutation which is a
product of two disjoint cycles having finite length

We now turn our attention to the t-representability of cyclic groups generated by a permutation
which is a product of two disjoint finite cycles. The main result in this section is, if σ is a
permutation on a set X which is a product of two disjoint cycles having finite length, then the
cyclic group generated by σ, 〈σ〉 is not t-representable on X provided the length of at least one
of them is greater than two.

A topological space (X, τ) is said to be homogeneous if for any x, y ∈ X , there exists
a homeomorphism h from (X, τ) onto itself such that h(x) = y [11]. A finite topological
space X is homogeneous if and only if there exist positive integers m and n such that X is
homeomorphic to D(m) × I(n) where D(k) and I(k) denote the set {1, 2, 3, . . . , k} with the
discrete topology and indiscrete topology respectively [5]. So if (X, τ) is a finite homogeneous
space, then there exists a partition of X using sets with equal number of elements, which forms
a base for the topology on X and when |X| ≥ 2, there exists at least one transposition which is
a homeomorphism of (X, T ).

In [10] we proved the following theorem in the case of a group generated by a permutation
which is a product of two disjoint cycles having the equal lengths.

Theorem 3.1. [10] If σ is a permutation on X which is a product of two disjoint cycles having
equal length n where n ≥ 3, then the group generated by σ is not t-representable on X .

Now we consider the t-representability of the permutation groups generated by a permutation
which is a product of two disjoint cycles having different lengths.

Lemma 3.2. Let (X, τ) be a topological space which is not T0. Then there exists at least one
transposition which is a homeomorphism on (X, τ).

Proof. Let (X, τ) be a topological space which is not T0. Then by definition there exist two
distinct points a, b in X such that every open set in X either contains both a and b or else contain
neither of them. Let p be the transposition (a, b). Then p−1 = p and p(U) = U for all U ∈ τ .
This implies that p is a homeomorphism on (X, τ). This completes the proof. 2

Theorem 3.3. Let X be any set such that |X| = m1 +m2 and σ be a permutation on X which
is a product of two disjoint cycles having lengths m1 and m2 respectively where (m1, m2) = 1,
then the cyclic group generated by σ is not t-representable on X .
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Proof. Let σ1 = (a1, a2, . . . , am1) and σ2 = (b1, b2, . . . , bm2) and σ = σ1σ2. Since
(m1, m2) = 1, we have

〈σ〉 = 〈σ1〉 × 〈σ2〉

Let X = X1 ∪X2 where Xi is the set of all elements in the cycle σi for i = 1, 2. Assume that
〈σ〉 is a t-representable permutation group on X and τ is the corresponding topology.

Now we have two possible cases.

Case 1: (X, τ) is a T0 space.
In this case the corresponding pre ordered set (X,≤) is a partially ordered set. Since X
is a finite non empty set, the partially ordered set (X, ≤) has both maximal and minimal
elements. Assume that an element x0 in X is both minimal and maximal. Then we claim
that all the elements of X are both minimal and maximal. Since X = X1 ∪ X2, we
have either x0 ∈ X1 or x0 ∈ X2. Suppose that x0 ∈ X1. Since a homeomorphism maps
minimal elements to minimal elements and maximal elements to maximal elements and
{h(x0) : h ∈ 〈σ〉} = X1, all the elements of X1 are both minimal and maximal. Let
x ∈ X2. Suppose that x is not a maximal element. Then there exists at least one element
x′ in X such that x < x′. Since all the elements of X1 are both minimal and maximal, the
only possibility is x′ ∈ X2. Now x′ ∈ X2 implies that there exist some j, 1 ≤ j < m2 such
that x′ = σj2(x). Now

x < x′ = σj2(x) =⇒ σj2(x) < σj⊕j2 (x)

=⇒ σj⊕j2 (x) < σj⊕2j
2 (x)

...

=⇒ σ
j⊕(m2−2)j
2 (x) < σ

j⊕(m2−1)j
2 (x) = x.

Thus we get x < x′ and x′ < x. This implies that x = x′, which is not possible. So x
is a maximal element. Similarly if we assume that x is not a minimal element, we get a
contradiction. So all the elements of X2 are also both minimal and maximal. In this case
the topology on X is discrete and hence H(X, τ) = S(X), which is not possible. So a
minimal element can not be a maximal element. Then either X1 or X2 is the set of all
minimal elements.

Assume that X1 is the set of all minimal elements. Then there exists at least one ai ∈ X1
and bj ∈ X2 such that ai precedes bj . Now ai < bj gives p(ai) < p(bj) for all p ∈ 〈σ〉.
Since 〈σ〉 = 〈σ1〉 × 〈σ2〉, any p ∈ 〈σ〉 is of the form p = (p1, p2) where p1 ∈ 〈σ1〉 and
p2 ∈ 〈σ2〉. Therefore

ai < bj =⇒ (IX1 , p2)(ai) < (IX1 , p2)(bj) for all p2 ∈ 〈σ2〉
=⇒ ai < p2(bj) for all p2 ∈ 〈σ2〉
=⇒ ai < bk for k = 1, 2, . . .m2

So ai precedes all the elements of X2 and hence every element in X1 precedes all the
elements ofX2. Hence τ = P(X1)∪{X1∪B : B ⊆ X2}. So we getH(X, τ) = S(X1)×
S(X2). Since m1, m2 > 1 and m1 6= m2, |S(X1) × S(X2)| = m1!m2! > m1.m2 = |〈σ〉|.
This is not possible.

Case 2: The space (X, τ) is not T0.
In this case eitherm1 orm2 = 2 by Lemma 3.2. Letm1 = 2. Assume thatX1 = {a1, a2}
and σ1 = (a1, a2). Since 〈σ〉 = 〈σ1〉 × 〈σ2〉, (σ1, IX2) is a homeomorphism on X . Since
the transposition (a1, a2) is a homeomorphism on the space (X, τ), the subspace (X1, τ/X1)
has either the discrete topology or indiscrete topology.

Now if the subspace (X1, τ/X1) has the discrete topology, then there exist open sets of the
form U = U1 ∪ {a1} and V = V1 ∪ {a2} where U1 and V1 are subsets of X2. Since (X, τ)
is not T0, there exist two distinct points x and y such that every open set in (X, τ) contains
both x and y or else contain neither of them. Since the topology on (X1, τ/X1) is discrete, we
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have at least one of x, y does not belongs to X1. Hence we get a transposition (x, y) other
than (a1, a2), which is a homeomorphism on X . This is not possible since H(X, τ) = 〈σ〉.
If the subspace (X1, τ/X1) has the indiscrete topology, then every open set in (X, τ) con-
tains either both a1 and a2 or else contain neither of them. Now consider the subspace
(X2, τ/X2). Since 〈σ2〉 ⊆ H(X2, τ/X2), (X2, τ/X2) is a homogeneous space and hence
there exists a partition B = {B1, B2, . . . Bm}, |Bi| = n for all i = 1, 2, . . . , m and
1 ≤ n ≤ m2, of X2, which forms a base for (X2, τ/X2). Let n > 1. Now choose two
elements x, y in B1 and an open set U containing x. Then U ∩X2 ∈ τ/X2 and x ∈ U ∩X2.
This implies that B1 ⊆ U ∩X2 and hence y ∈ U . Thus any open set containing x contains
y also and vice versa. Consequently p = (x, y) is a homeomorphism on (X, τ). Now
suppose that n = 1. In this case (X2, τ/X2) is the discrete topology. Let x ∈ X2. Then
either {x} or {x} ∪X1 is open in X . We have 〈σ〉 = H(X, τ). Therefore if {x} ∈ τ , then
{{x} : x ∈ X2} ⊆ τ . Simillarly if {x} ∪X1 ∈ τ , then {{x} ∪X1 : x ∈ X2} ⊆ τ . This fol-
lows that any transposition on X2 is a homeomorphism of (X, τ), which is a contradiction.
Thus in both cases we get 〈σ〉 is not a t-representable permutation group on X .

2

Theorem 3.4. Let X be a set such that |X| = m1 +m2 and σ be a permutation on X which is a
product of two disjoint cycles having different lengthsm1 andm2 respectively where (m1, m2) =
d > 1, then the cyclic group generated by σ is not t-representable on X .

Proof. Let m1 < m2. We have (m1, m2) = d > 1 and hence m1 = ld and m2 = kd, where
l and k are positive integers. Assume that

σ = (a1, a2, . . . , am1)(b1, b2, . . . , bm1 , bm1+1, . . . , bm2)

and 〈σ〉 be the cyclic group generated by σ. Let X = Y ∪ Z where Y is the set of all terms in
the cycle σ1 and Z is the set of all terms in the cycle σ2. Assume that 〈σ〉 is a t-representable
permutation group on X . Note that there exist no transposition as homeomorphism on (X, τ).
So by Lemma 3.2, the corresponding topology τ on X is T0 hence the corresponding preordered
set is a partially ordered set. Then by a similar argument as in Theorem 3.3, we get either Y or
Z is the set of all minimal elements.

Assume that Y is the set of all minimal elements and Z is the set of all maximal elements.
Then there exist at least one ai ∈ Y and bj ∈ Z such that ai preceeds bj . Now ai < bj gives
f(ai) < f(bj) for all f ∈ 〈σ〉. Note that |〈σ〉| = n where n is the least common multiple of m1
and m2. Without loss of generality we assume that a1 preceeds b1. Now

a1 < b1 ⇒ σh(a1) < b1 for all h = 0,m2, , . . . (l − 1)m2

⇒ a1⊕m1pm2 < b1 for all p = 0, 1, , . . . (l − 1)

where ⊕m1 denotes addition modulo m1. Simillarly we have

a1 < b1 ⇒ a1 < σh(b1) for all h = 0,m1, , . . . (k − 1)m1

⇒ a1 < b1⊕m2pm1 for all p = 0, 1, , . . . (k − 1).

This implies that there exist partitions {Y1, Y2, . . . , Yd} and {Z1, Z, . . . , Zd} of Y and Z
respectively where Yi = {ai⊕m1pm2 : p = 0, 1, , . . . (l − 1)} and Zi = {bi⊕m2pm1 : p =

0, 1, , . . . (k − 1)} for all i = 1, 2, . . . d. and y < z for all y ∈ Yi and z ∈ Zi for i = 1, 2, . . . d.
Suppose a1 precede q elements b1, b2, . . . , bq in Z1, Z2, . . . , Zq respectively where 1 ≤ q ≤

d. Then all elements of Y1 preceed every element of Z1, Z2, . . . , Zq. This follows that

B = {{x} : x ∈ Y } ∪ {Yi ∪ Yi⊕d1 ∪ . . . , Yq⊕d(q−1) ∪ {bi}}

is a base for τ . It follows that (ai, ai⊕m1m2 , . . . , ai⊕m1 (k−1)m2
) is a homeomorphism on (X, τ),

which is a contradiction to the fact that 〈σ〉 = H(X, τ). So 〈σ〉 is not a t-representable permu-
tation group on X . 2
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Theorem 3.5. [9] Every permutation group of order two is t-representable.

Combining previous results, we get the following theorem.

Theorem 3.6. Let X be any set such that |X| = m1 +m2, σ be a permutation on X which is a
product of two disjoint cycles having lengths m1 and m2 respectively and H be the cyclic group
generated by σ. Then the group H is t-representable on X if and only if order H is less than
three.

Proof. This follows directly from the Theorems 2.2, 3.1, 3.3, 3.4 and 3.5. 2

The Theorem 3.6 gives the characterization of t-representable group generated by a permu-
tation which is a product of two disjoint finite cycles.
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