SOME NEW FAMILIES OF EDGE PAIR SUM GRAPHS

P. Jeyanthi and T. Saratha Devi

Communicated by Kewen Zhao

MSC 2010 Classifications: Primary 05C78.

Keywords and phrases: edge pair sum labeling, edge pair sum graph, closed helm graph, Petersen graph.

Abstract. The concept of an edge pair sum labeling was introduced in [3]. In this paper we prove that the graphs $(K_2 + mK_1)$, $S_{m,n}$, closed helm graph CH_n , two copies of Petersen graph by a path P_k , $k \ge 5$, two copies of fan graph $F_{1,n}$ by a path P_k , $k \ge 5$ and $K_4 \bigcup K_4$ admit edge pair sum labeling.

1 Introduction

Through out this paper we consider finite, simple and undirected graph G = (V(G), E(G)) with p vertices and q edges. G is also called a (p,q) graph. We follow the basic notations and terminology of graph theory as in [2]. A graph labeling is an assignment of integers to the vertices or edges or both, subject to certain conditions. There are several types of labeling and for a dynamic survey of various graph labeling problems with extensive bibliography one can refer to Gallian [1]. Ponraj [12] introduced the concept of pair sum labeling. An injective map $f: V(G) \to \{\pm 1, \pm 2, \ldots, \pm p\}$ is said to be a pair sum labeling of a graph G(p,q) if the induced edge function $f_e: E(G) \to Z - \{0\}$ defined by $f_e(uv) = f(u) + f(v)$ is one-one and $f_e(E(G))$ is either of the form $\{\pm k_1, \pm k_2, \ldots, \pm k_{\frac{q}{2}}\}$ or $\{\pm k_1, \pm k_2, \ldots, \pm k_{\frac{q}{2}}\}$ or $\{\pm k_1, \pm k_2, \ldots, \pm k_{\frac{q}{2}}\}$ or $\{\pm k_1, \pm k_2, \ldots, \pm k_{\frac{q}{2}}\}$ according as q is even or odd. Analogous to pair sum labeling we defined a new labeling called edge pair sum labeling in [3] and further studied in [4-11]. Let G(p,q) be a graph. An injective map $f: E(G) \to \{\pm 1, \pm 2, \ldots, \pm q\}$ is said to be an edge pair sum labeling if the induced vertex function $f^*: V(G) \to Z - \{0\}$ defined by $f^*(v) = \sum_{e \in E_v} f(e)$ is one- one where E_v denotes the set of edges in G that are incident with a vertex v and $f^*(V(G))$ is either of the form $\{\pm k_1, \pm k_2, \ldots, \pm k_{\frac{p-1}{2}}\} \cup \{\pm k_{\frac{p+1}{2}}\}$ according as p is even or odd. A graph with an edge pair sum labeling is called an edge pair sum labeling if the induced vertex v and $f^*(V(G))$ is either of the form $\{\pm k_1, \pm k_2, \cdots, \pm k_{\frac{p-1}{2}}\}$ or $\{\pm k_1, \pm k_2, \cdots, \pm k_{\frac{p-1}{2}}\}$ according as p is even or odd. A graph with an edge pair sum labeling is called an edge pair sum graph.

We use the following definitions in the subsequent sequel.

Definition 1.1. If G_1 and G_2 are subgraphs of a graph G then union of G_1 and G_2 is denoted by $G_1 \bigcup G_2$ which is the graph consisting of all those vertices which are either in G_1 or in G_2 (or in both) and with edge set consisting of all those edges which are either in G_1 or in G_2 (or in both).

Definition 1.2. A closed helm CH_n is the graph obtained by taking a helm H_n and by adding the edges between the pendant vertices.

Definition 1.3. Generalized Petersen graph, P(n, k) is a graph with $n \ge 5$ and $1 \le k \le n$ which has vertex set $\{a_0, a_1, ..., a_{n-1}, b_0, b_1, ..., b_{n-1}\}$ and edge set $\{a_i a_{i+1} : i = 0, 1, ..., n-1\} \bigcup \{a_i b_i : i = 0, 1, ..., n-1\} \bigcup \{b_i b_{i+k} : i = 0, 1, ..., n-1\}$, where all subscripts are taken modulo n. The standard Petersen graph is P(5, 2).

2 Main results

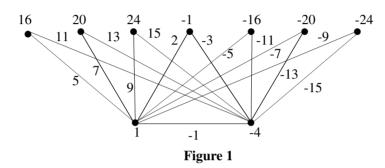
In this section we prove that the graphs $(K_2 + mK_1)$, $S_{m,n}$, closed helm graph CH_n , two copies of Petersen graph by a path P_k , $k \ge 5$, two copies of fan graph $F_{1,n}$ by a path P_k , $k \ge 5$ and $K_4 \bigcup K_4$ admit edge pair sum labeling.

Theorem 2.1. The graph $(K_2 + mK_1)$ is an edge pair sum graph for m is odd.

 $\begin{array}{l} \textbf{Proof. Let } V((K_2+mK_1)) = \{u,v,u_i: 1 \leq i \leq m\} \text{ and } E((K_2+mK_1)) = \{e_1^{'} = uv,e_{2i-1} = uu_i,e_{2i} = vu_i: 1 \leq i \leq m\} \text{ are the vertices and edges of the graph } (K_2+mK_1).\\ \textbf{Define an edge labeling } f: E((K_2+mK_1)) \rightarrow \{\pm 1,\pm 2,\pm 3,...,\pm (2m+1)\}.\\ \textbf{Define } f(e_1^{'}) = -1, \text{ for } 1 \leq i \leq \frac{m-1}{2} f(e_{2i-1}) = (2i+3), f(e_m) = 2, f(e_{m+1}) = -3,\\ \textbf{for } 1 \leq i \leq \frac{m-1}{2} f(e_{2i}) = (m+2+2i) = -f(e_{m+1+2i}) \text{ and } f(e_{m+2i}) = -(2i+3).\\ \textbf{The induced vertex labeling are as follows:}\\ f^*(u) = 1 = -f^*(u_{\frac{m+1}{2}}), f^*(v) = -4,\\ \textbf{for } 1 \leq i \leq \frac{m-1}{2} f^*(u_i) = (m+5+4i) = -f^*(u_{\frac{m+1}{2}+i}).\\ \textbf{Then we get } f^*(V((K_2+mK_1))) = \{\pm 1, \pm (m+9), \pm (m+13), \pm (m+17), ..., \pm (3m+1)\} = 0 \} \\ \end{array}$

3)} \bigcup {-4}. Hence *f* is an edge pair sum labeling.

An example for the edge pair sum graph labeling of $(K_2 + 7K_1)$ is shown in Figure 1. \Box



Theorem 2.2. The graph $S_{m,n}$ is an edge pair sum graph.

Proof. Let $V(S_{m,n}) = \{v, u_i^j; 1 \le i \le n, 1 \le j \le m\}$ be the vertices of the graph $S_{m,n}$. $E(S_{m,n}) = \{e_i^1 = vu_i^1 : 1 \le i \le n, e_i^{1+j} = u_i^j u_i^{1+j} : 1 \le i \le n, 1 \le j \le (m-1)\}$ be the edges of the graph $S_{m,n}$.

Define an edge labeling $f : E(S_{m,n}) \to \{\pm 1, \pm 2, \pm 3, .., \pm mn\}$ by considering the following two cases.

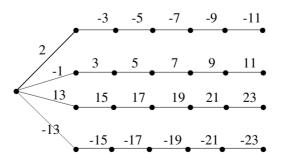
Case(i). n is even.

Define $f(e_1^1) = 2$, $f(e_2^1) = -1$, for $1 \le j \le (m-1)$ $f(e_1^{1+j}) = -(2j+1) = -f(e_2^{1+j})$ and for $1 \le i \le \frac{n-2}{2}$, $1 \le j \le m$ $f(e_{2+i}^j) = (2mi+2j-1) = -f(e_{\frac{n+2}{2}+i}^j)$. The induced vertex labeling are as follows:

$$\begin{aligned} f^*(v) &= 1 = -f^*(u_1^1), f^*(u_2^1) = 2, f^*(u_1^m) = -(2m-1) = -f^*(u_2^m), \\ \text{for } 1 &\leq i \leq (m-2) f^*(u_1^{1+i}) = -(4+4i) = -f^*(u_2^{1+i}), \\ \text{for } 1 &\leq i \leq \frac{n-2}{2}, 1 \leq j \leq m-1 f^*(u_{2+i}^j) = (4m+4j+(i-1)4m) = -f^*(u_{\frac{n+2}{2}+i}^j) \\ \text{for } 1 &\leq i \leq \frac{n-2}{2} f^*(u_{2+i}^m) = (2mi+2m-1) = -f^*(u_{\frac{n+2}{2}+i}^m). \end{aligned}$$

Therefore we get $f^*(V(S_{m,n})) = \{\pm 1, \pm (2m-1), \pm 8, \pm 12, \pm 16, ..., \pm (4m-4), \pm (4m-1), \pm (6m-1), \pm (8m-1), ..., \pm (mn-1), \text{ for } 1 \le i \le \frac{n-2}{2}, 1 \le j \le (m-1) \pm [4m+4j+(i-1)4m]\} \cup \{2\}.$ Hence f is an edge pair sum labeling.

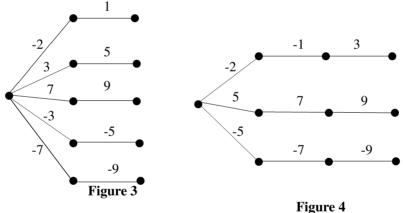
An example for the edge pair sum graph labeling of S(6,4) is shown in Figure 2.



Case(ii). *n* is odd. Subcase (i). m = 2. Define $f(e_1^1) = -2$, $f(e_1^2) = 1$ and for $1 \le i \le \frac{n-1}{2}$, $1 \le j \le 2 f(e_{1+i}^j) = [2j+1+(i-1)2m] = -f(e_{\frac{n+1}{2}+i}^j)$. The induced vertex labeling are as follows: $\begin{array}{l} f^*(v) = -2, \, f^*(u_1^1) = -1 = -f^*(u_1^2), \\ \text{for } 1 \leq i \leq \frac{n-1}{2} \, f^*(u_{1+i}^1) = 8i = -f^*(u_{\frac{n+1}{2}+i}^1), \end{array}$ for $1 \le i \le \frac{n-1}{2}$, $f^*(u_{1+i}^2) = [5 + (i-1)2m] = -f^*(u_{\frac{n+1}{2}+i}^2)$. Therefore we get $f^*(V(S_{m,n})) = \{\pm 1, \pm 8, \pm 16, \pm 24, ..., \pm (4n-4), \pm 5, \pm (2m+5), \pm (4m+6), \pm (4m+$ 5), ..., $\pm (mn - 3m + 5)$ } $\bigcup \{-2\}$. Hence f is an edge pair sum labeling. Subcase (ii). m = 3. Define $f(e_1^1) = -2$, $f(e_1^2) = -1$, $f(e_1^3) = 3$ and for $1 \le i \le \frac{n-1}{2}$, $1 \le j \le 3$ $f(e_{1+i}^j) = [2j+3+(i-1)2m] = -f(e_{\frac{n+1}{2}+i}^j)$. The induced vertex labeling are as follows:
$$\begin{split} &f^*(v) = -2 = -f^*(u_1^2), \ \tilde{f^*}(u_1^1) = -3 = -f^*(u_1^3), \\ &\text{for } 1 \leq i \leq \frac{n-1}{2} \ f^*(u_{1+i}^3) = [9 + (i-1)2m] = -f^*(u_{\frac{n+1}{2}+i}^3), \end{split}$$
for $1 \le i \le \frac{n-1}{2}$, $1 \le j \le 2 f^*(u_{1+i}^j) = [4j+8+(i-1)4m] = -f^*(u_{\frac{n+1}{2}+i}^j)$. Therefore we get $f^*(V(S_{m,n})) = \{\pm 2, \pm 3, \pm 9, \pm (2m+9), \pm (4m+9), \dots, \pm (nm-3m+9),$ for $1 \le i \le \frac{n-1}{2}, 1 \le j \le 2, \pm [4j+8+(i-1)4m]\}.$

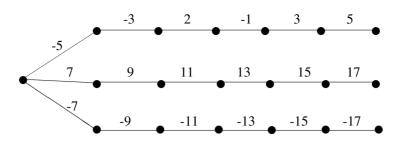
Hence *f* is an edge pair sum labeling.

The examples for the edge pair sum graph labeling of S(2,5) and S(3,3) are shown in Figure 3 and Figure 4.



Subcase (iii). *m* is even and $m \ge 4$. Define $f(e_1^{\frac{m}{2}}) = 2$, $f(e_1^{\frac{m+2}{2}}) = -1$, for $1 \le j \le \frac{m-2}{2} f(e_1^j) = -[m+1-2j]$ and $f(e_1^{\frac{m+2}{2}+j}) = (2j+1)$, for $1 \le i \le \frac{n-1}{2}$, $1 \le j \le m f(e_{1+i}^j) = [m-1+2j+(i-1)2m] = -f(e_{\frac{n+1}{2}+i}^j)$. The induced vertex labeling are as follows: $f^*(v) = -(m-1) = -f^*(u_1^m)$, $f^*(u_1^{\frac{m-2}{2}}) = -1 = -f^*(u_1^{\frac{m}{2}})$, $f^*(u_1^{\frac{m+2}{2}}) = 2$, for $1 \le j \le \frac{m-4}{2} f^*(u_1^j) = -2[m-2j]$ and $f^*(u_1^{\frac{m+2}{2}+j}) = (4+4j)$, for $1 \le i \le \frac{n-1}{2}$, $1 \le j \le (m-1) f^*(u_{1+i}^j) = [2m+4j+(i-1)4m] = -f^*(u_{\frac{n+1}{2}+i}^j)$ and for $1 \le i \le \frac{n-1}{2} f^*(u_{1+i}^m) = [2mi+m-1] = -f^*(u_{\frac{m+1}{2}+i}^m)$. Therefore we get $f^*(V(S_{m,n})) = \{\pm 1, \pm (m-1), \pm 8, \pm 12, \pm 16, \dots, \pm (2m-4), \pm (3m-1), \pm (5m-1), \pm (7m-1), \dots, \pm (nm-1)$, for $1 \le i \le \frac{n-1}{2}$, $1 \le j \le (m-1), \pm [2m+4j+(i-1)4m]\} \cup \{2\}$. Hence *f* is an edge pair sum labeling.

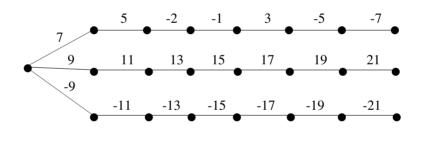
An example for the edge pair sum graph labeling of S(6,3) is shown in Figure 5.



$$\begin{split} & \text{Subcase (iv). } m \text{ is odd and } m \geq 5. \\ & \text{Define } f(e_1^{\frac{m-1}{2}}) = -2, \, f(e_1^{\frac{m+1}{2}}) = -1, \, f(e_1^{\frac{m+3}{2}}) = 3, \\ & \text{for } 1 \leq j \leq \frac{m-3}{2} \, f(e_1^j) = [m+2-2j] \text{ and } f(e_1^{\frac{m+3}{2}+j}) = -(3+2j), \\ & \text{for } 1 \leq i \leq \frac{n-1}{2}, \, 1 \leq j \leq m \, f(e_{1+i}^j) = [m+2j+(i-1)2m] = -f(e_{\frac{n+1}{2}+i}^j). \\ & \text{The induced vertex labeling are as follows:} \\ & f^*(v) = m = -f^*(u_1^m), \, f^*(u_1^{\frac{m-3}{2}}) = 3 = -f^*(u_1^{\frac{m-1}{2}}), \, f^*(u_1^{\frac{m+1}{2}}) = 2 = -f^*(u_1^{\frac{m+3}{2}}), \\ & \text{for } 1 \leq j \leq \frac{m-5}{2} \, f^*(u_1^j) = 2[m+1-2j] \text{ and } f^*(u_1^{\frac{m+3}{2}+j}) = -(8+4j), \\ & \text{for } 1 \leq i \leq \frac{n-1}{2}, \, 1 \leq j \leq (m-1) \, f^*(u_{1+i}^j) = [2m+2+4j+(i-1)4m] = -f^*(u_{\frac{n+1}{2}+i}^j) \text{ and} \\ & \text{for } 1 \leq i \leq \frac{n-1}{2} \, f^*(u_{1+i}^m) = [2mi+m] = -f^*(u_{\frac{n+1}{2}+i}^m). \\ & \text{Therefore we get } f^*(V(S_{m,n})) = \{\pm 2, \pm 3, \pm m, \pm 12, \pm 16, \pm 20, ..., \pm (2m-2), \pm 3m, \pm 5m, \\ \pm \, 7m, ..., \pm mn, \text{ for } 1 \leq i \leq \frac{n-1}{2}, \, 1 \leq j \leq (m-1), \pm [2m+2+4j+(i-1)4m] \}. \end{split}$$

Hence f is an edge pair sum labeling.

An example for the edge pair sum graph labeling of S(7,3) is shown in Figure 6. \Box



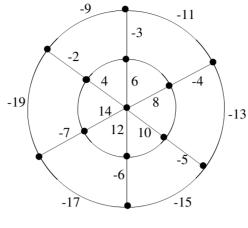
Theorem 2.3. The closed helm graph CH_n is an edge pair sum graph.

Proof. Let $V(CH_n) = \{w, u_i, v_i : 1 \le i \le n\}$ and $E(CH_n) = \{e_i = wu_i, e'_i = u_iv_i : 1 \le i \le n, e''_i = u_iu_{1+i}, e''_i = v_iv_{1+i} : 1 \le i \le (n-1), e''_n = u_nu_1, e''_n = v_nv_1\}$ are the vertices and edges of the graph CH_n .

Define an edge labeling $f : E(CH_n) \to \{\pm 1, \pm 2, \pm 3, ..., \pm 4n\}$ by considering the two cases. **Case(i).** n = 4, 6, 8, 12, 14, 16, 18, 22, ...for $1 \le i \le n$, $f(e_i) = (2+2i)$, $f(e'_i) = -(1+i)$ and $f(e''_i) = (n+1+2i) = -f(e''_i)$.

for $1 \le i \le n$, $f(e_i) = (2+2i)$, $f(e'_i) = -(1+i)$ and $f(e''_i) = (n+1+2i) = -f(e'''_i)$. Then the induced vertex labeling are as follows: $f^*(u_1) = (4n+6) = -f^*(v_1)$, $f^*(w) = (n^2 + 3n)$ and for $1 \le i \le (n-1)$ $f^*(u_{1+i}) = (2n+6+5i) = -f^*(v_{1+i})$. Hence we get $f^*(V(CH_n)) = \{\pm(4n+6), \pm(2n+11), \pm(2n+16), \pm(2n+21), ..., \pm(7n+1)\} \cup \{(n^2+3n)\}$. Then f is an edge pair sum labeling.

An example for the edge pair sum graph labeling of CH_6 is shown in Figure 7.



Case(ii). *n* is odd. **Subcase (i).** n = 3, 7, 9, 11, 13, 17, 19, 21, 23, 27, ...For $1 \le i \le n$, $f(e_i) = 2i$, $f(e'_i) = -i$ and $f(e''_i) = (n+2i) = -f(e'''_i)$. Then the induced vertex labeling are as follows: $f^*(u_1) = (4n+3) = -f^*(v_1), f^*(w) = n(n+1)$ and for $1 \le i \le (n-1)$ $f^*(u_{1+i}) = (2n+3+5i) = -f^*(v_{1+i}).$ Hence we get $f^*(V(CH_n)) = \{\pm (4n+3), \pm (2n+8), \pm (2n+13), \pm (2n+18), \dots, \pm (7n-1)\}$ 2) $\{ | \{n(n+1)\} \}$. Then f is an edge pair sum labeling. Subcase (ii). $n \equiv 0 \pmod{5}$ Define $f(e_i^{''}) = (2n+2) = -f(e_1^{'''})$, for $1 \le i \le n$, $f(e_i) = 2i$, $f(e_i^{'}) = -i$ and for $1 \le i \le (n-1)$ $f(e_{1+i}^{''}) = (2n+1+2i) = -f(e_{1+i}^{'''})$. Then the induced vertex labeling are as follows: $f^*(u_1) = (6n+2) = -f^*(v_1), f^*(w) = n(n+1), f^*(u_2) = (4n+7) = -f^*(v_2)$ and for $1 \le i \le (n-2)$ $f^*(u_{2+i}) = (4n+6+5i) = -f^*(v_{2+i})$. Hence we get $f^*(V(CH_n)) = \{\pm (4n+7), \pm (6n+2), \pm (4n+11), \pm (4n+16), \pm (4$ 21), ..., $\pm (9n-4)$ { } { n(n+1) }. Then f is an edge pair sum labeling. The examples for the edge pair sum graph labeling of CH_3 and CH_5 are shown in Figure 8 and Figure 9. □

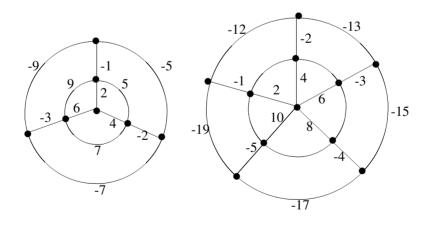


Figure 8

Figure 9

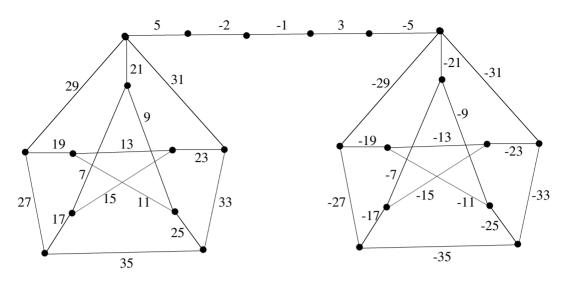
Theorem 2.4. The graph G obtained by joining two copies of Petersen graph by a path P_k , $k \ge 5$ is edge pair sum graph.

Proof. Let G be the graph by joining two copies of Petersen graph by a path P_k , $k \ge 5$ of length (k-1). Let $u_1, u_2, ..., u_5$ and $u_6, u_7, ..., u_{10}$ be the external and internal vertices of first copy

of Petersen graph respectively. Similarly let $w_1, w_2, ..., w_5$ and $w_1, w_2, ..., w_5$ be the external and internal vertices of second copy of Petersen graph respectively.

Let $v_1, v_2, ..., v_k$ be successive vertices of path P_k with $u_1 = v_1$ and $w_1 = v_k$. Let $E(G) = \{e_i = v_i v_{i+1} : 1 \le i \le (k-1), e'_i = u_i u_{i+1} : 1 \le i \le 4, e'_5 = u_5 u_1, e'_{5+i} = w_5 w_1, e'_{5+i} = w_i w_{i+1} : 1 \le i \le 4, e''_{10} = w_5 w_{10}, e'_{11} = u_9 u_6, e'_{12} = u_6 u_8, e'_{13} = u_8 u_{10}, e'_{14} = u_{10} u_7, e'_{15} = u_7 u_9, e''_{11} = w_9 w_6, e''_{12} = w_6 w_8, e''_{13} = w_8 w_{10}, e''_{14} = w_{10} w_7, e''_{15} = w_7 w_9\}$ are the edges of the graph. Define an edge labeling $f: E(G) \to \{\pm 1, \pm 2, \pm 3, ..., \pm (k+29)\}$ by considering the two cases. **Case(i).** k is odd, $k \ge 5$. $f(e_{\frac{k+1}{2}}) = 1, f(e_{\frac{k-1}{2}}) = 2, f(e_{\frac{k-3}{2}}) = -5 = -f(e_{\frac{k+3}{2}}),$ for $1 \le i \le \frac{k-5}{2}$ $f(e_i) = -(k+2-2i)$, for $\frac{k+5}{2} \le i \le (k-1) f(e_i) = (-k+2+2i),$ for $1 \le i \le 5$ $f(e'_{10+i}) = -(k+2i) = -f(e''_{10+i})$, for $1 \le i \le 3$ $f(e_{5+i}) = -(k+14+2i) = -f(e_{5+i})$, for $1 \le i \le 2$ $f(e'_{8+i}) = -(k+10+2i) = -f(e''_{8+i}), f(e'_{3+i}) = -(k+20+2i) = -f(e''_{3+i})$ and $f(e'_i) = -(k+24+2i) = -f(e''_i), f(e'_3) = -4 = -f(e''_3).$ The induced vertex labeling are as follows: $f^*(v_1) = -2(2k+33) = -f^*(v_k),$ for $1 \le i \le \frac{k-5}{2} f^*(v_{1+i}) = 2(-k-1+2i)$ and $f^*(v_{\frac{k+3}{2}+i}) = (8+4i)$, $f^*(v_{\frac{k-1}{2}}) = -3 = -f^*(v_{\frac{k+1}{2}}), f^*(v_{\frac{k+3}{2}}) = 6, f^*(u_2) = -3(k+24) = -f^*(w_2),$ $f^*(u_3) = -2(k+26) = -f^*(w_3), f^*(u_4) = -2(k+19) = -f^*(w_4),$ $f^*(u_5) = -3(k+20) = -f^*(w_5), f^*(u_6) = -(3k+22) = -f^*(w_6),$ $f^*(u_7) = -3(k+12) = -f^*(w_7), f^*(u_8) = -3(k+10) = -f^*(w_8),$ $f^*(u_9) = -3(k+8) = -f^*(w_9)$ and $f^*(u_{10}) = -(3k+28) = -f^*(w_{10})$. Then $f^*(V(G)) = \{\pm 3, \pm 12, \pm 16, \pm 20, \dots, \pm (2k-2), \pm 2(2k+33), \pm 2(k+19), \pm 2(k+26), \pm 2(k+26)$ $\pm (3k+22), \pm (3k+28), \pm 3(k+8), \pm 3(k+10), \pm 3(k+12), \pm 3(k+12), \pm 3(k+20), \pm 3(k+20),$ $\pm 3(k+24)$ []{6]. Hence f is an edge pair sum labeling. **Case(ii).** k is even, $k \ge 6$. $f(e_{\frac{k-2}{2}}) = -2, f(e_{\frac{k}{2}}) = -1, f(e_{\frac{k+2}{2}}) = 3,$ for $1 \le i \le \frac{k-4}{2} f(e_i) = -(k+1-2i)$, for $\frac{k+4}{2} \le i \le (k-1) f(e_i) = (k-1-2i),$ for $1 \le i \le 5$ $f(e'_{10+i}) = (k - 1 + 2i) = -f(e''_{10+i}),$ for $1 \le i \le 3$ $f(e'_{5+i}) = (k+13+2i) = -f(e''_{5+i}), f(e'_i) = (k+23+2i) = -f(e''_i),$ for $1 \le i \le 2$ $f(e'_{8+i}) = (k+9+2i) = -f(e''_{8+i})$ and $f(e'_{3+i}) = (k+19+2i) = -f(e''_{3+i})$. The induced vertex labeling are as follows: $f^*(v_1) = 2(2k+31) = -f^*(v_k),$ for $1 \le i \le \frac{k-6}{2} f^*(v_{1+i}) = (2k-4i)$ and $f^*(v_{\frac{k+4}{2}+i}) = -(8+4i)$, $f^*(v_{\frac{k-2}{2}}) = 3 = -f^*(v_{\frac{k}{2}}), f^*(v_{\frac{k+2}{2}}) = 2 = -f^*(v_{\frac{k+4}{2}}),$ $f^*(u_2) = 3(k+23) = -f^*(w_2), f^*(u_3) = 3(k+25) = -f^*(w_3),$ $f^*(u_4) = (3k+61) = -f^*(w_4), f^*(u_5) = 3(k+19) = -f^*(w_5),$ $f^*(u_6) = (3k+19) = -f^*(w_6), f^*(u_7) = 3(k+11) = -f^*(w_7),$ $f^*(u_8) = 3(k+9) = -f^*(w_8), f^*(u_9) = 3(k+7) = -f^*(w_9)$ and $f^*(u_{10}) = (3k + 25) = -f^*(w_{10}).$ Then $f^*(V(G)) = \{\pm 2, \pm 3, \pm 12, \pm 16, \pm 20, \dots, \pm (2k-4), \pm 2(2k+31), \pm (3k+19), \pm (3$ $(25), \pm(3k+61), \pm(3k+28), \pm 3(k+7), \pm 3(k+9), \pm 3(k+11), \pm 3(k+19), \pm 3(k+23), \pm 3(k+21), \pm 3(k+2$ 25). Hence f is an edge pair sum labeling.

An example for the edge pair sum graph labeling of two copies of Petersen graph by a path P_6 is shown in Figure 10. \Box

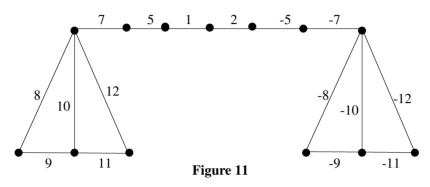


Theorem 2.5. The graph G obtained by joining the center vertices of two copies of fan graph $F_{1,n}$ by a path P_k , $k \ge 5$ is edge pair sum graph.

Proof. Let G be the graph by joining two copies of fan graph by a path P_k , $k \ge 5$ of length (k-1). Let $u, u_i : 1 \le i \le n$ be the vertices of the first copy of the graph $F_{1,n}$. Let $v, v_i : 1 \le i \le n$ be the vertices of the second copy of the graph $F_{1,n}$. Let $w_1, w_2, ..., w_5$ and $w_1, w_2, ..., w_k$ be successive vertices of path P_k with $w_1 = u$ and $w_k = v$. Let $E(G) = \{e_i = uu_i, e'_i = vv_i : 1 \le i \le n, e_{n+i} = u_i u_{i+1}, e'_{n+i} = v_i v_{i+1} : 1 \le i \le i \le n\}$ $(n-1), e_i'' = w_i w_{i+1} : 1 \le i \le (k-1) \}.$ Define an edge labeling $f: E(G) \to \{\pm 1, \pm 2, \pm 3, ..., \pm (4n+k-3)\}$ by considering two cases. **Case(i).** k is even, $k \ge 6$. $f(e_{\frac{k-2}{2}}^{''}) = -2, f(e_{\frac{k}{2}}^{''}) = -1, f(e_{\frac{k+2}{2}}^{''}) = 3,$ for $1 \le i \le \frac{k-4}{2} f(e_i^{''}) = -(k+1-2i)$, for $\frac{k+4}{2} \le i \le (k-1) f(e_i^{''}) = (k-1-2i)$ and for $1 \le i \le n f(e_i) = (k - 2 + 2i) = -f(e'_i)$, for $1 \le i \le (n-1)$ $f(e_{n+i}) = (k-1+2i) = -f(e'_{n+i})$. The induced vertex labeling are as follows: $f^*(u) = (n^2 + nk - n + k - 1) = -f^*(v),$ for $1 \le i \le \frac{k-6}{2} f^*(w_{1+i}) = (2k - 4i)$ and $f^*(w_{\frac{k+4}{2}+i}) = -(8 + 4i),$ $f^*(w_{\frac{k-2}{2}}) = 3 = -f^*(w_{\frac{k}{2}}), f^*(w_{\frac{k+2}{2}}) = 2 = -f^*(w_{\frac{k+4}{2}}),$ $f^*(u_1)^2 = (2k+1) = -f^*(v_1), f^*(u_n) = (2k+4n-5) = -f^*(v_n)$ and for $1 \le i \le (n-2) f^*(u_{1+i}) = (3k+6i) = -f^*(v_{1+i}).$ Then $f^*(V(G)) = \{\pm 2, \pm 3, \pm 12, \pm 16, \pm 20, ..., \pm (2k-4), \pm (2k+1), \pm (2k+4n-5), \pm (n^2+1), \pm$ nk - n + k - 1, $\pm (3k + 6)$, $\pm (3k + 12)$, $\pm (3k + 18)$, ..., $\pm (3k + 6n - 12)$. Hence f is an edge pair sum labeling. **Case(ii).** k is odd, $k \ge 5$. $f(e_{\frac{k+1}{2}}') = 2, f(e_{\frac{k-1}{2}}') = 1, f(e_{\frac{k-3}{2}}') = 5 = -f(e_{\frac{k+3}{2}}'),$ for $1 \le i \le \frac{k-5}{2} f(e_i'') = (k+2-2i),$ for $\frac{k+5}{2} \le i \le (k-1) f(e_i'') = (k-2-2i),$ for $1 \leq i \leq n$ $f(e_i) = (k - 1 + 2i) = -f(e'_i)$ and for $1 \le i \le (n-1)$ $f(e_{n+i}) = (k+2i) = -f(e'_{n+i})$. The induced vertex labeling are as follows: $\begin{aligned} f^*(u) &= (n^2 + nk + k) = -f^*(v) \\ \text{for } 1 &\leq i \leq \frac{k-5}{2} f^*(w_{1+i}) = 2(k+1-2i) \text{ and } f^*(w_{\frac{k+3}{2}+i}) = -(8+4i), \end{aligned}$

 $\begin{array}{l} f^*(w_{\frac{k-1}{2}}) = 6, \, f^*(w_{\frac{k+1}{2}}) = 3 = -f^*(w_{\frac{k+3}{2}}), \\ f^*(u_1) = (2k+3) = -f^*(v_1), \, f^*(u_n) = (2k+4n-3) = -f^*(v_n) \text{ and} \\ \text{for } 1 \leq i \leq (n-2) \, f^*(u_{1+i}) = (3k+3+6i) = -f^*(v_{1+i}). \\ \text{Then } f^*(V(G)) = \{\pm 3, \pm 12, \pm 16, \pm 20, ..., \pm (2k-2), \pm (2k+3), \pm (2k+4n-3), \pm (n^2+nk+k), \pm (3k+9), \pm (3k+15), \pm (3k+21), ..., \pm (3k+6n-9)\} \bigcup \{6\}. \\ \text{Hence } f \text{ is an edge pair sum labeling.} \end{array}$

An example for the edge pair sum graph labeling of two copies of fan graph $F_{1,3}$ by a path P_7 is shown in Figure 11. \Box



Corollary 2.6. For $n \ge 3$, the graph $C_n \bigcup C_n$ is an edge pair sum graph [3].

Corollary 2.7. for $n, m \ge 2$, the graph $K_{1,n} \bigcup K_{1,m}$ is an edge pair sum graph [3].

Corollary 2.8. The complete graph K_4 is not an edge pair sum graph [3].

Theorem 2.9. The complete graph $K_4 \bigcup K_4$ is an edge pair sum graph.

Proof. Let $u_i : 1 \le i \le 4$ be the first copy of the graph K_4 . Let $v_i : 1 \le i \le 4$ be the second copy of the graph K_4 . Let $E(K_4 \bigcup K_4) = \{e_i = u_i u_{i+1} : 1 \le i \le 3, e_4 = u_4 u_1, e_5 = u_1 u_3, e_6 = u_2 u_4, e'_i = v_i v_{i+1} : 1 \le i \le 3, e'_4 = v_4 v_1, e'_5 = v_1 v_3, e'_6 = v_2 v_4\}$ be the edges of the graph $K_4 \bigcup K_4$.

Define an edge labeling $f : E(K_4 \bigcup K_4) \rightarrow \{\pm 1, \pm 2, \pm 3, ..., \pm 12\}$.

for
$$1 \le i \le 3$$
 $f(e_i) = (2i - 1) = -f(e_i)$,

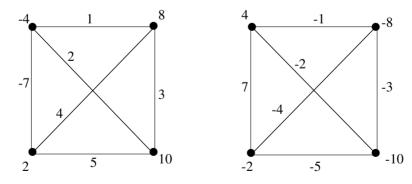
 $f(e_5) = 2 = -f(e'_5)$ and $f(e_6) = 4 = -f(e'_6)$.

Then the induced vertex labeling are as follows: $f^*(u_1) = -4 = -f^*(v_1), f^*(u_2) = 8 = -f^*(v_2),$

 $f^*(u_3) = 10 = -f^*(v_3)$ and $f^*(u_4) = 2 = -f^*(v_4)$.

 $f^*(V(K_4 \bigcup K_4)) = \{\pm 2, \pm 4, \pm 8, \pm 10\}$. Hence f is an edge pair sum labeling.

An example for the edge pair sum graph labeling of $K_4 \bigcup K_4$ is shown in Figure 12. \Box



References

- [1] J.A. Gallian, A dynamic survey of graph labeling, Electronic J.Combin., (2017), #DS6.
- [2] F. Harary, Graph Theory, Addison Wesley, Massachusetts, (1972).
- [3] P. Jeyanthi, T. Saratha Devi, Edge pair sum labeling, Journal of Scientific Research, 5 (3), 457–467 (2013).
- [4] P. Jeyanthi, T. Saratha Devi, On edge pair sum labeling of graphs, *International Journal of Mathematics Trends and Technology*, 7 (2), 106–113 (2014).
- [5] P. Jeyanthi, T. Saratha Devi, Edge pair sum labeling of spider graph, *Journal of Algorithms and Computation*, 45 (1), 25–34 (2014).
- [6] P. Jeyanthi, T. Saratha Devi, Gee-Choon Lau, Some results of edge pair sum labeling, *Electronic Notes in Discrete Mathematics*, 48, 169–173 (2015).
- [7] P. Jeyanthi, T. Saratha Devi, Gee-Choon Lau, Edge pair sum labeling of WT(n:k) Tree, *Global Journal of Pure and Applied Mathematics*, **11** (3), 1523–1539 (2015).
- [8] P. Jeyanthi, T. Saratha Devi, Some edge pair sum graphs, *Journal of Discrete Mathematical Science and Cryptography*, 18 (5), 481–493 (2015).
- [9] P. Jeyanthi, T. Saratha Devi, New results on edge pair sum graphs, *International Journal of Mathematics* and its Applications, **4** (1-B), 57–65 (2016).
- [10] P. Jeyanthi, T. Saratha Devi, Edge pair sum labeling of some cartesian product graphs, *Discrete Mathematics, Algorithm and Applications*, 8 (2), (2016).
- [11] P. Jeyanthi, T. Saratha Devi, Edge pair sum labeling of butterfly graph with shell order, *Malaya Journal of Matematik*, 4 (2), 205–210 (2016).
- [12] R. Ponraj and J.V.X. Parthipan, Pair Sum Labeling of Graphs, *The Journal of Indian Academy of Mathematics*, 32 (2), 587–595 (2010).

Author information

P. Jeyanthi, Research Center, Department of Mathematics, Govindammal Aditanar College for Women, Tiruchendur-628215, India. E-mail: jeyajeyanthi@rediffmail.com

T. Saratha Devi, Department of Mathematics, G.Venkataswamy Naidu College, Kovilpatti-658502, India. E-mail: rajanvino030gmail.com

Received: May 29, 2018. Accepted: December 21, 2018.