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Abstract. Our purpose in this paper is to approximate common fixed points of two gener-
alized Z-operators by using a three step iterative process (introduced by Karakaya et al [10] in
2013 which is relatively faster than Picard iteration, Mann iteration, S-iteration, Thianwan’s iter-
ation and SP-iteration) in CAT(0) spaces. The results obtained in this paper extend and improve
the recent ones announced by Saluja, Yildirim et al, Picard, Mann, Thianwan, Phuengrattana and
Suantai and many others.

1 Introduction

Let (X, d) be a complete metric space and T : X → X be a self mapping of X . Suppose
F (T ) = {p ∈ X : Tp = p} is the set of fixed points of T . In the last four decades, many papers
have appeared in the literature on the iteration methods to approximate fixed points for various
mapping. In 1890, Picard [14] defined an iterative scheme {xn}∞n=0 as

xn+1 = Txn, n = 0, 1, 2, 3, .....; (1.1)

which has been employed to approximate the fixed point of mappings satisfying the inequality

d(Tx, Ty) ≤ ad(x, y) (1.2)

for all x, y ∈ X and a ∈ [0, 1). The above condition (1.2) is called Banach’s contraction condi-
tion.

In 1969, Kannan [11] defined a mapping T called Kannan mapping if there exists b ∈ (0, 1/2)
such that

d(Tx, Ty) ≤ b[d(x, Tx) + d(y, Ty)] (1.3)

for all x, y ∈ X .

In 1972, Chatterjea [7] defined a mapping T as a generalization of Kannan mapping called
Chatterjea mapping if there exists c ∈ (0, 1/2) such that

d(Tx, Ty) ≤ c[d(x, Ty) + d(y, Tx)] (1.4)

for all x, y ∈ X .

In 1972, Zamfirescu [21] obtained the following interesting result for existence of fixed point
and convergence of Picard iteration.

Theorem 1.1. Let (X, d) be a complete metric space and T : X → X be a mapping for which
there exist the real numbers a, b, c satisfying a ∈ (0, 1), b, c ∈ (0, 1/2) such that for any pair
x, y ∈ X , at least one of the following conditions holds:

(i) d(Tx, Ty) ≤ ad(x, y)

(ii) d(Tx, Ty) ≤ b[d(x, Tx) + d(y, Ty)]

(iii) d(Tx, Ty) ≤ c[d(x, Ty) + d(y, Tx)].
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Then T has a unique fixed point p and the Picard iteration {xn}∞n=0 defined by xn+1 = Txn ,
n = 0, 1, 2, 3, .....; converges to p for any arbitrary but fixed x0 ∈ X .

An operator T which satisfy at least one of the above contractive conditions (i), (ii), (iii) is
called a Zamfirescu operator or a Z-operator.

In 1974, Ciric [8] gave an equivalent form for the above conditions (i), (ii), (iii) of Zam-
firescu operator by

d(Tx, Ty) ≤ hmax{d(x, y), (d(x, Tx) + d(y, Ty))/2, (d(x, Ty) + d(y, Tx))/2} (1.5)

for all x, y ∈ X and 0 < h < 1. The mapping satisfying (1.5) is called Ciric quasi-contraction.

In 2004, Berinde [2] proved the strong convergence of Ishikawa iterative process defined by:
x0 ∈ C,

xn+1 = (1− αn)xn + αnTyn,

yn = (1− βn)xn + βnTxn, for all n ≥ 0;

to approximate fixed points of Zamfirescu operator in an arbitrary Banach space E. While prov-
ing the theorem, he made use of the condition,

‖Tx− Ty‖ ≤ δ ‖x− y‖+ 2δ ‖x− Tx‖ (1.6)

which holds for any x, y ∈ E where 0 ≤ δ < 1.

In this paper, we used a condition introduced in [5] which is more general than condition (1.6)
and establish fixed point theorem of three-step iteration scheme in the framework of CAT(0)
spaces. The condition is defined as follows: Let C be a nonempty closed convex subset of a
CAT(0) space and T : C → C be a self map of C. There exists a constant L ≥ 0 such that for all
x, y ∈ C, we have

d(Tx, Ty) ≤ eLd(x,Tx)(δd(x, y) + 2δd(x, Tx)) (1.7)

where 0 ≤ δ < 1 and ex denotes the exponential function of x ∈ C. This condition (1.7) is called
generalized Z-type condition.

Remark 1.2. If L = 0 in the above condition, then

d(Tx, Ty) ≤ δd(x, y) + 2δd(x, Tx),

which is the Zamfirescu condition used by Berinde [2] where

δ = max{a, b/1− b, c/1− c},

0 ≤ δ < 1, while constants a, b, c are defined in the same manner as in Theorem 1.1.

Since our purpose is to find common fixed points, therefore we need to modify the condition
(1.7) to the case of two mappings. One simple way is that we force both of our mappings to
satisfy above kind of condition separately. That is, S and T satisfy

d(Sx, Sy) ≤ eLd(x,Sx)(δd(x, y) + 2δd(x, Sx))

and

d(Tx, Ty) ≤ eLd(x,Tx)(δd(x, y) + 2δd(x, Tx))

respectively.
However, we can modify this to a more general extension as:

max{d(Sx, Sy), d(Tx, Ty)}

≤ eLmax{d(x,Sx),d(x,Tx)}(δd(x, y) + 2δmax{d(x, Sx), d(x, Tx)}) (1.8)

This condition (1.8) reduces to (1.7) as follows when either S = T or one of the mappings is
identity.
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• The case S = T is obvious.

• When one of the mappings, say S, is identity, then (1.8) reduces to

max{d(x, y), d(Tx, Ty)} ≤ eLd(x,Tx)(δd(x, y) + 2δd(x, Tx)). (1.9)

• If max{d(x, y), d(Tx, Ty)} = d(Tx, Ty), then clearly (1.9) reduces to (1.7).

• If max{d(x, y), d(Tx, Ty)} = d(x, y), then (1.9) reduces to

d(Tx, Ty) ≤ d(x, y) ≤ eLd(x,Tx)(δd(x, y) + 2δd(x, Tx)).

Thus, we conclude that (1.8) reduces to (1.7) when either S = T or one of the mappings is
identity.

In 2013, Karakaya et al [10] introduced a new three step iterative process in Banach spaces
and they showed by an example that this iteration is much faster than the iteration due to Suantai
[18]. Let C be a nonempty closed convex subset of a Banach space X and T : C → C be a
mapping. Then the sequence {xn} in C is defined as

xn+1 = (1− αn − βn)yn + αnTyn + βnTzn,

yn = (1− an − bn)zn + anTzn + bnTxn,

zn = (1− cn)xn + cnTxn, for all n ≥ 1, (1.10)

where {αn + βn}∞n=1, {an + bn}∞n=1, {cn}∞n=1 are sequences of positive numbers in [0, 1].

Some special cases of the new three step iterative process given by (1.10), as follows:

(i) If cn = 1 and αn = βn = an = bn = 0 for all n ≥ 1, then (1.10) is reduced to Picard iteration
in [14].

(ii) If αn = βn = an = bn = 0 for all n ≥ 1, then (1.10) is reduced to Mann iteration in [12].

(iii) If cn = bn = 0 and αn + βn = 1 for all n ≥ 1, then (1.10) is reduced to S-iteration in [1].

(iv) If αn = an = bn = 0 for all n ≥ 1, then (1.10) is reduced to Thianwan’s iteration in [19].

(v) If βn = bn = 0 for all n ≥ 1, then (1.10) is reduced to SP-iteration in [13].

Approximating common fixed points has its own importance as it has a direct link with the
minimization problem. Keeping this in mind, we extend (1.10) to two mappings case as follows:

xn+1 = (1− αn − βn)yn + αnTyn + βnSzn,

yn = (1− an − bn)zn + anSzn + bnTxn,

zn = (1− cn)xn + cnSxn. (1.11)

This process (1.11) reduces to (1.10) if we take S = T . And all the above cases also hold good
for this process also.

Our aim of this paper is to establish strong convergence results for the above iterative process
(1.11) for two generalized Z-type operators satisfying (1.8) to approximate common fixed points
in CAT(0) space setting. Our result extend and improve many results in the existing literature
due to Agarwal et al. [1], Karakaya et al [10], Rathee and Ritika [15], Ritika and Rathee [16],
Suantai [18], Thianwan [19] and many others.

2 Preliminaries

Let us recall some definitions and known results in the existing literature in this concept.

Let (X, d) be a metric space. A geodesic path joining x ∈ X to y ∈ X (or, more briefly,
a geodesic from x to y) is a map c from a closed interval [0, l] ⊂ R to X such that c(0) = x,
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c(l) = y and d(c(t), c(t′)) = |t − t′| for all t, t′ ∈ [0, l]. In particular, c is an isometry and
d(x, y) = l. The image α of c is called a geodesic (or metric) segment joining x and y. When it is
unique this geodesic segment is denoted by [x, y]. The space (X, d) is said to be a geodesic space
if every two points of X are joined by a geodesic and X is said to be uniquely geodesic if there is
exactly one geodesic joining x and y for each x, y ∈ X . A subset Y ⊆ X is said to be convex if Y
includes every geodesic segment joining any two of its points. A geodesic triangle ∆(x1, x2, x2)
in a geodesic metric space (X, d) consists of three points x1, x2, x3 in X (the vertices of ∆) and
a geodesic segment between each pair of vertices (the edges of ∆). A comparison triangle for
the geodesic triangle ∆(x1, x2, x3) in (X, d) is a triangle ∆̄(x1, x2, x3) = ∆(x̄1, x̄2, x̄3) in the
Euclidean plane E2 such that dE2(x̄i, x̄j) = (xi, xj) for i, j ∈ {1, 2, 3}.

A geodesic space is said to be a CAT(0) space if all geodesic triangles satisfy the following
comparison axiom:

Let ∆ be a geodesic triangle in X and let ∆̄ be a comparison triangle for ∆. Then ∆ is said to
satisfy the CAT(0) inequality if for all x, y ∈ ∆ and all comparison points x̄, ȳ ∈ ∆̄, d(x, y) ≤
dE2(x̄, ȳ).

If x, y1, y2 are points in a CAT(0) space and if y0 is the midpoint of the segment [y1, y2], then
the CAT(0) inequality implies

d(x, y0)
2 ≤ 1

2
d(x, y1)

2 +
1
2
d(x, y2)

2 − 1
4
d(y1, y2)

2 (CN)

This is the (CN) inequality of Bruhat and Tits [6]. In fact, a geodesic space is a CAT(0) space if
and only if it satisfy (CN) inequality.

Lemma 2.1 ([9]). Let X be a CAT(0) space. Then

d((1− t)x⊕ ty, z) ≤ (1− t)d(x, z) + td(y, z)

for all x, y, z ∈ X and t ∈ [0, 1].

Let C be a nonempty subset of a CAT(0) space X and T : C → C be a mapping. A point
x ∈ C is called a fixed point of T if Tx = x. Denote by F (T ) the set of fixed points of T , i.e.,
F (T ) = {x ∈ C : Tx = x}.

Now we convert Karakaya et al [10] iterative process given by (1.11) to the CAT(0) space
setting as: Let C be a nonempty closed convex subset of a complete CAT(0) space X and S, T :
C → C be two mappings. Then the sequence {xn} in C is defined as

xn+1 = (1− αn − βn)yn ⊕ αnTyn ⊕ βnSzn,
yn = (1− an − bn)zn ⊕ anSzn ⊕ bnTxn,
zn = (1− cn)xn ⊕ cnSxn, for all n ≥ 1, (2.1)

where {αn + βn}∞n=1, {an + bn}∞n=1, {cn}∞n=1 are sequences of positive numbers in [0, 1].

3 Main Results

We need the following useful lemma to prove our main results in this paper.

Lemma 3.1 ([3]). Suppose that {pn}∞n=0, {qn}∞n=0 and {rn}∞n=0 are three sequences of nonneg-
ative real numbers satisfying the following condition: pn+1 ≤ (1 − sn)pn + qn + rn, n =
0, 1, 2, 3, .....,where {sn}∞n=0 ⊂ [0, 1]. If

∑∞
n=0 sn = ∞, lim

n→∞
qn = O{sn} and

∑∞
n=0 rn < ∞,

then lim
n→∞

pn = 0.

Theorem 3.2. Let C be a nonempty closed convex subset of a complete CAT(0) space X and
S, T : C → C be self-mappings satisfying generalized Z-type condition given by (1.8) with
F (S) ∩ F (T ) 6= φ. For x0 ∈ C, let {xn}∞n=0 be the sequence defined by (2.1). If {αn}, {βn},
{an}, {bn}, {cn} are the sequences in [0, 1], {αn + βn}∞n=1 ∈ [0, 1], {an + bn}∞n=1 ∈ [0, 1] such
that

∑∞
n=1 αn =∞, then {xn} converges strongly to a common fixed point of S and T .
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Proof. Assume that F (S) ∩ F (T ) 6= φ. Let p ∈ F (S) ∩ F (T ). Since S and T satisfy the
generalized Z-type condition given by (1.8). Taking x = p and y = yn, we see from (1.8) that

d(Tyn, p)

≤ max{d(Syn, p), d(Tyn, p)}

≤ eL(0){δd(p, yn) + 2δd(p, Tp)},

which gives

d(Tyn, p) ≤ δd(yn, p) (3.1)

Similarly, by taking x = p and y = xn, zn in (1.8), we have

d(Sxn, p) ≤ δd(xn, p) (3.2)

and

d(Szn, p) ≤ δd(zn, p) (3.3)

and

d(Txn, p) ≤ δd(xn, p) (3.4)

Now, using (2.1), we have

d(xn+1, p) = d((1− αn − βn)yn ⊕ αnTyn ⊕ βnSzn, p)
≤ (1− αn − βn)d(yn, p) + αnd(Tyn, p) + βnd(Szn, p)

From (3.1) and (3.3), we have

d(xn+1, p) ≤ (1− αn − βn)d(yn, p) + αnδd(yn, p) + βnδd(zn, p)

= (1− αn(1− δ)− βn)d(yn, p) + βnδd(zn, p) (3.5)

But

d(yn, p) = d((1− an − bn)zn ⊕ anSzn ⊕ bnTxn, p)
≤ (1− an − bn)d(zn, p) + and(Szn, p) + bnd(Txn, p)

From (3.3) and (3.4), we have

d(yn, p) ≤ (1− an − bn)d(zn, p) + anδd(zn, p) + bnδd(xn, p)

= (1− an(1− δ)− bn)d(zn, p) + bnδd(xn, p) (3.6)

But

d(zn, p) = d((1− cn)xn ⊕ cnSxn, p)
≤ (1− cn)d(xn, p) + cnd(Sxn, p)

From (3.2), we have

d(zn, p) ≤ (1− cn)d(xn, p) + cnδd(xn, p)

= (1− cn(1− δ))d(xn, p) (3.7)

Therefore, using (3.7) in (3.6), we get

d(yn, p) ≤ (1− an(1− δ)− bn)(1− cn(1− δ))d(xn, p) + bnδd(xn, p)

≤ (1− an(1− δ)− bn(1− δ))(1− cn(1− δ))d(xn, p)
≤ (1− (an + bn)(1− δ))(1− cn(1− δ))d(xn, p)
≤ δ(1− cn(1− δ))d(xn, p) (3.8)
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Thus, using (3.7) and (3.8) in (3.5), we get

d(xn+1, p) ≤ (1− αn(1− δ)− βn)d(yn, p) + βnδd(zn, p)

≤ (1− αn(1− δ)− βn)δ(1− cn(1− δ))d(xn, p) + βnδ(1− cn(1− δ))d(xn, p)
= δ(1− cn(1− δ))(1− αn(1− δ)− βn + βn)d(xn, p)

= δ(1− cn(1− δ))(1− αn(1− δ))d(xn, p)

≤ (1− {1− δ}3αn)d(xn, p)

≤ (1−Bn)d(xn, p);

where Bn = {1− δ}3αn, since 0 ≤ δ < 1 and by assumption of the theorem
∑∞

n=1 αn =∞,
it follows that

∑∞
n=1 Bn = ∞, therefore from Lemma 3.1, we get that lim

n→∞
d(xn, p) = 0. Thus

{xn} converges strongly to a common fixed point of S and T .
To show the uniqueness of the fixed point p, assume that p1, p2 ∈ F (S) ∩ F (T ) and p1 6= p2.
Applying the generalized Z-type condition given by (1.8) and using the fact that 0 ≤ δ < 1, we
obtain

d(p1, p2) = d(Tp1, Tp2)

≤ max{d(Sp1, Sp2), d(Tp1, Tp2)}

≤ eL(0){δd(p1, p2) + 2δ(0)}
= δd(p1, p2)

< d(p1, p2);

which is a contradiction. Therefore, p1 = p2. Thus, {xn}∞n=0 converges strongly to the unique
common fixed point of S and T . 2

Corollary 3.3. Let C be a nonempty closed convex subset of a complete CAT (0) space X and
T : C → C be a self-mapping satisfying generalized Z-type condition given by (1.7) with F (T ) 6=
φ. Let {xn}∞n=0 be the sequence defined by Karakaya’s iteration (1.10) in CAT (0) space setting.
Then {xn} converges strongly to the unique fixed point of T .

Proof. Put S = T in the above theorem. 2

Corollary 3.4. Let C be a nonempty closed convex subset of a complete CAT (0) space X and
T : C → C be a self-mapping satisfying generalized Z-type condition given by (1.7) with F (T ) 6=
φ. Let {xn}∞n=0 be the sequence defined by SP-iteration in CAT (0) space setting. Then {xn}
converges strongly to the unique fixed point of T .

Proof. The proof follows by taking S = T and βn = bn = 0 for all n ≥ 0 in above Theorem.
This completes the proof. 2

Corollary 3.5. Let C be a nonempty closed convex subset of a complete CAT (0) space X and
T : C → C be a self-mapping satisfying generalized Z-type condition given by (1.7) with F (T ) 6=
φ. Let {xn}∞n=0 be the sequence defined by Thianwan’s iteration in CAT (0) space setting. Then
{xn} converges strongly to the unique fixed point of T .

Proof. The proof immediately follows by taking S = T and αn = an = bn = 0 in above
Theorem. This completes the proof. 2

Corollary 3.6. Let C be a nonempty closed convex subset of a complete CAT (0) space X and
T : C → C be a self-mapping satisfying generalized Z-type condition given by (1.7) with F (T ) 6=
φ. Let {xn}∞n=0 be the sequence defined by S-iteration in CAT (0) space setting. Then {xn}
converges strongly to the unique fixed point of T .



Common Fixed Points for Generalized Z-Operators 93

Proof. The proof is similar to the proof of the above Theorem. 2

Corollary 3.7. Let C be a nonempty closed convex subset of a complete CAT (0) space X and
T : C → C be a self-mapping satisfying generalized Z-type condition given by (1.7) with F (T ) 6=
φ. Let {xn}∞n=0 be the sequence defined by Mann iteration in CAT (0) space setting. Then {xn}
converges strongly to the unique fixed point of T .

Proof. The proof of this corollary immediately follows by taking S = T and αn = βn = an =
bn = 0 in above Theorem. This completes the proof. 2

Corollary 3.8. Let C be a nonempty closed convex subset of a complete CAT (0) space X and
T : C → C be a self-mapping satisfying generalized Z-type condition given by (1.7) with F (T ) 6=
φ. Let {xn}∞n=0 be the sequence defined by Picard iteration in CAT (0) space setting. Then {xn}
converges strongly to the unique fixed point of T .

Proof. The proof of this corollary immediately follows by taking S = T and cn = 1 and
αn = βn = an = bn = 0 in above Theorem. This completes the proof. 2

In conclusion we can say that the class of operators given by (1.8) is wider than the class of
Zamfirescu operators, Chatterjea’s contractive condition (1.3), Kannan’s contractive condition
(1.4). Our results are also true for Suantai’s iteration [18], Picard iteration [14], Mann iteration
[12], S-iteration [1], Thianwan’s iteration [19], SP-iteration [13] for generalized Z-operators
and also for Zamfirescu operators in CAT (0) space setting. Thus the convergence results of
SP-iteration for generalized Z-operators in CAT (0) spaces proven by Saluja [17] are hold as a
special case of our result. The results obtained in this paper are good improvement and general-
ization of several known results in the contemporary literature (see, e.g., [1, 3, 4, 5, 12, 13, 14,
17, 18, 19, 20, 21] and some others).
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