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Abstract. Let R be an associative ring, not necessarily commutative and not necessarily
with identity. We will say that R is Boolean-zero square or BZS if every element of R is either
idempotent or nilpotent of index 2. We investigate the structure of these rings.

1 Introduction

Boolean rings comprise the well known class of commutative rings whose multiplicative opera-
tion is idempotent (see, for example, [9] for an important early treatment). Zero square rings, on
the other hand, are a less well known class of anti-commutative rings (see [8]) with multiplica-
tion such that every non-zero element is nilpotent of index 2. In what follows, we consider rings
with a “blend” of the multiplicative properties of Boolean and zero square rings.

Let R be an associative ring, not necessarily commutative and not necessarily with identity.
We will say that R is Boolean-zero square or BZS if every non-zero element of R is either
idempotent or nilpotent of index 2. Thus, BZS rings generalize both Boolean and zero square
rings. The BZS property also generalizes Malone trivial multiplications on near-rings (see [2])
and is studied in the more general setting of near-rings in [3]. A BZS ring which is neither
Boolean nor zero square is called properly BZS.

In the next section, we show that a BZS ring with a cyclic additive group must be either the
ring Z2 or a ring with identically zero multiplication. We also give various examples of BZS
rings. In Section 3, we study the structure of a BZS ring R; in particular, we show that: a) when
R is properly BZS, its additive group is isomorphic to a direct product of copies of Z2, and b) the
set of all nilpotent elements N is always an ideal of R. In Section 4, we prove that R properly
BZS implies N is the unique maximal ideal of R, N has index 2 as an ideal of R, and N is
the only prime ideal of R. In the final section of the paper we show that, up to isomorphism,
there are exactly two properly BZS rings on the additive group Z2 ⊕ Z2, and we specify the
multiplications that determine these rings.

We note that many of the examples and results in this paper derive from our consideration of
low order BZS rings in SONATA [1], a package for GAP [5].

2 BZS Rings with Cyclic Additive Groups

Throughout we denote by E the set of idempotent elements of the BZS ring R and by N the
set of nilpotent elements of R. We also let e, f denote idempotent elements, and x, y denote
nilpotent elements.

Proposition 2.1. Let (R,+, ·) be a BZS ring such that (R,+) is a cyclic group of order n ≥ 2.
Then either R is isomorphic to the ring of integers modulo 2 or it is a ring with identically zero
multiplication.

Proof. Suppose that g generates R additively. Since R is BZS, either g · g = 0 or g · g = g. If
g · g = 0, then for all integers 0 ≤ α, β < n− 1 we have (αg) · (βg) = 0 since R is distributive;
i.e., R is a ring with identically zero multiplication. If g · g = g, then ((n− 1)g) · ((n− 1)g) =
(n− 1)2g · g = 1g · g = g 6= 0, so ((n− 1)g) · ((n− 1)g) = (n− 1)g = −g implies g + g = 0,
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so that n = 2 and R is the ring of integers modulo 2.

In the following example, which uses the right near-ring version of a construction found in
[6], we see that if (R,+) fails to be a cyclic group, the conclusion of Proposition 2.1 may not
hold. (We refer the reader to [7] for basic definitions and results in near-ring theory.)

Example 2.2. Let R be the Malone-trivial (right) near-ring on Z2 ⊕ Z2 with S = {(0, 1), (1, 0)}
with multiplication given by:

a · b =

{
a if b ∈ S

(0, 0) if b 6∈ S
.

We may verify that this multiplication satisfies the left distributive law as follows. Suppose
a, b, c ∈ R. Then:

a) if b ∈ S and c ∈ S, we have a · (b+ c) = (0, 0) = a+ a = a · b+ a · c,

b) if b ∈ S and c 6∈ S, or if b 6∈ S and c ∈ S, we have a · (b+ c) = a = a+(0, 0) = a · b+a · c,
and

c) if b 6∈ S and c 6∈ S, we have a · (b+ c) = (0, 0) = (0, 0) + (0, 0) = a · b+ a · c.

Thus R is a properly BZS ring since (1, 1) · (1, 1) = (0, 0) and (0, 1) · (0, 1) = (0, 1).

We can rewrite this example in terms of matrices.

Example 2.3. LetR be the ring in Example 2.2. Put x = (0, 0), y = (1, 1), e = (0, 1), f = (1, 0).
Now let S be the ring of 2 × 2 matrices over Z2 whose non-zero entries occur only in the last
column. Thus,

S =

{[
0 0
0 0

]
,

[
0 1
0 0

][
0 0
0 1

]
,

[
0 1
0 1

] ∣∣∣∣∣ 0, 1 ∈ Z2

}

The additive group of this ring is isomorphic to that of Z2×Z2. Label these matrices as x̂, ŷ, ê, f̂
respectively. Then the map g : R → S given by g(x) = x̂, g(y) = ŷ, g(e) = ê, g(f) = f̂ is an
isomorphism from R to S.

We can use the ideas in Example 2.2 and Example 2.3 to construct an example of an infinite
properly BZS ring.

Example 2.4. Let α be any infinite ordinal. Let R be the set of all tuples whose order type is
α+1 and whose entries are from Z2. Let a, b ∈ R. Define addition to be componentwise. Define
the multiplication as follows:

a · b =

{
a if the last entry in b is 1
0 otherwise

.

Then R is properly BZS. We can think of R as a set of infinite matrices over Z2 with non-zero
entries in the last column only.

3 The Structure of R

Proposition 3.1. Let R be a ring with identity 1. Let x be a non-zero nilpotent element of index
2. Then 1 + x is neither idempotent nor nilpotent of index 2.

Proof. Note that (1 + x)2 = 1 + 2x. If 1 + x is idempotent then 1 + 2x = 1 + x and x = 0,
contradiction! If 1 + x is nilpotent of index 2 then 1 + 2x = 0. Multiply this equation by x to
get x = 0, contradiction!
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Corollary 3.2. Let R be a BZS ring and let e be an idempotent. Then eRe has no non-zero
nilpotent elements.

Lemma 3.3. If R is a BZS ring and if e ∈ E, then 2e = 0.

Proof. If e = 0, the result is obvious. Otherwise, we have (−e)2 = e2 = e 6= 0. Thus
(−e)2 = −e and so e = −e.

Lemma 3.4. Let R be a BZS ring, let e 6= 0 be idempotent, and let x be nilpotent. Then the
element e+ x is idempotent.

Proof. If x = 0 then the result is trivial. Assume x 6= 0. The proof is by contradiction. Suppose
that e+ x is nilpotent of index 2. Note that (e+ x)2 = e+ ex+ xe. Then

e+ ex+ xe = 0 (3.1)

Multiply (3.1) on the left by x to get xe = −xex. Multiply (3.1) on the right by x to get
ex = −xex. Thus

ex = xe. (3.2)

Equation (3.1) then becomes
e+ 2ex = 0. (3.3)

By Lemma 3.3 we have that 2ex = 0. Hence we have e = 0, contradiction!

Lemma 3.5. If R is a BZS ring, then
a) exe = 0;
b) xex = 0;
c) if e 6= 0 then ex+ xe = x.

Proof. If x = 0 then the results are trivial. If e = 0, then a) and b) are trivial. Otherwise, e+ x
is idempotent by Lemma 3.4, and we get

e+ ex+ xe = e+ x,

yielding
ex+ xe = x. (3.4)

Multiply (3.4) by e on the right and simplify to get exe = 0. Multiply (3.4) on the left by x
to get xex = 0.

Corollary 3.6. If R is a properly BZS ring and x ∈ N , then 2x = 0.

Proof. By Lemma 3.5 c) and Lemma 3.3 we have 2x = 2ex+ 2xe = 0.

Corollary 3.7. If R is a properly BZS ring, then the additive group of R is isomorphic to a direct
product of copies of Z2.

Proof. By Lemma 3.3 and Corollary 3.6, we have that every non-zero element of R is of order
2; i.e., (R,+) is an elementary abelian 2-group. The result now follows from Theorem 8.5 of
[4].

Corollary 3.8. If R is a finite properly BZS ring then R has order 2n for some integer n ≥ 2.

Corollary 3.9. If R is a properly BZS ring, then the center of R is trivial.

Proof. Let e be a non-zero idempotent element of R and let x be a non-zero nilpotent element
of R. If ex = xe, then by Lemma 3.5 c), 2ex = x 6= 0, contradiction!

Corollary 3.10. If a BZS ring R is commutative then R is not properly BZS.

Lemma 3.11. If R is a BZS ring then N is closed under subtraction.
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Proof. If x − y /∈ N then 0 6= (x − y) ∈ E. But then by Lemma 3.4 ((x − y) + y) = x is
idempotent, contradiction!

Lemma 3.12. If R is a BZS ring then N is closed under multiplication by any element of R.

Proof. If R is Boolean or if R consists only of nilpotent elements then the result is trivial. Oth-
erwise, pick non-zero elements e ∈ E and x ∈ N . By Lemma 3.5 we have that (ex)2 = 0 and
(xe)2 = 0. Hence EN ⊆ N and NE ⊆ N .

Now let x, y ∈ N . Since Lemma 3.11 implies that x + y ∈ N , 0 = (x + y)2 = xy + yx.
Multiply on the right by xy to get (xy)2 = 0.

Theorem 3.13. If R is a BZS ring then N is an ideal.

Proof. This follows from Lemmas 3.11 and 3.12 and the fact that 0 ∈ N .

Proposition 3.14. If R is a properly BZS ring and if x, y ∈ N then xy = yx.

Proof. SinceN is closed under multiplication we have 0 = (x+y)2 = xy+yx. Thus xy = −yx.
By Corollary 3.6 we have −yx = yx, and the result follows.

The ring given in Examples 2.2 and 2.3 shows that, in general, idempotents of (properly)
BZS rings need not commute.

Proposition 3.15. If R is a properly BZS ring and if e, f ∈ E \ {0}, then e+ f ∈ N .

Proof. Let e, f ∈ E \ {0}. If e = f then e+ f = 0. Assume then that e 6= f . Suppose that e+ f
is a non-zero idempotent. Pick 0 6= x ∈ N . Then e+ f + x is idempotent by Lemma 3.4. So

e+ f + x = (e+ f + x)2 = (e+ f)2 + ex+ fx+ xe+ xf

By Lemma 3.5 c) we have that

x = ex+ xe = fx+ xf.

Hence
e+ f + x = (e+ f)2 + x+ x = e+ f,

which implies that x = 0, contradiction! Thus e+ f is nilpotent.

Proposition 3.16. If R is a BZS ring then E is closed under multiplication.

Proof. If R is Boolean or zero square, the result is trivial. So suppose R is a properly BZS ring.
Let e, f ∈ E, e 6= f . Note that

(e+ f)2 = e+ ef + fe+ f (3.5)

By Proposition 3.15 we have that e+ f is nilpotent. Thus

e+ ef + fe+ f = 0,

so that
e+ f = ef + fe. (3.6)

Multiply (3.6) on the left by f and on the right by e and simplify to get fe = fefe.

Example 3.17. Let R be the ring in Example 2.3. The idempotent elements are ê and f̂ , and
ê + f̂ = ŷ, which is nilpotent. Also, êf̂ = ê and f̂ ê = f̂ , which are idempotent. The set of
nilpotent elements, {x̂, ŷ}, is an ideal.

Example 3.18. Let R be the ring in Example 2.4. The idempotent elements are precisely those
tuples whose last entry is 1. Since the sum of two idempotents has 0 in the last position, this sum
is nilpotent. Also, the product of two idempotents has 1 in the last position, so that the product of
two idempotents is idempotent. A similar argument can be used to show that the set of nilpotent
elements is an ideal.

Theorem 3.19. If R is a BZS ring then one of the following holds.
a) R is Boolean;
b) R is zero square;
c) R is an extension of a nil ring N whose elements are square zero by Z2.

Proof. This follows from Proposition 3.15.
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4 Maximal, Prime, and One-sided Ideals of Properly BZS Rings

Proposition 4.1. If R is a properly BZS ring, then N is a maximal ideal of R of index 2. Further,
N is the unique maximal ideal of R.

Proof. It follows from Lemma 3.4 and Proposition 3.15 that the factor ringR/N has two distinct
cosets: 0 + N and e + N for some e ∈ E \ {0}. Since N has index 2 as an ideal of R, N is a
maximal ideal of R.

To show that N is the unique maximal ideal, let I be any ideal in R. If I 6⊆ N then I contains
a non-zero idempotent e. Let x ∈ N . Then x = ex + xe ∈ I by 3.5 c). Thus N ( I . Hence
I = R and the result follows.

Corollary 4.2. If R is a properly BZS ring, then |E \ {0}| = |N |.

Proof. The result follows from Proposition 4.1 and the fact that R = E ∪N with E ∩N = {0}.

In a Boolean ring, every prime ideal must be maximal. Properly BZS rings share this special
property.

Lemma 4.3. If R is a properly BZS ring, then for any x ∈ N , (x)(x) = (0), where (x) is the
principal two-sided ideal generated by x.

Proof. Every element of (x) is a finite sum of terms of the form x, ax, xb, or axb, for a, b ∈ R.
It follows that every element of (x)(x) is a sum of elements such that each summand either
contains a factor of x2 = 0 or contains a factor of the form xcx for some c ∈ R. If c ∈ E, then
Lemma 3.5 b) implies that xcx = 0. If c ∈ N , then Proposition 3.14 implies that xcx = cx2 = 0.
So each summand in an element of (x)(x) is zero, and the result follows.

Theorem 4.4. If R is a properly BZS ring, then every prime ideal is a maximal ideal.

Proof. The result is trivial if R is the ring Z2, so we assume |R| > 2 (and hence |N | ≥ 2).
If P is a prime ideal of R that is not maximal, P must be properly contained in the unique
maximal ideal N . Thus there is some non-zero element x ∈ N \ P . From Lemma 4.3, we have
(0) = (x)(x) ⊆ P , whereas (x) 6⊆ P , contradiction!

Since they are always commutative, Boolean rings all have the property that every one-sided
ideal is also a two-sided ideal. This property does not hold in general for BZS rings, as the
following example shows.

Example 4.5. Let R be the ring from Example 2.2 and let I = {(0, 0), (0, 1)}. Then (I,+) is
clearly a subgroup of Z2 ⊕ Z2, and since (0, 0) · r and (0, 1) · r are both in I for every r ∈ R, I
is a right ideal of R. However, I is not a left ideal of R since (1, 0) · (0, 1) = (1, 0) /∈ I .

5 The Properly BZS Rings on Z2 ⊕ Z2

In the final section of this paper, we show that, up to isomorphism, there are exactly two properly
BZS rings with additive group Z2⊕Z2. We also specify the multiplications that determine these
properly BZS rings.

Example 5.1. Suppose that (R,+, ·) is a ring with additive group Z2⊕Z2. If a and b are distinct
non-zero elements ofR, then a+b is the third non-zero element ofR, so thatR = {0, a, b, a+b}.
If R is properly BZS, then by Proposition 4.1 we may assume without loss of generality that
a2 = a, b2 = b, and (a+ b)2 = 0. The last equality implies that

a+ ba+ ab+ b = 0. (5.1)

Then:

Case 1: If ba = ab, Equation (5.1) implies that a+ 2ab+ b = 0, so that a = −b, contradic-
tion!
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Case 2: If ba = 0, then:

Case 2(i): if ab = a, then Equation (5.1) implies that 2a + b = 0, so that b = 0,
contradiction!
Case 2(ii): if ab = b, then Equation (5.1) implies that a + 2b = 0, so that a = 0,
contradiction!
Case 2(iii): if ab = a + b, then a(b · b) = ab = a + b, while (ab)b = (a + b)b =
a+ 2b = a, so that associativity fails to hold, contradiction!

Case 3: If ba = a, then:

Case 3(i): if ab = 0, then Equation (5.1) implies that 2a + b = 0, so that b = 0,
contradiction!
Case 3(ii): if ab = b, then (R,+, ·) is the opposite ring of the Malone trivial (near-)ring
with multiplication:

r · s =

{
r if s ∈ {a, b}
0 if s 6∈ {a, b}

.

Case 3(iii): if ab = a+ b, then Equation (5.1) implies that 3a+ 2b = 0, so that a = 0,
contradiction!

Case 4: If ba = b, then:

Case 4(i): if ab = 0, then Equation (5.1) implies that a + 2b = 0, so that a = 0,
contradiction!
Case 4(ii): if ab = a, then (R,+, ·) is the Malone trivial (near-)ring with multiplica-
tion:

r · s =

{
r if s ∈ {a, b}
0 if s 6∈ {a, b}

.

Case 4(iii): if ab = a+ b, then Equation (5.1) implies that 2a+ 3b = 0, so that b = 0,
contradiction!

Case 5: If ba = a+ b, then:

Case 5(i): if ab = 0, then b(a · a) = ba = a+ b, while (ba)a = (a+ b)a = 2a+ b = b,
so that associativity fails to hold, contradiction!
Case 5(ii): if ab = a, then Equation (5.1) implies that 3a + 2b = 0, so that a = 0,
contradiction!
Case 5(iii): if ab = b, then Equation (5.1) implies that 2a + 3b = 0, so that b = 0,
contradiction!

Thus, there are exactly two isomorphism classes of properly BZS rings on the additive group
Z2 ⊕ Z2: one represented by the ring in Example 2.2 and one represented by its opposite ring.
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