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Abstract. In this paper we establish several equivalent conditions for a commutative ring to
be a Dedekind ring.

1 Introduction

Throughout this paper R denotes a commutative ring with identity. L(R) denotes the lattice of
all ideals of R. In this paper we establish some conditions for a quasi-regular ring R to be a
Dedekind ring (see Theorem 2.9). Using this result, we establish some equivalent conditions
for a quasi-regular ring R in which every regular principal ideal of R is a finite intersection of
prime power ideals to be a Dedekind ring (see Theorem 2.10). Next we obtain some equivalent
conditions for a quasi-regular ring R in which every regular principal ideal of R is a finite in-
tersection of primary ideals to be a Dedekind ring (see Theorem 2.11). We also establish some
equivalent conditions for a quasi-regular ring R in which every regular principal ideal of R is a
finite product of primary ideals to be a Dedekind ring (see Theorem 2.12). Using these results,
we characterize Dedekind rings in terms of quasi-regular weak π-rings (see Theorem 2.13).

We use ⊂ for proper set containment. For any A,B ∈ L(R), we denote A\B = {x ∈ A |
x 6∈ B}. For any a ∈ R, the principal ideal generated by a is denoted by (a). An element a ∈ R
is said to be regular (zero divisor) if ((0) : (a)) = (0) (ra = 0 for some 0 6= r ∈ R). An
ideal I of R is regular (faithful) if it contains a regular element (((0) : I) = (0)). A principal
ideal (a) of R is said to be a regular principal ideal if a is a regular element of R. For any
I ∈ L(R), we denote

√
I = {a ∈ R | an ∈ I for some positive integer n ∈ Z}. An ideal I of

R is said to be a radical ideal if I =
√
I . An ideal I of R is a semi-primary ideal if its radical

is a prime ideal. Rings in which semi-primary ideals are primary have been studied in [8] and
[9] and [10]. A ring R is said to satisfy Property (A) if every finitely generated faithful ideal
is regular. Recall that an ideal I of R is called a multiplication ideal if for every ideal J ⊆ I ,
there exists an ideal K with J = KI . An ideal M of R is called a quasi-principal ideal [19,
Exercise 10, Page 147] (or a principal element of L(R) [20]) if it satisfies the following identities
(i) (A∩ (B : M))M = AM ∩B and (ii) ((A+BM) : M) = (A : M)+B, for all A, B ∈ L(R).
Obviously a finite product of quasi-principal ideals is quasi-principal and every quasi-principal
ideal is a multiplication ideal. It is well known that a multiplication ideal is locally principal [1,
Theorem 1]. It is also known that an ideal I of R is finitely generated and locally principal if
and only if I is a finitely generated multiplication ideal [1, Theorem 3]. In fact, an ideal I of R
is quasi-principal if and only if it is finitely generated and locally principal (see [20, Theorem
2]). For any A,B ∈ L(R), we say A and B are comaximal if A + B = R. A prime ideal P of
R is said to be branched if there exists a P -primary ideal Q of R such that Q 6= P. P is said to
be unbranched if P is the only P -primary ideal. A prime ideal P of R is said to be an `-prime if
the set of all P -primary ideals of R is linearly ordered. For any prime ideal P of R, we denote
P∇ = ∩ {Q ∈ L(R) | Q is P -primary}. For any prime ideals M, P ∈ L(R), we say M covers
P if P ⊂M and there is no prime ideal P1 of R such that P ⊂ P1 ⊂ M . A non-minimal prime
ideal P of R is said to be a C-prime ideal if P∇ is prime, P covers P∇ and any prime Q ⊂ P
implies Q ⊆ P∇.

If {Pα} is the collection of all minimal prime ideals of an ideal I of R, then by an isolated
Pα-primary component of I we mean the intersection Qα of all Pα-primary ideals which contain
I . The kernel of I is the intersection of all Qα′s. It is well known that every ideal is equal to its
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kernel if and only if the semiprimary ideals are primary [10, Theorem 4]
An ideal I of R is said to be quasi-invertible if it is quasi-principal and faithful. I is said to

be quasi-regular, if it contains a quasi-invertible ideal of R. If R satisfies Property (A), then by
[12, Lemma 18.1, page 110], an ideal I of R is quasi-invertible (quasi-regular) if and only if I is
invertible (regular). Recall that R is called a von Neumann Regular ring, if for each a ∈ R, there
exists x ∈ R such that axa = a. It is well known that R is a von Neumann Regular ring if and
only if every ideal of R is a radical ideal of R. R is called a quasi-regular ring, if its classical
ring of quotients is a von-Neumann regular ring. For various characterizations of quasi-regular
rings, the reader is referred to [7] and [13]. R is a reduced ring if the zero element is the only
nilpotent element. Note that every quasi-regular ring is a reduced ring [7, Theorem 2.2] and in
reduced rings minimal prime ideals are unbranched prime ideals. R is called a Marot ring if every
regular ideal is generated by its set of regular elements. By [7, Theorem 2.2] and [13, Theorem
2], quasi-regular rings satisfy Property (A) and non minimal prime ideals in a quasi-regular ring
are regular ideals. Also by [12, Theorem 4.5, Theorem 7.2 and Theorem 7.4], quasi-regular rings
are Marot rings. A ring R is said to be arithmetical, if its ideal lattice is distributive. R is said to
satisfy the condition (*), if every regular principal ideal is a finite intersection of primary ideals.
An ideal I ofR is weak invertible, if I is quasi-principal and ((0) : I) = (e) for some idempotent
e ∈ R. R is said to be a WI-ring if every finitely generated ideal is weak invertible. A reduced
ring R is said to be a Dedekind ring, if every ideal not contained in any minimal prime ideal
is a multiplication ideal. A reduced ring R is said to be an almost Dedekind ring if (i) every
ideal not contained in any minimal prime ideal is locally principal and (ii) for every a ∈ R, the
ideal (a) + ((0) : (a)) is a finitely generated ideal of R. Weak invertible rings, Dedekind rings
and almost Dedekind rings have been studied in [16] and [17]. R is said to be a weak π-ring
[18] if every regular principal ideal is a finite product of prime ideals. R is said to be an almost
weak π-ring if for each regular principal ideal (a) ∈ L(R), (a)M is a finite product of prime
ideals in RM for all maximal ideals M containing a. For more information on weak π-rings and
almost weak π-rings, the reader is referred to [18]. R is a multiplication ring if every ideal is a
multiplication ideal. R is an almost multiplication ring if RM is a multiplication ring, for every
maximal ideal M of R. For more information on multiplication rings and almost multiplication
rings the reader may consult [4] and [21]. R is said to be a valuation ring if any two ideals are
comparable. It is well known that R is an arithmetical ring if and only if for every maximal ideal
M of R, RM is a valuation ring. R is said to be a discrete valuation ring if R is a Dedekind
domain with only one proper (different from (0) and (1)) prime ideal. Following [6], R is an
α-ring, if R satisfies the ascending chain condition for prime ideals and every primary ideal is a
power of its radical.

Throughout this paper, all ideals are assumed to be proper (i.e., 6= R). For general background
and terminology, the reader may consult [11] and [19].

2 Dedekind rings

In this section we establish several equivalent conditions for R to be a Dedekind ring.
We now prove some useful lemmas.

Lemma 2.1. Suppose R is a quasi-regular ring in which every regular principal ideal of R is a
finite intersection of prime power ideals and for every non minimal prime ideal M of R, Mn is
M -primary for every positive integer n. If P is a C-prime ideal, then rank P = 1.

Proof. Suppose P is a C-prime ideal. Then P is non minimal, P∇ is prime, P covers P∇ and
any prime properly contained in P is contained in P∇. We claim that P∇ is a minimal prime
ideal. Suppose P∇ is a non minimal prime ideal. As R is quasi-regular, it follows that P∇

is regular. Choose a regular element x ∈ P∇. As R is quasi-regular, it follows that R is a
Marot ring. Since P covers P∇, there exists a regular element y ∈ P such that y 6∈ P∇. By
hypothesis, there exist prime ideals Q1, Q2,. . . , Qn such that (xy) =

n
∩
i=1
Qαi
i . Suppose Qi ⊆ P∇

for i = 1, 2, . . . , k and Qj 6⊆ P∇ for j = k + 1, . . . , n. Note that each Qi (1 ≤ i ≤ k) is a non
minimal prime ideal, so by hypothesis, Qαi

i is Qi-primary for 1 ≤ i ≤ k. Again since xy ∈
k
∩
i=1
Qαi
i and y 6∈ Qi (1 ≤ i ≤ k), it follows that x ∈

k
∩
i=1
Qαi
i . Therefore (xy)P =

k
∩
i=1

(Qαi
i )P
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= (x)P (in RP ). Therefore by Nakayama’s lemma, (x)P = (0)P , a contradiction as x is regular.
This shows that P∇ is a minimal prime ideal and hence rank P = 1.

Lemma 2.2. Let R satisfy the hypothesis of Lemma 2.1 and let P be a C-prime ideal. Then RP
is a discrete valuation ring.

Proof. By Lemma 2.1, rank P = 1. Let P∇ be the minimal prime ideal properly contained
in P . As R is reduced, it follows that RP is a one dimensional domain. Now we claim that
PP is principal in RP . If P = P 2, then by hypothesis, (y)P = PP (in RP ) for some regular
element y ∈ P \ P∇. As PP is idempotent and principal, it follows that PP = (0)P (in RP ), a
contradiction. Therefore P 6= P 2. Choose any regular element x ∈ P \ P 2. Note that x 6∈ P∇

as x is regular and P∇ is a minimal prime ideal. By hypothesis (x) =
n
∩
i=1
Pαi
i for some prime

ideals P1, P2, . . . , Pn of R. Since x 6∈ P 2, it follows that αi = 1 for every Pi ⊆ P . Therefore
(x)P = PP (in RP ). As PP is principal in RP and RP is a one dimensional domain, it follows
that RP is a discrete valuation ring and the proof is complete.

Lemma 2.3. Let R satisfy the hypothesis of Lemma 2.1 and let M be an idempotent prime ideal.
If every non minimal prime ideal, which is minimal over a finitely generated ideal, is a C-prime
ideal, then M is a minimal prime ideal.

Proof. We claim that M is a minimal prime ideal. Suppose M is not a minimal prime ideal.
Then M is regular. Choose a regular element x ∈ M . Note that by hypothesis, the principal
ideal (x) has only finitely many minimal primes over (x). Let Q1, Q2, . . . , Qk be the minimal
primes over (x) contained in M . Suppose M = Qi for some i. Then M = Qi for all i. Again
since M = M2, by hypothesis, (x)M = MM (in RM ). As M = M2, by Nakayama’s lemma,
MM = (0)M (in RM ), so M is a minimal prime ideal, a contradiction. Therefore assume that

M 6= Qi for all i. Choose any y ∈M such that y 6∈
k
∪
i=1
Qi. Let Q ⊆M be a prime ideal minimal

over (x)+(y). As x ∈ Q, it follows that Q is non minimal. Again by hypothesis, Q is a C-prime
ideal and hence by Lemma 2.1, rank Q = 1. This shows that Q is minimal over (x) and hence
Q = Qi for some i. But this contradicts the fact that y ∈ Q. Therefore M is a minimal prime
ideal and the proof is complete.

Lemma 2.4. Let R be a quasi-regular ring satisfying the condition (*). Suppose M is a C-prime
ideal of R. Then RM is a one dimensional domain. Further if M is a non idempotent `-prime
ideal and Mn is M -primary for every positive integer n, then RM is a discrete valuation ring.

Proof. Choose any regular element a ∈ M such that a 6∈ M∇. Suppose M∇ is a non minimal
prime ideal. Choose a regular element x ∈ M∇. By hypothesis (xa) =

n
∩
i=1
Qi for some primary

ideals Q1, Q2, . . . , Qn of R. Suppose Qi ⊆ M∇ for i = 1, 2, . . . , k and Qj 6⊆ M∇ for j =

k + 1, . . . , n. Again since xa ∈ Qi and a 6∈
√
Qi for i = 1, 2, . . . , k, it follows that x ∈

k
∩
i=1
Qi

and hence (x)M = (x)M (a)M (in RM ). Now by Nakayama’s lemma, (x)M = (0)M (in RM ),
a contradiction as x is regular. Therefore M∇ is a minimal prime ideal and hence RM is a one
dimensional domain. Further if M is a non idempotent `-prime ideal and Mn is M -primary for
every positive integer n, then MM = (x)M for any x ∈ M \ M2 and hence RM is a discrete
valuation ring.

Lemma 2.5. Let R be a quasi-regular ring satisfying the condition (*). Suppose every non
minimal branched prime ideal is a C-prime ideal. If the prime ideal M is unbranched, then M
is a minimal prime ideal.

Proof. Suppose the prime ideal M is unbranched. We claim that M is a minimal prime ideal.
Suppose M is a non minimal prime ideal. Choose a regular element x ∈ M . By hypothesis, the
principal ideal (x) has only finitely many minimal primes. Let Q1, Q2, . . . , Qk be the minimal
primes over (x). If M = Qi for some i, then by hypothesis, (x)M = (x)2

M = MM (in RM ) as
M is unbranched. So by Nakayama’s lemma, (x)M = (0)M (in RM ), a contradiction as x is a

regular element. Therefore M 6= Qi for all i. Choose any y ∈ M such that y 6∈
k
∪
i=1
Qi. Let Q be
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a minimal prime over (x)+ (y). If Q is unbranched, then ((x)+ (y))Q = (((x)+ (y))2)Q = QQ
(in RQ), so by Nakayama’s lemma, QQ = (0)Q (in RQ) and hence Q is a minimal prime ideal
of R, a contradiction. Therefore Q is a branched non minimal prime ideal. Again by hypothesis,
Q is a C-prime ideal and hence by Lemma 2.4, dimRQ = 1. As rank Q = 1, it follows that Q is
a minimal prime ideal over (x), which is again a contradiction. This shows that M is a minimal
prime ideal.

For any ideal I ∈ L(R), we denote θ(I) =
∑
{(I1 : I) | I1 ⊆ I and I1 is a finitely generated

ideal}.

Lemma 2.6. Suppose R is a quasi-regular ring in which every regular principal ideal is a finite
product of primary ideals. Suppose I is a regular ideal of R such that I is locally principal and
every prime minimal over I is a maximal ideal. Then I is invertible.

Proof. By [12, Lemma 18.1, page 110], it is enough if we show that I is finitely generated.
We claim that θ(I) = R. Suppose θ(I) 6= R. Then θ(I) ⊆ M for some maximal ideal M of
R. By hypothesis, I is generated by regular elements. Again since I is locally principal, by [3,
Theorem 1], I is locally completely join irreducible, so IM = (x)M for some regular element
x ∈ I. By hypothesis, there exist primary ideals Q1, Q2, . . . , Qn such that (x) = Q1Q2 · · ·Qn.
Without loss of generality, assume that Qi ⊆ M for i = 1, 2, . . . , k and Qj 6⊆ M for j = k + 1,
k + 2, . . . , n. Then IM = (x)M = (Q1)M (Q2)M · · · (Qk)M . Since IM ⊆ (Qi)M , it follows that
I ⊆ Qi for i = 1, 2, . . . , k. Since M is minimal over I , it follows that each Qi is M -primary and
hence Q1Q2 · · ·Qk is M -primary. Therefore I ⊆ Q1Q2 · · ·Qk. Choose elements xj ∈ Qj such
that xj /∈ M for j = k + 1, k + 2, . . . , n. Let z = xk+1xk+2 · · ·xn. Since I ⊆ Q1Q2 · · ·Qk and
z ∈ Qk+1Qk+2 · · ·Qn, it follows that Iz ⊆ Q1Q2 · · ·Qn = (x), so z ∈ ((x) : I) ⊆ θ(I) ⊆ M,

which is a contradiction. Therefore θ(I) = R and hence R =
n∑
i=1

(Ii : I), where Ii′s are finitely

generated ideals contained in I . Therefore I =
n∑
i=1
Ii and hence I is a finitely generated ideal.

Lemma 2.7. Let R be a quasi-regular ring in which every regular principal ideal of R is a finite
product of primary ideals. Suppose M is a C-prime ideal of R. Then RM is a one dimensional
domain. Further if M is a non idempotent `-prime and Mn is M -primary for every positive
integer n, then RM is a discrete valuation ring.

Proof. By hypothesis,M is non minimal and soM is a regular ideal. Choose any regular element
a ∈ M such that a /∈ M ∇. Then (a)M is MM -primary (in RM ), so M∇

M ⊂ (a)M . We claim
thatM∇ is a non regular ideal. SupposeM∇ is a regular ideal. Let x ∈M∇ be a regular element
of R. By hypothesis (x) = QA for some primary ideal Q ⊆ M∇. Note that QM = (a)MQM .
Therefore (x)M = QMAM = QM (a)MAM = (x)M (a)M (in RM ) and hence by Nakayama’s
lemma, (x)M = (0)M , which is a contradiction as x is a regular element. Therefore M∇ is a non
regular ideal and so M∇ is a minimal prime ideal. As R is reduced, it follows that, RM is a one
dimensional domain. Further if M is a non idempotent `-prime and Mn is M -primary for every
positive integer n, then MM = (x)M for any x ∈M \M2 and hence RM is a discrete valuation
ring.

Lemma 2.8. Let R be a quasi-regular ring in which every regular principal ideal is a finite
product of primary ideals. Suppose every non minimal branched prime ideal is a C-prime ideal.
If the prime ideal M is unbranched, then M is minimal.

Proof. By using Lemma 2.7 and by imitating the proof of Lemma 2.5, we can get the result.

We now establish some conditions for R to be a Dedekind ring (see Theorem 2.9).

Theorem 2.9. R is a Dedekind ring if and only if R satisfies the following conditions:

(i) R is a quasi-regular ring.
(ii) Every regular principal ideal of R is a finite intersection of prime power ideals.
(iii) For every non minimal prime ideal P of R, Pn is P -primary for every positive integer n.
(iv) Every non minimal maximal ideal is a C-prime ideal.
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Proof. Suppose R is a Dedekind ring. By [17, Theorem 1], R satisfies the conditions (i) and (ii).
By [16, Theorem 3.8 and Theorem 3.13], R is an almost multiplication ring, so by [21, Theorem
1 and Theorem 4], dimR ≤ 1 and hence cvery non minimal prime ideal is maximal. Again by
[16, Theorem 3.13(v)], non minimal prime ideals are invertible prime ideals, so by [21, Lemma
21], non minimal prime ideals are C-prime ideals. Consequently, R satisfies the conditions (iii)
and (iv).

Conversely, assume that R satisfies the conditions (i), (ii), (iii) and (iv). Let M be a maximal
ideal. If M is minimal, then RM is a field. Suppose M is a non minimal prime ideal. Then by
Lemma 2.1 and Lemma 2.2, RM is a discrete valuation ring. Therefore R is an arithmetical ring,
so by [16, Theorem 3.3], R is a WI-ring. Observe that by hypothesis, R satisfies the condition
(*). Let P be a regular prime ideal. By [13, Theorem 2], P is a non minimal prime ideal. Since P
is locally principal, by [2, see the remark after Theorem 13], P is invertible, so by [16, Theorem
3.13(iii)], R is a Dedekind ring and the proof is complete.

In Theorem 2.10 and Theorem 2.11, we obtain some equivalent conditions for a quasi-regular
ring in which every regular principal ideal is a finite intersection of prime power ideals (primary
ideals) to be a Dedekind ring.

Theorem 2.10. Suppose R is a quasi-regular ring in which every regular principal ideal of R is
a finite intersection of prime power ideals. Then the following statements on R are equivalent:

(i) R is a Dedekind ring.
(ii) Every semiprimary ideal is primary.
(iii) Every primary ideal is a power of its radical.
(iv) R is an α-ring.
(v) Every non minimal prime ideal is a multiplication ideal.
(vi) RM is a valuation ring, for every prime ideal M of R.

Proof. (i)⇒(ii). Suppose (i) holds. By [16, Theorem 3.8 and Theorem 3.13], R is an almost
multiplication ring, so by [21, Theorem 4], every semiprimary ideal is primary. Thus (ii) holds.

(ii)⇒(iii). Suppose (ii) holds. Let Q be a primary ideal of R. If
√
Q =M is a minimal prime

ideal, then Q = M as M is unbranched. Suppose M is non minimal. By [9, Corollary 2.2],
dimR ≤ 1 and also by [9, Corollary 2.3], every non minimal maximal prime ideal is a C-prime
ideal. Therefore M is a C-prime ideal. Again by Lemma 2.3, non minimal prime ideals are non
idempotent. So M is a non idempotent maximal ideal. Choose any regular element x ∈M\M2.
Then by hypothesis, (x)M =MM (in RM ), so RM is a discrete valuation ring. Consequently, Q
is a power of M and therefore (iii) holds.

(iii)⇒(iv). Suppose (iii) holds. Let M be a non minimal maximal ideal of R. Observe that
by [5, Theorem 3], each Pn (n ∈ Z+) is P -primary, for every non minimal prime ideal P of R.
Also if P is a non minimal prime ideal and minimal over a finitely generated ideal, then P is
not the union of a chain of primes properly contained in P , so by [5, Corollary 1], P 6= P 2, and
hence by [5, Theorem 3], P is a C-prime ideal. Therefore by Lemma 2.3, non minimal prime
ideals are non idempotent. Again by [5, Theorem 3], non minimal prime ideals are C-prime
ideals. Consequently, by Lemma 2.1, rank M = 1 and hence dimR ≤ 1. Therefore R is an
α-ring.

(iv)⇒(v). Suppose (iv) holds. Let P be a non minimal prime ideal of R. By the ascending
chain condition for prime ideals, there exists a prime ideal P1 such that P covers P1. Note that
P is minimal over P1 + (x) for any x ∈ P \ P1, so by [5, Theorem 1 and Theorem 3], P is a
C-prime ideal. Clearly, each Qn (n ∈ Z+) is Q-primary for every non minimal prime ideal Q of
R [5, Theorem 3]. Hence by Theorem 2.9, R is a Dedekind ring. Thus (v) holds.

(v)⇒(vi). Suppose (v) holds. Let M be a maximal ideal of R. If M is minimal, then
RM is a field. Suppose M is non minimal. Then M is regular. By hypothesis, M is locally
principal. Note that by [2, Lemma 1], R satisfies the condition (*). Again by [2, see the remark
after Theorem 13], M is an invertible ideal and so by [21, Lemma 21], M is a C-prime ideal.
Again by [2, Lemma 1] and by Lemma 2.1 and Lemma 2.2, RM is a discrete valuation ring and
therefore (vi) holds.

(vi)⇒(i). Suppose (vi) holds. Observe that if P is a non minimal prime ideal, then by [6,
Theorem 4.19], Pn is P -primary for every positive integer n. Also if P is non minimal and
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minimal over a finitely generated ideal, then by [14, Lemma 7], P is a C-prime ideal. Therefore
by Lemma 2.3, non minimal prime ideals are non idempotent and hence non minimal prime
ideals are branched prime ideals. Again by [14, Lemma 8], non minimal prime ideals of R are
C-prime ideals. Now by Theorem 2.9, R is a Dedekind ring and the proof is complete.

Theorem 2.11. Suppose R is a quasi-regular ring which satisfies the condition (*). Then the
following statements on R are equivalent:

(i) R is a Dedekind ring.
(ii) Every maximal ideal is locally principal.
(iii) Every non minimal maximal ideal is a finitely generated `-prime ideal.
(iv) Every primary ideal is a power of its radical.
(v) Every idempotent maximal ideal of R is unbranched and any two incomparable primary

ideals are comaximal.
(vi) Every idempotent maximal ideal of R is unbranched, every non minimal branched prime

ideal is a C-prime ideal and every maximal ideal is an `-prime ideal.

Proof. (i)⇒(ii). Suppose (i) holds. Let M be a maximal ideal of R. If M is minimal, then RM
is a field. If M is non minimal, then by (i), M is a multiplication ideal and hence M is locally
principal. So (ii) holds.

(ii)⇒(iii). Suppose (ii) holds. Let M be a non minimal maximal ideal. Then M is regular, so
by hypothesis and [2, see the remark after Theorem 13], M is an invertible ideal. Now the result
follows from [21, Lemma 21].

(iii)⇒(iv). Suppose (iii) holds. Let Q be P -primary. If P is a minimal prime ideal, then
Q = P as R is a reduced ring. Suppose P is a non minimal prime ideal of R. Suppose P ⊆ M
for some maximal ideal M of R. Then by [14, Lemma 7], M is a C-prime ideal. Again by
Lemma 2.4, RM is a discrete valuation ring. Consequently, P = M and hence Q is a power of
P . Therefore (iv) holds.

(iv)⇒(v) follows from Theorem 2.10(vi) and (v)⇒(vi) follows from [14, Lemma 8].
(vi)⇒(i). Suppose (vi) holds. Let M be a maximal ideal of R. If M = M2, then by (vi), M

is unbranched, so by Lemma 2.5, M is a minimal prime ideal and hence RM is a field. Suppose
M 6= M2. Since in reduced rings minimal prime ideals are unbranched, it follows that M is a
non minimal prime ideal as M is a branched prime ideal. Therefore by Lemma 2.4, RM is a
discrete valuation ring. Consequently, every primary ideal is a power of its radical. Again by
Theorem 2.10, R is a Dedekind ring and the proof is complete.

Next we establish some equivalent conditions for a quasi-regular ring in which every regular
principal ideal is a finite product of primary ideals to be a Dedekind ring (see Theorem 2.12).

Theorem 2.12. Suppose R is a quasi-regular ring in which every regular principal ideal is a
finite product of primary ideals. Then the following conditions on R are equivalent:

(i) R is a Dedekind ring.
(ii) Every maximal ideal is locally principal.
(iii) Every non minimal maximal ideal is a finitely generated `-prime.
(iv) Every primary ideal is a power of its radical.
(v) Every idempotent maximal ideal of R is unbranched and any two incomparable primary

ideals are comaximal.

Proof. (i)⇒(ii) is well known.
(ii)⇒(iii) follows from Lemma 2.6 and [21, Lemma 21].
(iii)⇒(iv). Suppose (iii) holds. Let M be a maximal ideal of R. Suppose M is non minimal.

Then M is non idempotent. Also by Lemma 7 of [14], M is a C-prime ideal and hence by
Lemma 2.7, RM is a discrete valuation ring. If M is minimal, then RM is a field. Consequently,
R is an almost multiplication ring and hence (iv) holds [21, Theorem 4].

(iv)⇒(v). Clearly, every idempotent maximal ideal is unbranched. LetM be a maximal ideal.
If M is minimal, then RM is a field. Suppose M is non minimal. By [5, Theorem 3], every non
minimal branched prime ideal is a C-prime ideal. So by Lemma 2.8, M is branched and also
by [5, Theorem 3], M is a non idempotent C-prime ideal. Therefore by Lemma 2.7, RM is a
discrete valuation ring and hence (v) holds.
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(v)⇒(i). Suppose (v) holds. Let M be a maximal ideal of R. If M = M2 , then by [14,
Lemma 8] and Lemma 2.8, RM is a field. Suppose M 6= M2 . Since in reduced rings, minimal
prime ideals are unbranched prime ideals, it follows that M is non minimal. So by Lemma 2.7
and [14, Lemma 8], RM is a discrete valuation ring. ThereforeR is an almost multiplication ring
and hence by [21, Theorem 3 and Theorem 4], every ideal is equal to its kernal. Therefore R
satisfies the condition (*). Now the result follows from Theorem 2.11 and the proof is complete.

We now characterize Dedekind rings in terms of quasi-regular weak π-rings (see Theorem
2.13).

Theorem 2.13. The following statements on R are equivalent:

(i) R is a Dedekind ring.
(ii) R is a quasi-regular weak π-ring in which primary ideals are powers of its radicals.
(iii) R is a quasi-regular weak π-ring in which any two incomparable primary ideals are

comaximal.
(iv) R is a quasi-regular weak π-ring in which every maximal ideal is an `-prime ideal and

the ascending chain condition (a. c. c) for prime ideals is valid.
(v) R is a quasi-regular weak π-ring in which non minimal prime ideals are C-prime ideals.

Proof. (i)⇒(ii). Suppose (i) holds. By [16, Theorem 3.8 and Theorem 3.13],R is a quasi-regular
weak π-ring. So by Theorem 2.12, every primary ideal is a power of its radical.

(ii)⇒(iii) follows from Theorem 2.12.
(iii)⇒(iv). Suppose (iii) holds. By hypothesis and [14, Lemma 8], every non minimal

branched prime ideal is a C-prime ideal, so by Lemma 2.8, non minimal prime ideals are C-
prime ideals. Therefore by Lemma 2.7, every non minimal maximal ideal is a rank one prime
ideal and hence (iv) holds.

(iv)⇒(v). Suppose (iv) holds. Let M be a non minimal maximal `-prime ideal. By the a. c.
c for prime ideals and by immitating the proof of [14, Lemma 7], it can be easily shown that M
is a C-prime ideal. By Lemma 2.7, M is a rank one prime ideal. Consequently, non minimal
prime ideals are C-prime ideals. Therefore (v) holds.

(v)⇒(i). Suppose (v) holds. Observe that by hypothesis and Lemma 2.7, non minimal max-
imal ideals are rank one prime ideals. Again since R is a quasi-regular weak π-ring and any
factor of an invertible ideal is invertible, it follows that, non minimal maximal ideals are rank
one invertible prime ideals. Let I be an ideal not contained in any minimal prime ideal. As R is
quasi-regular, it follows that I is a regular ideal. Note that every prime ideal minimal over I is
non minimal. Therefore every prime ideal minimal over I is a rank one invertible maximal ideal.
By [15, Lemma 5], I has only finitely many minimal primes. Now we show that I is a finite
product of invertible maximal ideals. Let M1,M2, . . . ,Mn be the distinct prime ideals minimal
over I . Note that M1,M2, . . . ,Mn are rank one invertible maximal ideals. So by [21, Lemma
21], there exist positive integers ki for i = 1, 2, . . . , n such that I ⊆ Mi

ki and I 6⊆ Mi
ki+1. So

I ⊆
n
∩
i=1
Mi

ki = M1
k1M2

k2 · · ·Mn
kn as powers of Mi’s are pairwise comaximal ideals. Also

by [15, Lemma 5], I contains a finite product of primes which are minimal over I . Suppose
J = M1

α1M2
α2 · · ·Ms

αs ⊆ I . As powers of Mi’s are invertible, it can be easily shown that
s = n and αi = ki for i = 1, 2, . . . , n. Therefore I = M1

k1M2
k2 · · ·Mn

kn . Again by [16,
Theorem 3.13(v)], R is a Dedekind ring. This completes the proof of the theorem.
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