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Abstract. In this paper we establish several equivalent conditions for a commutative ring to
be a Dedekind ring.

1 Introduction

Throughout this paper R denotes a commutative ring with identity. L(R) denotes the lattice of
all ideals of R. In this paper we establish some conditions for a quasi-regular ring R to be a
Dedekind ring (see Theorem 2.9). Using this result, we establish some equivalent conditions
for a quasi-regular ring R in which every regular principal ideal of R is a finite intersection of
prime power ideals to be a Dedekind ring (see Theorem 2.10). Next we obtain some equivalent
conditions for a quasi-regular ring R in which every regular principal ideal of R is a finite in-
tersection of primary ideals to be a Dedekind ring (see Theorem 2.11). We also establish some
equivalent conditions for a quasi-regular ring R in which every regular principal ideal of R is a
finite product of primary ideals to be a Dedekind ring (see Theorem 2.12). Using these results,
we characterize Dedekind rings in terms of quasi-regular weak 7-rings (see Theorem 2.13).

We use C for proper set containment. For any A, B € L(R), we denote A\B = {z € A |
x ¢ B}. For any a € R, the principal ideal generated by a is denoted by (a). An elementa € R
is said to be regular (zero divisor) if ((0) : (a)) = (0) (ra = 0 for some 0 # r € R). An
ideal I of R is regular (faithful) if it contains a regular element (((0) : I) = (0)). A principal
ideal (a) of R is said to be a regular principal ideal if a is a regular element of R. For any
I € L(R), we denote /T = {a € R | a® € I for some positive integer n € Z}. An ideal I of
R is said to be a radical ideal if I = /I. Anideal I of R is a semi-primary ideal if its radical
is a prime ideal. Rings in which semi-primary ideals are primary have been studied in [8] and
[9] and [10]. A ring R is said to satisfy Property (A) if every finitely generated faithful ideal
is regular. Recall that an ideal I of R is called a multiplication ideal if for every ideal J C I,
there exists an ideal K with J = K. An ideal M of R is called a quasi-principal ideal [19,
Exercise 10, Page 147] (or a principal element of L( R) [20]) if it satisfies the following identities
(i) (AN(B: M))M = AMNBand (ii) (A+BM): M) = (A: M)+ B, forall A, B € L(R).
Obviously a finite product of quasi-principal ideals is quasi-principal and every quasi-principal
ideal is a multiplication ideal. It is well known that a multiplication ideal is locally principal [1,
Theorem 1]. It is also known that an ideal I of R is finitely generated and locally principal if
and only if [ is a finitely generated multiplication ideal [1, Theorem 3]. In fact, an ideal I of R
is quasi-principal if and only if it is finitely generated and locally principal (see [20, Theorem
2]). For any A, B € L(R), we say A and B are comaximal if A+ B = R. A prime ideal P of
R is said to be branched if there exists a P-primary ideal @) of R such that Q) # P. P is said to
be unbranched if P is the only P-primary ideal. A prime ideal P of R is said to be an ¢-prime if
the set of all P-primary ideals of R is linearly ordered. For any prime ideal P of R, we denote
PY =n{Q € L(R) | Q is P-primary}. For any prime ideals M, P € L(R), we say M covers
P if P C M and there is no prime ideal P; of R such that P C P C M. A non-minimal prime
ideal P of R is said to be a C-prime ideal if PV is prime, P covers PV and any prime Q C P
implies Q C PV.

If {P,} is the collection of all minimal prime ideals of an ideal I of R, then by an isolated
P, -primary component of I we mean the intersection @, of all P,-primary ideals which contain
I. The kernel of I is the intersection of all Q,"®. It is well known that every ideal is equal to its
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kernel if and only if the semiprimary ideals are primary [10, Theorem 4]

An ideal I of R is said to be quasi-invertible if it is quasi-principal and faithful. I is said to
be quasi-regular, if it contains a quasi-invertible ideal of R. If R satisfies Property (A), then by
[12, Lemma 18.1, page 110], an ideal I of R is quasi-invertible (quasi-regular) if and only if I is
invertible (regular). Recall that R is called a von Neumann Regular ring, if for each a € R, there
exists © € R such that axa = a. It is well known that R is a von Neumann Regular ring if and
only if every ideal of R is a radical ideal of R. R is called a quasi-regular ring, if its classical
ring of quotients is a von-Neumann regular ring. For various characterizations of quasi-regular
rings, the reader is referred to [7] and [13]. R is a reduced ring if the zero element is the only
nilpotent element. Note that every quasi-regular ring is a reduced ring [7, Theorem 2.2] and in
reduced rings minimal prime ideals are unbranched prime ideals. R is called a Marot ring if every
regular ideal is generated by its set of regular elements. By [7, Theorem 2.2] and [13, Theorem
2], quasi-regular rings satisfy Property (A) and non minimal prime ideals in a quasi-regular ring
are regular ideals. Also by [12, Theorem 4.5, Theorem 7.2 and Theorem 7.4], quasi-regular rings
are Marot rings. A ring R is said to be arithmetical, if its ideal lattice is distributive. R is said to
satisfy the condition (¥), if every regular principal ideal is a finite intersection of primary ideals.
Anideal I of R is weak invertible, if I is quasi-principal and ((0) : I) = (e) for some idempotent
e € R. R is said to be a WI-ring if every finitely generated ideal is weak invertible. A reduced
ring R is said to be a Dedekind ring, if every ideal not contained in any minimal prime ideal
is a multiplication ideal. A reduced ring R is said to be an almost Dedekind ring if (i) every
ideal not contained in any minimal prime ideal is locally principal and (ii) for every a € R, the
ideal (a) + ((0) : (a)) is a finitely generated ideal of R. Weak invertible rings, Dedekind rings
and almost Dedekind rings have been studied in [16] and [17]. R is said to be a weak w-ring
[18] if every regular principal ideal is a finite product of prime ideals. R is said to be an almost
weak r-ring if for each regular principal ideal (a) € L(R), (a)as is a finite product of prime
ideals in R, for all maximal ideals M containing a. For more information on weak 7-rings and
almost weak 7-rings, the reader is referred to [18]. R is a multiplication ring if every ideal is a
multiplication ideal. R is an almost multiplication ring if Ry, is a multiplication ring, for every
maximal ideal M of R. For more information on multiplication rings and almost multiplication
rings the reader may consult [4] and [21]. R is said to be a valuation ring if any two ideals are
comparable. It is well known that R is an arithmetical ring if and only if for every maximal ideal
M of R, Ry is a valuation ring. R is said to be a discrete valuation ring if R is a Dedekind
domain with only one proper (different from (0) and (1)) prime ideal. Following [6], R is an
a-ring, if R satisfies the ascending chain condition for prime ideals and every primary ideal is a
power of its radical.

Throughout this paper, all ideals are assumed to be proper (i.e., # R). For general background
and terminology, the reader may consult [11] and [19].

2 Dedekind rings

In this section we establish several equivalent conditions for R to be a Dedekind ring.
We now prove some useful lemmas.

Lemma 2.1. Suppose R is a quasi-regular ring in which every regular principal ideal of R is a
finite intersection of prime power ideals and for every non minimal prime ideal M of R, M" is
M -primary for every positive integer n. If P is a C-prime ideal, then rank P = 1.

Proof. Suppose P is a C-prime ideal. Then P is non minimal, PV is prime, P covers PV and
any prime properly contained in P is contained in PV. We claim that PV is a minimal prime
ideal. Suppose PV is a non minimal prime ideal. As R is quasi-regular, it follows that PV
is regular. Choose a regular element z € PV. As R is quasi-regular, it follows that R is a
Marot ring. Since P covers PV, there exists a regular element y € P such that y ¢ PV. By
hypothesis, there exist prime ideals Q1, Q,..., Q, such that (zy) = %le Suppose @; C rv

fori =1,2,...,kand Q; € PV forj = k + 1,...,n. Note that each Q; (1 < i < k) is a non
minimal prime ideal, so by hypothesis, Q7" is Q;-primary for 1 < ¢ < k. Again since zy €

k k k
DIQ;}” and y ¢ Q; (1 < i < k), it follows that z € QIQ? Therefore (zy)p = _QI(Q;?”)P
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= (z)p (in Rp). Therefore by Nakayama’s lemma, (z)p = (0) p, a contradiction as x is regular.
This shows that PV is a minimal prime ideal and hence rank P = 1. O

Lemma 2.2. Let R satisfy the hypothesis of Lemma 2.1 and let P be a C-prime ideal. Then Rp
is a discrete valuation ring.

Proof. By Lemma 2.1, rank P = 1. Let PV be the minimal prime ideal properly contained
in P. As R is reduced, it follows that Rp is a one dimensional domain. Now we claim that
Pp is principal in Rp. If P = P2, then by hypothesis, (y)p = Pp (in Rp) for some regular
elementy € P\ PV. As Pp is idempotent and principal, it follows that Pp = (0)p (in Rp), a
contradiction. Therefore P # P2. Choose any regular element = € P\ P2. Note that x ¢ PV

as x is regular and PV is a minimal prime ideal. By hypothesis (z) = ﬁlPia" for some prime
i=

ideals Py, P»,..., P, of R. Since x ¢ P2, it follows that a; = 1 for every P; C P. Therefore
(z)p = Pp (in Rp). As Pp is principal in Rp and Rp is a one dimensional domain, it follows
that Rp is a discrete valuation ring and the proof is complete. O

Lemma 2.3. Let R satisfy the hypothesis of Lemma 2.1 and let M be an idempotent prime ideal.
If every non minimal prime ideal, which is minimal over a finitely generated ideal, is a C-prime
ideal, then M is a minimal prime ideal.

Proof. We claim that M is a minimal prime ideal. Suppose M is not a minimal prime ideal.
Then M is regular. Choose a regular element x € M. Note that by hypothesis, the principal
ideal (x) has only finitely many minimal primes over (z). Let Q1,Q2, ..., Qx be the minimal
primes over (z) contained in M. Suppose M = Q; for some i. Then M = Q; for all i. Again
since M = M?, by hypothesis, (z)a; = My (in Ryr). As M = M?, by Nakayama’s lemma,
Myr = (0)pr (in Rpy), so M is a minimal prime ideal a contradiction. Therefore assume that

M # @; for all i. Choose any y € M suchthaty ¢ U Ql Let @ C M be a prime ideal minimal

over (z) + (y). As z € Q, it follows that @ is non m1n1mal Again by hypothesis, Q is a C-prime
ideal and hence by Lemma 2.1, rank @ = 1. This shows that ) is minimal over (z) and hence
Q = @, for some i. But this contradicts the fact that y € @). Therefore M is a minimal prime
ideal and the proof is complete. O

Lemma 2.4. Let R be a quasi-regular ring satisfying the condition (*). Suppose M is a C-prime
ideal of R. Then R); is a one dimensional domain. Further if M is a non idempotent {-prime
ideal and M™ is M -primary for every positive integer n, then Ry is a discrete valuation ring.

Proof. Choose any regular element @ € M such that a ¢ MY. Suppose MY is a non minimal
prime ideal. Choose a regular element = € M V. By hypothesis (za) = ﬁQi for some primary

ideals Q1,Q2,...,Q, of R. Suppose Q; € MY fori = 1,2,...,kand Q; £ MV forj =
kE+1,...,n. Againsince xa € Q; and a &€ /Q; fori = 1,2,... k, it follows that = € O QZ

and hence (z)y = (x),,(a),, (in Rys). Now by Nakayama’s lemma, () = (0) (in RM)
a contradiction as z is regular. Therefore MV is a minimal prime ideal and hence R, is a one
dimensional domain. Further if A is a non idempotent ¢-prime ideal and M" is M -primary for
every positive integer n, then My; = (x) for any z € M \ M? and hence R)y is a discrete
valuation ring. O

Lemma 2.5. Let R be a quasi-regular ring satisfying the condition (*). Suppose every non
minimal branched prime ideal is a C-prime ideal. If the prime ideal M is unbranched, then M
is a minimal prime ideal.

Proof. Suppose the prime ideal M is unbranched. We claim that M is a minimal prime ideal.
Suppose M is a non minimal prime ideal. Choose a regular element = € M. By hypothesis, the
principal ideal (x) has only finitely many minimal primes. Let Q;, Q>,. .., Qy be the minimal
primes over (z). If M = @, for some ¢, then by hypothesis, (z)y = (:1:)2M = My (in Ryy) as
M is unbranched. So by Nakayama’s lemma, () = (0)as (in Ryy), a contradiction as z is a

k
regular element. Therefore M # @Q; for all <. Choose any y € M such that y ¢ ngi. Let @ be
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a minimal prime over (z) + (y). If Q is unbranched, then ((z) + (y))o = (((z) + (¥))?)o = Qg
(in Rp), so by Nakayama’s lemma, Qg = (0)¢ (in Rg) and hence @ is a minimal prime ideal
of R, a contradiction. Therefore @ is a branched non minimal prime ideal. Again by hypothesis,
Q is a C-prime ideal and hence by Lemma 2.4, dimR¢g = 1. As rank @) = 1, it follows that @ is
a minimal prime ideal over (x), which is again a contradiction. This shows that M/ is a minimal
prime ideal. O

For any ideal I € L(R), we denote #(I) = > {(I; : I) | I; C I and I, is a finitely generated
ideal}.

Lemma 2.6. Suppose R is a quasi-regular ring in which every regular principal ideal is a finite
product of primary ideals. Suppose I is a regular ideal of R such that I is locally principal and
every prime minimal over I is a maximal ideal. Then I is invertible.

Proof. By [12, Lemma 18.1, page 110], it is enough if we show that I is finitely generated.
We claim that 6(1) = R. Suppose (1) # R. Then 6(I) C M for some maximal ideal M of
R. By hypothesis, I is generated by regular elements. Again since ! is locally principal, by [3,
Theorem 1], I is locally completely join irreducible, so Iy; = (z)a for some regular element
x € I. By hypothesis, there exist primary ideals Q1, Q2,. .., @y, such that (z) = Q1Q2- - Qp.
Without loss of generality, assume that ; C M fori=1,2,... . kand Q; € M forj =k + 1,
k+2,...,n. Then I;; = (x)]p[ = (Q])M(Qz)M cee (Qk.)]y[. Since I, C (Qi)]w, it follows that
I1CQ;fori=1,2,..., k. Since M is minimal over I, it follows that each (); is M -primary and
hence Q1Q> - - - Q is M-primary. Therefore I C Q1Q> - - - Qr. Choose elements z; € Q; such
thatz; ¢ Mforj=k+1,k+2,...,n. Let 2 = x4 12512 - . Since I C Q1Q2 -+ - Q and
2 € Qrr1Qxi2-+ Qn, it follows that Iz C Q1Q2 - Q, = (z),s02z € ((z) : I) CO(I) C M,

which is a contradiction. Therefore (1) = R and hence R = >_ (I, : I), where I;’* are finitely

i=1
generated ideals contained in I. Therefore I = > I; and hence I is a finitely generated ideal. O
i=1
Lemma 2.7. Let R be a quasi-regular ring in which every regular principal ideal of R is a finite
product of primary ideals. Suppose M is a C-prime ideal of R. Then R); is a one dimensional
domain. Further if M is a non idempotent {-prime and M™ is M-primary for every positive
integer n, then Ry is a discrete valuation ring.

Proof. By hypothesis, M is non minimal and so M is a regular ideal. Choose any regular element
a € M such thata ¢ M V. Then (a)ys is Mys-primary (in Ryz), so MY yr C (a)ar. We claim
that MV is a non regular ideal. Suppose MV is a regular ideal. Let x € MY be a regular element
of R. By hypothesis () = QA for some primary ideal Q € MV. Note that Qs = (a)y Q-
Therefore () = QumAn = Qu(a)yrAy = (z)ar(a)as (in Ryp) and hence by Nakayama’s
lemma, ()5 = (0) s, which is a contradiction as z is a regular element. Therefore MV is a non
regular ideal and so M V' is a minimal prime ideal. As R is reduced, it follows that, R, is a one
dimensional domain. Further if M is a non idempotent /-prime and M™ is M -primary for every
positive integer n, then My, = () forany z € M\ M 2 and hence R, is a discrete valuation
ring. O

Lemma 2.8. Let R be a quasi-regular ring in which every regular principal ideal is a finite
product of primary ideals. Suppose every non minimal branched prime ideal is a C-prime ideal.
If the prime ideal M is unbranched, then M is minimal.

Proof. By using Lemma 2.7 and by imitating the proof of Lemma 2.5, we can get the result. O
We now establish some conditions for R to be a Dedekind ring (see Theorem 2.9).
Theorem 2.9. R is a Dedekind ring if and only if R satisfies the following conditions:

(1) R is a quasi-regular ring.

(i) Every regular principal ideal of R is a finite intersection of prime power ideals.

(iii) For every non minimal prime ideal P of R, P™ is P-primary for every positive integer n.
(iv) Every non minimal maximal ideal is a C-prime ideal.
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Proof. Suppose R is a Dedekind ring. By [17, Theorem 1], R satisfies the conditions (i) and (ii).
By [16, Theorem 3.8 and Theorem 3.13], R is an almost multiplication ring, so by [21, Theorem
1 and Theorem 4], dimR < 1 and hence cvery non minimal prime ideal is maximal. Again by
[16, Theorem 3.13(v)], non minimal prime ideals are invertible prime ideals, so by [21, Lemma
21], non minimal prime ideals are C-prime ideals. Consequently, R satisfies the conditions (iii)
and (iv).

Conversely, assume that R satisfies the conditions (i), (ii), (iii) and (iv). Let M be a maximal
ideal. If M is minimal, then R, is a field. Suppose M is a non minimal prime ideal. Then by
Lemma 2.1 and Lemma 2.2, R, is a discrete valuation ring. Therefore R is an arithmetical ring,
so by [16, Theorem 3.3], R is a W I-ring. Observe that by hypothesis, R satisfies the condition
(*). Let P be aregular prime ideal. By [13, Theorem 2], P is a non minimal prime ideal. Since P
is locally principal, by [2, see the remark after Theorem 13], P is invertible, so by [16, Theorem
3.13(iii)], R is a Dedekind ring and the proof is complete. O

In Theorem 2.10 and Theorem 2.11, we obtain some equivalent conditions for a quasi-regular
ring in which every regular principal ideal is a finite intersection of prime power ideals (primary
ideals) to be a Dedekind ring.

Theorem 2.10. Suppose R is a quasi-regular ring in which every regular principal ideal of R is
a finite intersection of prime power ideals. Then the following statements on R are equivalent:

(1) R is a Dedekind ring.

(i) Every semiprimary ideal is primary.

(iii) Every primary ideal is a power of its radical.

@iv) R is an a-ring.

(v) Every non minimal prime ideal is a multiplication ideal.
(vi) Ry is a valuation ring, for every prime ideal M of R.

Proof. (1)=-(ii). Suppose (i) holds. By [16, Theorem 3.8 and Theorem 3.13], R is an almost
multiplication ring, so by [21, Theorem 4], every semiprimary ideal is primary. Thus (ii) holds.

(i1)=-(iii). Suppose (ii) holds. Let  be a primary ideal of R. If \/(Q = M is a minimal prime
ideal, then ) = M as M is unbranched. Suppose M is non minimal. By [9, Corollary 2.2],
dimR < 1 and also by [9, Corollary 2.3], every non minimal maximal prime ideal is a C-prime
ideal. Therefore M is a C-prime ideal. Again by Lemma 2.3, non minimal prime ideals are non
idempotent. So M is a non idempotent maximal ideal. Choose any regular element x € M\ M?.
Then by hypothesis, (z) s = My (in Ryy), so Ry, is a discrete valuation ring. Consequently, @
is a power of M and therefore (iii) holds.

(iii)=-(iv). Suppose (iii) holds. Let M be a non minimal maximal ideal of R. Observe that
by [5, Theorem 3], each P" (n € Z*) is P-primary, for every non minimal prime ideal P of R.
Also if P is a non minimal prime ideal and minimal over a finitely generated ideal, then P is
not the union of a chain of primes properly contained in P, so by [5, Corollary 1], P # P2, and
hence by [5, Theorem 3], P is a C-prime ideal. Therefore by Lemma 2.3, non minimal prime
ideals are non idempotent. Again by [5, Theorem 3], non minimal prime ideals are C-prime
ideals. Consequently, by Lemma 2.1, rank M = 1 and hence dimR < 1. Therefore R is an
a-ring.

(iv)=-(v). Suppose (iv) holds. Let P be a non minimal prime ideal of R. By the ascending
chain condition for prime ideals, there exists a prime ideal P; such that P covers P;. Note that
P is minimal over P, + (z) for any =z € P \ Py, so by [5, Theorem 1 and Theorem 3], P is a
C-prime ideal. Clearly, each Q" (n € Z7) is Q-primary for every non minimal prime ideal @ of
R[5, Theorem 3]. Hence by Theorem 2.9, R is a Dedekind ring. Thus (v) holds.

(v)=-(vi). Suppose (v) holds. Let M be a maximal ideal of R. If M is minimal, then
Ry is a field. Suppose M is non minimal. Then M is regular. By hypothesis, M is locally
principal. Note that by [2, Lemma 1], R satisfies the condition (*). Again by [2, see the remark
after Theorem 13], M is an invertible ideal and so by [21, Lemma 21], M is a C-prime ideal.
Again by [2, Lemma 1] and by Lemma 2.1 and Lemma 2.2, R, is a discrete valuation ring and
therefore (vi) holds.

(vi)=(i). Suppose (vi) holds. Observe that if P is a non minimal prime ideal, then by [6,
Theorem 4.19], P™ is P-primary for every positive integer n. Also if P is non minimal and
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minimal over a finitely generated ideal, then by [14, Lemma 7], P is a C-prime ideal. Therefore
by Lemma 2.3, non minimal prime ideals are non idempotent and hence non minimal prime
ideals are branched prime ideals. Again by [14, Lemma 8], non minimal prime ideals of R are
C-prime ideals. Now by Theorem 2.9, R is a Dedekind ring and the proof is complete. O

Theorem 2.11. Suppose R is a quasi-regular ring which satisfies the condition (*). Then the
following statements on R are equivalent:

(1) R is a Dedekind ring.

(i1) Every maximal ideal is locally principal.

(ii1) Every non minimal maximal ideal is a finitely generated (-prime ideal.

@iv) Every primary ideal is a power of its radical.

(v) Every idempotent maximal ideal of R is unbranched and any two incomparable primary
ideals are comaximal.

(vi) Every idempotent maximal ideal of R is unbranched, every non minimal branched prime
ideal is a C-prime ideal and every maximal ideal is an {-prime ideal.

Proof. (1)=-(ii). Suppose (i) holds. Let M be a maximal ideal of R. If M is minimal, then R
is a field. If M is non minimal, then by (i), M is a multiplication ideal and hence M is locally
principal. So (ii) holds.

(ii)=-(iii). Suppose (ii) holds. Let M be a non minimal maximal ideal. Then M is regular, so
by hypothesis and [2, see the remark after Theorem 13], M is an invertible ideal. Now the result
follows from [21, Lemma 21].

(iii)=-(iv). Suppose (iii) holds. Let () be P-primary. If P is a minimal prime ideal, then
@ = P as R is areduced ring. Suppose P is a non minimal prime ideal of R. Suppose P C M
for some maximal ideal M of R. Then by [14, Lemma 7], M is a C-prime ideal. Again by
Lemma 2.4, Ry, is a discrete valuation ring. Consequently, P = M and hence @) is a power of
P. Therefore (iv) holds.

(iv)=-(v) follows from Theorem 2.10(vi) and (v)=-(vi) follows from [14, Lemma 8].

(vi)=-(i). Suppose (vi) holds. Let M be a maximal ideal of R. If M = M?, then by (vi), M
is unbranched, so by Lemma 2.5, M is a minimal prime ideal and hence R, is a field. Suppose
M # M?. Since in reduced rings minimal prime ideals are unbranched, it follows that M is a
non minimal prime ideal as M is a branched prime ideal. Therefore by Lemma 2.4, R, is a
discrete valuation ring. Consequently, every primary ideal is a power of its radical. Again by
Theorem 2.10, R is a Dedekind ring and the proof is complete. O

Next we establish some equivalent conditions for a quasi-regular ring in which every regular
principal ideal is a finite product of primary ideals to be a Dedekind ring (see Theorem 2.12).

Theorem 2.12. Suppose R is a quasi-regular ring in which every regular principal ideal is a
finite product of primary ideals. Then the following conditions on R are equivalent:

(i) R is a Dedekind ring.

(i1) Every maximal ideal is locally principal.

(iii) Every non minimal maximal ideal is a finitely generated (-prime.

(iv) Every primary ideal is a power of its radical.

(v) Every idempotent maximal ideal of R is unbranched and any two incomparable primary
ideals are comaximal.

Proof. (1)=-(ii) is well known.

(i1)=-(iii) follows from Lemma 2.6 and [21, Lemma 21].

(iii)=-(iv). Suppose (iii) holds. Let M be a maximal ideal of R. Suppose M is non minimal.
Then M is non idempotent. Also by Lemma 7 of [14], M is a C-prime ideal and hence by
Lemma 2.7, R), is a discrete valuation ring. If M is minimal, then R, is a field. Consequently,
R is an almost multiplication ring and hence (iv) holds [21, Theorem 4].

(iv)=-(v). Clearly, every idempotent maximal ideal is unbranched. Let M be a maximal ideal.
If M is minimal, then R, is a field. Suppose M is non minimal. By [5, Theorem 3], every non
minimal branched prime ideal is a C-prime ideal. So by Lemma 2.8, M is branched and also
by [5, Theorem 3], M is a non idempotent C-prime ideal. Therefore by Lemma 2.7, R, is a
discrete valuation ring and hence (v) holds.



Some Results On Dedekind Rings 101

(v)=(@). Suppose (v) holds. Let M be a maximal ideal of R. If M = M? , then by [14,
Lemma 8] and Lemma 2.8, Ry is a field. Suppose M # M? . Since in reduced rings, minimal
prime ideals are unbranched prime ideals, it follows that A/ is non minimal. So by Lemma 2.7
and [14, Lemma 8], R,/ is a discrete valuation ring. Therefore R is an almost multiplication ring
and hence by [21, Theorem 3 and Theorem 4], every ideal is equal to its kernal. Therefore R
satisfies the condition (*). Now the result follows from Theorem 2.11 and the proof is complete.

O

We now characterize Dedekind rings in terms of quasi-regular weak 7-rings (see Theorem
2.13).

Theorem 2.13. The following statements on R are equivalent:

(i) R is a Dedekind ring.

(1) R is a quasi-regular weak m-ring in which primary ideals are powers of its radicals.

(iii) R is a quasi-regular weak w-ring in which any two incomparable primary ideals are
comaximal.

(iv) R is a quasi-regular weak m-ring in which every maximal ideal is an (-prime ideal and
the ascending chain condition (a. c. c) for prime ideals is valid.

(v) R is a quasi-regular weak w-ring in which non minimal prime ideals are C-prime ideals.

Proof. (1)=-(i1). Suppose (i) holds. By [16, Theorem 3.8 and Theorem 3.13], R is a quasi-regular
weak m-ring. So by Theorem 2.12, every primary ideal is a power of its radical.

(i1)=-(iii) follows from Theorem 2.12.

(iii)=-(iv). Suppose (iii) holds. By hypothesis and [14, Lemma 8], every non minimal
branched prime ideal is a C-prime ideal, so by Lemma 2.8, non minimal prime ideals are C-
prime ideals. Therefore by Lemma 2.7, every non minimal maximal ideal is a rank one prime
ideal and hence (iv) holds.

(iv)=(v). Suppose (iv) holds. Let M be a non minimal maximal /-prime ideal. By the a. c.
¢ for prime ideals and by immitating the proof of [14, Lemma 7], it can be easily shown that M
is a C-prime ideal. By Lemma 2.7, M is a rank one prime ideal. Consequently, non minimal
prime ideals are C-prime ideals. Therefore (v) holds.

(v)=-(i). Suppose (v) holds. Observe that by hypothesis and Lemma 2.7, non minimal max-
imal ideals are rank one prime ideals. Again since R is a quasi-regular weak 7-ring and any
factor of an invertible ideal is invertible, it follows that, non minimal maximal ideals are rank
one invertible prime ideals. Let I be an ideal not contained in any minimal prime ideal. As R is
quasi-regular, it follows that I is a regular ideal. Note that every prime ideal minimal over [ is
non minimal. Therefore every prime ideal minimal over I is a rank one invertible maximal ideal.
By [15, Lemma 5], I has only finitely many minimal primes. Now we show that I is a finite
product of invertible maximal ideals. Let M, M>, ..., M,, be the distinct prime ideals minimal
over I. Note that My, M,, ..., M, are rank one invertible maximal ideals. So by [21, Lemma
21], there exist positive integers k; for i = 1,2,...,n such that I C M;* and I z M;F+ . So
I C ﬁlMiki = M" M,* ... M, * as powers of M;’s are pairwise comaximal ideals. Also
by [15, Lemma 5], I contains a finite product of primes which are minimal over /. Suppose
J = M{“'Mp*? .- M¢* C I. As powers of M;’s are invertible, it can be easily shown that
s =nand a; = k; fori = 1,2,...,n. Therefore I = M®F MR MR Again by [16,
Theorem 3.13(v)], R is a Dedekind ring. This completes the proof of the theorem. O
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