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Abstract. Locke's conjecture (L) states that the binary hypercubeQn with k deleted vertices

of each parity is Hamiltonian if n ≥ k + 2. In 2003, S. C. Locke and R. Stong published in The

American Mathematical Monthly a proof of (L) for the case k = 1. In 2007, in the paper Path

coverings with prescribed ends in faulty hypercubes1 the authors proved (L) for every k ≤ 4 and

every n ≥ k+ 2 and formulated the following conjecture (CG): Let n ≥ k+ 3 and F be a set of

k even (odd) and k + 1 odd (even) vertices of Qn. If u, v are two even (odd) vertices of Qn −F
then there exists a Hamiltonian path of Qn − F which connects u and v. (CG) is known to be

true for every k ≤ 3 and every n ≥ k + 3.

In this paper we prove that if n ≥ 7, 5 ≤ k ≤ n− 2 and (L) is true for every n1 ≤ n− 1 and

every k1 ≤ n1 − 2 and (CG) is true for every n1 ≤ n− 1 and every k1 ≤ n1 − 3 then (L) is also
true for n and k. To keep the paper shorter the proof that if n ≥ 7, 4 ≤ k ≤ n− 3 and (L) is true
for every n1 ≤ n − 1 and every k1 ≤ n1 − 2 and (CG) is true for every n1 ≤ n − 1 and every

k1 ≤ n1 − 3 then (CG) is also true for n and k will appear in a forthcoming paper. In that way

the two papers together complete the proofs of (L) and (CG).

1 Introduction

The n−dimensional binary hypercube Qn is the graph whose vertices are the binary sequences

of length n and whose edges are pairs of binary sequences that differ in exactly one position.

A given vertex is called even if it has an even number of 1's in its components; otherwise the

vertex is called odd.

In 2001 S. Locke asked the following question in [8]: Let k ≥ 1 and n ≥ k + 2 be integers.

Let also F be a set of k even and k odd vertices of Qn. Is it true that the graph Qn − F has a

Hamiltonian cycle?

Since S. Locke had a positive answer to the above question in the case when k = 1, most

likely he anticipated a positive answer for his question for every integer k ≥ 1. That is why in

the literature the above problem is known as Locke's conjecture and we are going to denote it by

(L).
The Monthly published R. Stong's proof of (L) for the case k = 1 and made the remark that

Stong had also proved (L) when n ≥ 2k + 3 log
2
k + 4 (see [9]) .

In [5] we proved (L) for every k ≤ 4 and every n ≥ k+2, formulated the following conjecture

(henceforth denoted by (CG)) and proved it for k ≤ 2 (the case k = 0 had appeared already in

[7]).

Conjecture 1.1. Let k ≥ 0 and n ≥ k + 3 be integers. Let also F be a set of k even (odd) and

k + 1 odd (even) vertices of Qn. If u, v are two even (odd) vertices of Qn − F then there exists

a Hamiltonian path of Qn −F that connects u and v.

The proof of (CG) for the case k = 3 is contained in [2]. Therefore (L) has already been

veri�ed for every k ≤ 4 and every n ≥ k + 2 and (CG) has been veri�ed for every k ≤ 3 and

every n ≥ k + 3.

�A summary of the content of this paper was presented at the 9th International Conference �Approximation and Opti-

mization in the Caribbean�, San Andres Island, 2 � 9 March, 2008 and at the Graph Theory Day 59, SCSU, New Haven, CT,

USA, May 8, 2010.
1The paper Path coverings with prescribed ends in faulty hypercubes [5] was written and submitted for publication in

2007 and did not appear in print until 2015 because of its length, but the main results in that paper, summarized in tables,

appeared in print in [1] and [2] in 2009, and in [3] and [6] in 2010.
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In this paper we prove that if n ≥ 7, 5 ≤ k ≤ n− 2 and (L) is true for every n1 ≤ n− 1 and

every k1 ≤ n1 − 2 and (CG) is true for every n1 ≤ n− 1 and every k1 ≤ n1 − 3 then (L) is also
true for n and k. To keep the paper shorter the proof that if n ≥ 7, 4 ≤ k ≤ n− 3 and (L) is true
for every n1 ≤ n − 1 and every k1 ≤ n1 − 2 and (CG) is true for every n1 ≤ n − 1 and every

k1 ≤ n1 − 3 then (CG) is also true for n and k will appear in a forthcoming paper [4]. In that

way the two papers together complete the proofs of (L) and (CG) for all admissible values of n
and k.

In [5] the following conjecture (T ) was also formulated.

Conjecture 1.2. Let k ≥ 0 and n ≥ k + 3 be integers. Let also F be a set of k even and k odd

vertices of Qn. If u and v are two vertices of Qn − F with different parity then there exists a

Hamiltonian path of Qn −F which connects u and v.

For the proof of (L) we need the following theorem which shows that (T ) is a simple corol-

lary of (CG).

Theorem 1.3. Let k ≥ 0 and n ≥ k + 3 be integers. Let also F be a set of k even and k odd

vertices of Qn and suppose that (CG) is true for n and k. If u and v are two vertices of Qn −F
with different parity then there exists a Hamiltonian path of Qn −F which connects u and v.

Proof. Let v1 be a neighbor of u which is not in F . It follows from (CG) that there exists a

Hamiltonian path γ1 for Qn −F − {u} from v1 to v. Therefore

u −→ v1
γ1−→ v

is a Hamiltonian path for Qn −F from u to v.

2 Preliminaries

To simplify the explanations and the proofs that follow we introduce some terminology.

Every vertex u ofQn is a binary sequence of length n. We refer to the i−th bit of u as the i−th

coordinate of u. All vertices of Qn with identical i−th coordinates form (n − 1)-dimensional

hypercubes that we denote by Q0
n and Q1

n, or Qbot
n and Qtop

n , and we call them bottom and top

plates, respectively. Sometimes we say that the i−th coordinate splits Qn into two hypercubes.

If we split the hypercube using two coordinates then we get four (n−2)-dimensional hypercubes

that we denote byQ00
n ,Q01

n ,Q10
n andQ11

n . If u and v are two vertices ofQn such that u ∈ Q0
n and

v ∈ Q1
n then we say that the i−th coordinate separates u and v. Thus, if F is any set of vertices

ofQn then each coordinate i induces a partition {F0,F1} of the set F , where F0 and F1 are the

set of vertices of F with the i-th coordinate equal to zero or one, respectively. In the special case
when one of the sets F0 or F1 is empty we say that the i-th coordinate does not separate F . We

say that the coordinate i separates F in the way (s, t) (or the separation type is (s, t)) if the sets
F0 and F1 are nonempty and have cardinalities s and t. We do not make a difference between

the types (s, t) and (t, s).
We say that the j−th coordinate separatesF in a different way than the i−th coordinate if the

partitions ofF induced by i and j are different. More generally, we say that a set of k coordinates
separates F in l different ways if the total number of different partitions of F induced by the k
coordinates is l. It is easy to see that if the coordinates i and j separate F in two different ways

then there are vertices from F in at least three of the four n − 2−dimensional hypercubes Q00
n ,

Q01
n , Q10

n and Q11
n .

Given a vertex a of F we say that a coordinate is F-special for a if this coordinate separates

a from the rest of the vertices of F .
We viewQn as the graphQn−1×K2, whereK2 is the edge (0, 1), and thenQ0

n = Qn−1×{0}
andQ1

n = Qn−1×{1}. Also, we viewQn as the graphQn−2×Q2 and thenQ00
n = Qn−2×{00},

Q01
n = Qn−2 × {01}, Q10

n = Qn−2 × {10} and Q11
n = Qn−2 × {11}.

For the proof of (L) we need the following separation lemmas.

Lemma 2.1. Let k ≥ 3, n ≥ k, and F be a set of k pairs of even and odd vertices of Qn. Let

also every coordinate which separates the even vertices in F separates also the odd vertices in

F and vice versa. Then there exist two coordinates that separate the even and the odd vertices

in F in different ways.
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Proof. Take one coordinate, say A, which separates the even and the odd vertices in F . Since

there are at least three odd vertices in F , at least two of them are not separated by A. Take

another coordinate, say B, which separates these two odd vertices. Then B separates the odd

vertices in F in a different way than A. If B also separates the even vertices in F in a different

way than A then A and B are as required.

Suppose that B separates the even vertices in F in the same way as A. Since there are at

least three even vertices in F , at least two of them are not separated by A (and by B). Let C be

a coordinate that separates these two even vertices. Clearly, C separates the even vertices in F
in a different way than A and B. Also, C separates the odd vertices in F . If C separates the odd

vertices in F in a different way than A then A and C are as required, otherwise C and B are the

required two coordinates.

Lemma 2.2. Let k ≥ 3, n ≥ k, and F be a set of k even (odd) vertices ofQn. If every coordinate

which separates the vertices in F separates them in the way (1, k − 1) then either there exist k
coordinates that separate all vertices in F in k different ways or there exist 2k − 2 coordinates

that separate all vertices in F in k−1 different ways. These 2k−2 coordinates can be arranged

in k − 1 pairs of coordinates such that the two coordinates of each pair separate F in the same

way.

Proof. It is clear that if |F| ≥ 3 then no two vertices can have a common F-special coordinate.

If for every vertex in F there is an F-special coordinate then there are at least k coordinates that

separate the vertices of F in k different ways.

Assume now that there is a vertex a in F with no F-special coordinates. If b is any other

vertex in F then it differs from a in at least two coordinates and these two coordinates must by

necessity be F-special for b. Therefore we have k − 1 pairs of coordinates with the properties

stated in the lemma.

Lemma 2.3. Let n ≥ 3 be a positive integer and F be a set of four odd (even) vertices of Qn.

Then there exist three coordinates that separate these vertices in three different ways or there

are two pairs of coordinates such that these coordinates separate F in two different ways with

the two coordinates of each pair separating F in the same way that is of type (2, 2).

Proof. Let F = {a, b, c, d}. If at least one vertex in F , say a, has a coordinate that is F-special

for a then this coordinate together with any two coordinates that separate {b, c, d} in two different
ways (which exists by Lemma 2.2) form a group of three coordinates that separate F in three

different ways. So, if F cannot be separated in three different ways then all the separations of

F are of the type (2, 2). Also, without loss of generality, we can assume that d has no {b, c, d}-
special coordinates and that one pair of coordinates separates b from {c, d} and another pair of

coordinates separates c from {b, d} (see Lemma 2.2). It follows that the �rst pair of coordinates

separate F as {a, b}, {c, d} and the second pair of coordinates separates F as {a, c}, {b, d}.

Lemma 2.4. Let n ≥ 4 be a positive integer and F = {a, b, c, d, e} be a set of �ve odd (even)

vertices of Qn. Then there exist four coordinates that separate these vertices in four different

ways or there exist three pairs of coordinates that separate F in three different ways with the two

coordinates of each pair separating F in the same way that is of type (2, 3).

Proof. There are two types of separations for a set of 5 vertices: (1, 4), and (2, 3). If all the sep-
arations of F are of type (1, 4) then according to Lemma 2.2 there are at least four coordinates

that separate F in four different ways. Now, suppose that there are separations of F of type

(2, 3). Without loss of generality we can assume that P = {{a, b}, {c, d, e}} is a separation of

F produced by some coordinate A. If c, d, e can be separated in three different ways by three

coordinates then these three coordinates together with A form a group of four coordinates that

separate F in four different ways. If c, d, e cannot be separated in three different ways then,

according to Lemma 2.2 and without loss of generality, we can assume that there are two coordi-

nates, say C and D, that separate c, d, e in the way {c}, {d, e} and two coordinates, say E and F,
that separate c, d, e in the way {d}, {c, e}. If C ( E ) separates F in a different way than D ( F )

then A,C,D,E ( A,C,E, F ) form a group of four coordinates that separate F in four different

ways. Assume now that C separates F in the same way asD and that E separates F in the same

way as F. If neither C nor E separates a from b then any coordinate that separates a from b to-
gether with A,C and E form a group of four coordinates that separate F in four different ways.
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Assume now that one of the coordinates C or E separates a from b. Without loss of generality

we can assume that that coordinate is C and that C separates F in the way {a, c}, {b, d, e}. If
any of the coordinates that separate b, d, e separates F in a different way than A,C, and E then

such coordinate together with A,C and E form a group of four coordinates that separate F in

four different ways. If that is not the case then b, d, e can be separated only in the ways produced
by A,C and E. In particular (by Lemma 2.2) there must be a coordinate B which separates F in

exactly the same way as A does.

Corollary 2.5. Let k ≥ 5, n = k+ 2, and F be a set of k even and k odd vertices of Qn. If every

coordinate which separates the even (odd) vertices in F separates them in the way (1, k − 1)
then there exist two coordinates that separate the even and the odd vertices in different ways.

Proof. Since every coordinate which separates the even vertices separates them in the way (1, k−
1), it follows from Lemma 2.2 that there are either k coordinates that separate the even vertices

in different ways or 2k − 2 coordinates that separate the even vertices in k − 1 different ways.

Since k ≥ 5, it follows from Lemma 2.4 that either there exist at least four coordinates that

separate the odd vertices in different ways or there exist three pairs of coordinates that separate

the odd vertices in three different ways with the two coordinates from each pair separating the

odd vertices in the same way. In either case, since n = k + 2, there will be two coordinates that

separate the even and the odd vertices in different ways.

An important ingredient in the proofs of (L) and (CG) is the existence of a long enough path
that avoids a set of faulty vertices as the one guaranteed by Lemma 2.7 below. For the proof of

Lemma 2.7 we need the following result.

Theorem 2.6 ([6]). Let n ≥ 5 and f be integers with 0 ≤ f ≤ 3n − 7. Then for any set F of

vertices of Qn of cardinality f there exists a cycle in Qn −F of length at least 2n − 2f.

Lemma 2.7. Let n ≥ 5 be an integer and F be a set of 2n vertices of Qn. Then there exists a

path γ in Qn −F with length at least 2(n− 3) + 2.

Proof. We have |F| = 2n.
If n ≥ 7 then 3n − 7 ≥ 2n. Therefore, according to Theorem 2.6, there is a Hamiltonian

cycle in Qn −F with length at least 2n − 2(2n). Since 2n − 2(2n) ≥ 2(n− 3)+ 3, when n ≥ 5,

we conclude that if n ≥ 7 there is a path γ in Qn −F with length at least 2(n− 3) + 2.

If n = 6 then it follows from Theorem 2.6 that we can �nd a cycle in Qn with length at least

26−2·11 = 42, such that it contains at most one of the vertices from F , for in this case |F| ≤ 12.

Therefore, when n = 6 there exists a path γ inQn−F with length at least 2(n−3)+2 = 8 ≤ 40.

Finally, if n = 5, again using Theorem 2.6, we can �nd a cycle in Qn with length at least

25 − 2 · 8 = 16 that contains at most two of the vertices from F . Therefore, when n = 5, there

exists a path γ in Qn −F with length at least 6 = 2(n− 3) + 2.

As a corollary of Lemma 2.7 we obtain the following very useful lemma.

Lemma 2.8. Let k ≥ 1 and n ≥ 7 be integers, with n ≥ k + 2, and F be a set of k even and k
odd vertices of Qn. Split Qn using two coordinates and let Qn−2 be one of the four hypercubes

Q00
n , Q01

n , Q10
n or Q11

n . Project all vertices from F onto Qn−2 using the natural projections and

denote the projection by F ′. Then there exists a path µ in Qn−2 − F ′ with length 2(n− 5) + 1.

Since the length of µ is an odd number, we can choose the beginning vertex of µ to be either even

or odd depending on our needs.

Proof. Since |F| ≤ 2k ≤ 2(n − 2), we have |F ′| ≤ 2(n − 2). Also n − 2 ≥ 5. Therefore, it

follows from Lemma 2.7 that there exists a path γ in Qn−2−F ′ with length at least 2(n−5)+2

and therefore there exists a path µ with length 2(n − 5) + 1 which begins with an even or odd

vertex, depending on our choice.

3 Proof of Locke's conjecture

In this section we complete the prove of Locke's conjecture (L) under the assumption that (CG)

is true for some appropriate values of n and k. More speci�cally we prove the following theorem.
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Theorem 3.1. Let n ≥ 7 and 5 ≤ k ≤ n − 2 be integers. Let also F be a set of k even and k
odd vertices of Qn and suppose that (L) is true for every n1 ≤ n− 1 and every k1 ≤ n1 − 2 and

(CG) is true for every n1 ≤ n− 1 and every k1 ≤ n1 − 3. Then (L) is also true for n and k.

Remark 3.2. Notice that it follows immediately from the hypothesis of the above theorem and

Theorem 1.3 that the conjecture (T ) is true for every n1 ≤ n− 1 and every k1 ≤ n1 − 3, as well.

Let F = {u1, ..., uk, v1, ..., vk}, where all u−s are even and all v−s are odd vertices. Some-

times we call the elements of F deleted vertices.

The idea of the proof is to choose �appropriately� one or two coordinates that separate the

deleted vertices �in a good way� and to split Qn using them. Then by using (L), (CG) or (T )
for some n1 ≤ n − 1 and k1 ≤ k − 1 we construct the required Hamiltonian cycle for Qn − F .

In many cases it is impossible to �nd one coordinate such that immediately after the splitting

we can use (L), (CG) or (T ) in the resulting hypercubes Qtop
n and Qbot

n since usually there is a

big difference (more than one) or disbalance between the number of the deleted even and odd

vertices in these hypercubes. In such cases we choose �appropriately� two coordinates and using

them we split Qn into four hypercubes Q00
n , Q01

n , Q10
n and Q11

n . Then, we start creating a path γ0
that is the �rst part of the desired cycle of Qn −F by concatenating paths of the type

e01 → o00 → (e, o)10 → e11 → (o, e′)01

or other similar types of paths that we call short cycles (since the projection of each such path on

Q2 is a cycle). We refer to all vertices used in those short cycles, except the starting one as used

vertices. We stop the creation of γ0 at a point when the set of deleted or used vertices in each of

the four hypercubes is balanced or semi-balanced in the sense that the disbalance between even

and odd vertices is at most one. Considering the originally deleted vertices and the used vertices

as new deleted vertices we proceed by creating paths in each of the four hypercubes, applying

(L), (CG) or (T ) as needed, to complete the desired cycle of Qn −F .
The notation that we use in these short cycles is self-explanatory: e01 represents an even (in

Qn) vertex which is in the hypercube Q01
n ; o00 represents an odd (in Qn) vertex which is in

the hypercube Q00
n and is a neighbor of e01 in Qn; e01 → o00 means that (e01, o00), which is

an edge in Qn, is an edge in the constructed path; (e, o)10 represents the edge (e10, o10) in the

hypercube Q10
n which is also an edge in the constructed path; o00 → (e, o)10 means that o00 and

e10 are neighbors in Qn and that (o00, e10) is an edge in the constructed path; and so on. We call

the edges of the type (eij , oi1j1), where ij ̸= i1j1, vertical, and the edges of the type (eij , oij)
horizontal.

Usually more than one short cycle is needed in order to (semi) balance the four plates. Since

each one of those short cycles will be part of the required Hamiltonian cycle for Qn − F , we

do not want different short cycles to use the same vertices and to contain deleted vertices. In

order to guarantee that, in the beginning of each construction we project all deleted vertices on

one of the four hypercubes Q00
n , Q01

n , Q10
n and Q11

n , where the construction of the Hamiltonian

cycle begins, and using Lemma 2.8 we choose a path µ in that hypercube with length at least

2(n−5)+1 which begins with an even or an odd vertex (inQn), depending on our needs. Using

the natural projections we identify all four hypercubes Q00
n , Q01

n , Q10
n and Q11

n and in that way

we obtain four copies of µ: µ00, µ01, µ10 and µ11 � one in each of the four hypercubes. Then,

to construct the short cycles, we follow µ, i.e. every vertex from each short cycle which is in

Qii
n belongs to µii and every horizontal edge which is in Qii

n belongs to µii. In each short cycle

we use at least one and at most two horizontal edges, hence for each short cycle the �rst and

the last vertex are different and for each short cycle we use at most two edges from µ. Also, we
always traverse µ in the same direction and therefore we never use the same edge from µ twice.

Therefore, at the end of the construction, our short cycles do not contain deleted vertices and

every undeleted vertex is contained in at most one short cycle. Clearly, the length of µ is enough

to construct at least n− 5 ≥ k − 3 such short cycles.

In the proofs below we refer to the path µ described above as a model path and shall not

repeat each time how we choose µ when we use it. Also, whenever we construct short cycles

in the proofs below we shall use the model path µ and the procedure described above without

mentioning that speci�cally.

In order to explain how we choose the coordinates that we use to splitQn we order all vertices

from F in a column and let M ′ be the 2k × n matrix determined by the coordinates of those
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vertices (every row corresponds to a vertex). Then every coordinate corresponds to a column in

M ′ and every column in M ′ corresponds to a coordinate, hence we shall not make a difference

between columns and coordinates. LetMe be the submatrix ofM ′ determined by those columns

in M ′ that separate only the even vertices in F and Mo be the submatrix of M ′ determined by

those columns inM ′ that separate only the odd vertices in F . For two disjoint submatricesA and

B of M ′ by (A,B) we denote the submatrix of M ′ determined by the columns that are in A or

in B. (The order of the columns in all matrices that we consider here is not important to us). Let

alsoM2 be the submatrix ofM ′ determined by those columns inM ′ that separate simultaneously

the even and the odd vertices in F . Finally, set M1 = (Me,Mo) and M = (M1,M2).
Now we shall show that we can always choose one or two columns from M which satisfy at

least one of the cases (A) − (J) considered below and therefore to complete the proof of (L) it
will be enough to show that in all those cases there is a Hamiltonian cycle for Qn −F .

In Cases (A) − (C), the existence of one column in M which separates the deleted vertices

in a special way is suf�cient for the construction of the required Hamiltonian cycle for Qn −F .

(A) The case when there exists a column in M1 which separates the vertices in F in the way

(1, 2k − 1) is considered in Case (A).
(B) The case when there exists a column in M1 that separates the vertices in F in the way

(2, 2k − 2) is considered in Case (B).
(C) The case when there is a column in M2 which separates the odd vertices in the way

(s, k − s), the even vertices in the way (s, k − s), and all vertices in F in the way (2s, 2k − 2s),
where 1 ≤ s ≤ k − 1, is considered in Case (C).

Remark 3.3. In the remaining Cases (D) − (J) two columns are required for the construction

of the Hamiltonian cycle for Qn − F . In those cases, without loss of generality, we assume that

there are no columns inM that could allow us to obtain any of the Cases (A)−(C). In particular,
we assume that every column which separates only the odd or only the even vertices in the way

(1, k− 1) separates all vertices in F in the way (k+ 1, k− 1) and every column which separates

only the odd or only the even vertices in the way (2, k− 2) separates all vertices in F in the way

(k + 2, k − 2).

(D) The case when there exist two columns inM2 that separate the even and the odd vertices

in different ways is considered in Case (D).

Remark 3.4. In the remaining Cases (E) − (J) we assume that columns as in (D) do not exist

and for Cases (E) − (G) we assume that there exists a column A in M2 that separates the even

vertices in the way (r, k − r), where 2 ≤ r ≤ k − 2. Since k > 2, there is a column B in M
which separates the odd vertices in a different way than A.

(E) The case when B is in M2 and separates the even vertices in the same way as A is

considered in Case (E).

Remark 3.5. Now we suppose that there is no such column inM2 as in (E). Hence every column

in M2 separates the odd vertices as A does. Therefore B is in Mo.

(F) The case whenA orB separates the odd vertices in the way (s, k−s), where 2 ≤ s ≤ k−2,

is considered in Case (F ).
(G) If neither A nor any B from Mo separates the odd vertices in the way (s, k − s), where

2 ≤ s ≤ k − 2, then every column that separates the odd vertices separates them in the way

(1, k − 1)2. Then, it follows from Corollary 2.5 that if k = n− 2 then there are two columns in

M2 that separate the even and the odd vertices in different ways, which is case (D). Therefore
we can assume that k ≤ n− 3. This case is considered in Case (G).

Remark 3.6. For the remaining cases (H) − (J) we assume that every column in M2 separates

the even and the odd vertices in the way (1, k − 1). The case when there is a column in M2

which separates all vertices in F in the way (2, 2k−2) was considered in (C). Therefore we can
assume that every column inM2 separates the vertices in F in the way (k, k). IfM1 is empty, or

equivalently,M = M2, then according to Lemma 2.1, there exist two columns inM that separate

2Recall that we are assuming that no two columns that separate both the even and the odd vertices in two different ways

exist.
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the even and the odd vertices in different ways, which is impossible according to Remark 3.4.

Hence, we can assume that M1 is non-empty and therefore, without loss of generality, we can

assume that Mo is non-empty.

(H) Suppose that there exists a column A in Mo such that A separates the odd vertices in the

way (s, k− s), where 2 ≤ s ≤ k− 2.The case when there exists a column inMe which separates

the even vertices in the way (r, k − r), where 2 ≤ r ≤ k − 2, is considered in Case (H).

Remark 3.7. Suppose now that every column which separates the odd vertices in F separates

them in the way (1, k − 1) and since, according to our previous assumption Mo is non-empty,

we can �x a column A from Mo. Notice that if k = n − 2 then it follows from Corollary 2.5

that there are two columns in M2 that separate the even and the odd vertices in different ways,

which is impossible according to Remark 3.4. Therefore in the remaining Cases (I) and (J) we

can assume that k ≤ n − 3 and that there are no two columns in M2 that separate the even and

the odd vertices in different ways.

(I) The case when there is a column B which separates only the even vertices is considered

in Case (I).

(J) The case when there is a column B which separates the even vertices and separates the

odd vertices in a different way than A is considered in Case (J).

Clearly, the above cases exhaust all possibilities that need to be considered in order to prove

(L).
Now in each of the Cases (A) � (J) we are going to construct a Hamiltonian cycle forQn−F .

Case (A) There is a column A inM1 which separates the vertices in F in the way (1, 2k−1).
Use A to split the hypercube. Without loss of generality we can assume that there are k even

and k − 1 odd deleted vertices in the top plate and one odd vertex in the bottom plate. Use

(CG) for n − 1 and k − 1 to �nd a Hamiltonian cycle for the top plate that contains one of the

deleted odd vertices. Then delete that odd vertex from the cycle and connect the resulting path

to the bottom plate with two edges that we call bridges. Then use (CG) for n− 1 and 0 to �nd a

Hamiltonian path for the bottom plate that connects the end vertices of the bridges and does not

contain the deleted odd vertex. The result is the desired Hamiltonian cycle.

Case (B) There exists a columnA inM1 which separates the vertices in F in the way (2, 2k−
2).

Without loss of generality we can assume that A belongs to Mo. Thus, if we split Qn using

A, there will be two odd vertices in one of the plates, say the top plate, and 2k − 2 deleted

vertices in the bottom plate. Since there are at least �ve deleted even vertices in the bottom plate,

there are two, say e1 and e2, that are at distance at least four. Use (L) for n − 1 and k − 2 to

�nd a Hamiltonian cycle γ for the bottom plate that contains e1 and e2 and avoids all the other

k − 2 pairs of deleted even and odd vertices. Delete e1 and e2 from γ. In that way we obtain a

2−path covering for the bottom plate that does not contain any of the deleted vertices. Connect

the end vertices of both paths with bridges to the top plate. Use [5, Lemma 4.3] to �nd a 2−path

covering of the top plate that avoids the two deleted odd vertices, each path connects two end

vertices of two of the bridges, and such that these two paths together with the bridges and the

other two paths form the desired Hamiltonian cycle.

Case (C) There exists a columnA inM2 which separates the odd vertices in the way (s, k−s),
the even vertices in the way (s, k − s), and all vertices in F in the way (2s, 2k − 2s), where
1 ≤ s ≤ k − 1.

Without loss of generality we can assume that s ≤ k − s. Since k ≥ 5, s and k − s cannot

be simultaneously equal to k − 1. It follows from our hypothesis that if we split the hypercube

using A, there will be k − s ≤ k − 1 ≤ (n − 1) − 2 pairs of deleted even and odd vertices in

one of the plates and s ≤ k − 2 ≤ (n − 2) − 2 = (n − 1) − 3 pairs of deleted even and odd

vertices in the other plate. Use (L) for n− 1 and k − s to �nd a Hamiltonian cycle for the plate

that contains 2k − 2s deleted vertices which avoids all the deleted vertices. Cut that cycle at an

edge whose end vertices are not neighbors of any of the deleted vertices on the other plate. Such

edge exists since the length of the Hamiltonian cycle is 2n−1 − 2(k− s) > 4s and there are only
2s deleted vertices on the other plate. Connect the ends of the resulting path with bridges with

the other plate. Use (T ) for n − 1 and s to �nd a Hamiltonian path for the plate that contains

s ≤ (n − 1) − 3 deleted pairs of vertices which connects the end vertices of both bridges and

avoids all deleted vertices. The result is the desired Hamiltonian cycle.
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Note 1. For the remaining cases Remark 3.3 applies.

Remark 3.8. For easier explanation, for a hypercube K, we use the following terminology: if

there are s deleted even and t deleted odd vertices in K then |s− t| is called charge of K; when

s − t > 0 we say that K has a positive charge; when s − t < 0 we say that K has a negative

charge; and when s− t = 0 we say that K is neutral.

Case (D) There exist two columns A and B inM2 that separate the odd and the even vertices

in different ways.

We split the hypercube usingA andB into the four platesQ00
n ,Q01

n ,Q10
n , andQ11

n . Then there

will be deleted even (odd) vertices in at least three of the plates, hence the maximal number of

deleted even or odd vertices in a given plate could be at most k − 2. Also, there will be deleted

even and odd vertices in at least two of the plates, hence there will be at least two pairs of even

and odd vertices such that each one is contained in one of the four plates.

If there exist two plates at distance one which union is a neutral hypercube then that case was

considered in (C). Therefore, without loss of generality, we can make the following assumption:

Assumption. Every hypercube, which is the union of two of the four plates which are at

distance one, is not neutral.

It follows from Assumption that there exists at least one plate K1 with a positive charge and

at least one plateK2 with a negative charge. Let the charge ofK1 be s > 0 and the charge ofK2

be t > 0. We denote by qij the maximal number of pairs of deleted even and odd vertices that

can be formed in the plate Qij
n .

We consider two subcases: (D)(1) The plates K1 and K2 are at distance two; and (D)(2) K1

and K2 are at distance one from each other.

(D)(1) K1 and K2 are at distance two.

Without loss of generality we can assume that K1 = Q00
n and K2 = Q11

n . Then, up to

symmetry and up to interchanging positive and negative charge, there are four different sub-

cases: (D)(1)(a)Q01
n andQ10

n are neutral; (D)(1)(b)Q10
n has a negative charge andQ01

n is neutral;

(D)(1)(c) Q01
n and Q10

n have negative charges; and (D)(1)(d) Q01
n has a positive charge and Q10

n

has a negative charge.

(D)(1)(a) Q01
n and Q10

n are neutral.

Since there are even (odd) deleted vertices in at least three of the four plates, we have s =
t ≤ k − 2, q01 + t ≤ k − 1, q00 + s ≤ k − 2, q10 + s ≤ k − 1 and q11 + t ≤ k − 2.

Take a model path µ in Q01
n which begins with an even vertex e01 = u01 and following µ

make s− 1 short cycles of the type

e01 → o00 → (e, o)10 → e11 → (o, e′)01.

We denote the resulting path by γ0, its end vertex by a01 and let the odd neighbor of a01 in Q00
n

be v00. We extend the constructed path so far with the edge (a01, v00).
The total number of the constructed short cycles is s − 1 ≤ k − 3, hence the length of µ is

enough for that construction.

Let v′
00

be any unused and undeleted odd vertex in Q00
n different from v00 whose even neigh-

bor u10 in Q10
n is neither a deleted nor used vertex. There are q00 + s deleted or used even and

q00 + s − 1 deleted or used odd vertices in Q00
n . Since q00 + s − 1 ≤ k − 3 ≤ (n − 2) − 3, it

follows from (CG) that there exists a Hamiltonian path γ1 for Q00
n minus all deleted and used

vertices which connects v00 to v′
00
.

To continue we need to construct paths γ2 and γ4 in Q10
n and Q01

n , respectively. For that end

we consider two subcases: (D)(1)(a)(i) there exists a deleted even vertex in Q11
n , hence q11 > 0;

and (D)(1)(a)(ii) there are no deleted even vertices in Q11
n , hence q11 = 0.

(D)(1)(a)(i) q11 > 0.

In this case we have s = t ≤ k − 3 and q01 + q11 + t ≤ k − 1, hence q01 + t ≤ k − 2. Notice

also that q10 + q11 + t ≤ k − 1, hence q10 + t ≤ k − 2.

There are q10 + s− 1 = q10 + t− 1 even and odd used or deleted vertices in Q10
n (u10 is not

counted). Let v10 be any unused and undeleted odd vertex in Q10
n whose even neighbor u11 in

Q11
n is neither a deleted nor used vertex. Since q10+ t− 1 ≤ k− 3 ≤ (n− 2)− 3, it follows from

(T ) that there exists a Hamiltonian path γ2 for Q10
n minus all deleted and used vertices which

connects u10 to v10.
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There are q01 + s− 1 = q01 + t− 1 deleted or used even and odd vertices in Q01
n (u01 is not

counted). Let v01 be any unused and undeleted odd vertex inQ01
n which even neighbor u′

11
inQ11

n

is different from u11 and is neither a deleted nor used vertex. Since q01+t−1 ≤ k−3 ≤ (n−2)−3,

it follows from (T ) that there exists a Hamiltonian path γ4 for Q01
n minus all deleted and used

vertices which connects v01 to u01.
(D)(1)(a)(ii) q11 = 0.

There are q10 + s − 1 = q10 + t − 1 even and odd used or deleted vertices in Q10
n (u10 is

not counted). Since q10 + s − 1 ≤ k − 2 ≤ (n − 2) − 2, it follows from (L) that there exists a
Hamiltonian cycle γ′ for Q10

n minus all deleted or used vertices. This cycle contains u10. Let v10
be an odd neighbor of u10 in γ′. Since q11 = 0, the even neighbor u11 of v10 in Q11

n is neither a

deleted nor used vertex. We denote by γ1 the Hamiltonian path forQ10
n minus all deleted or used

vertices that is de�ned by γ′ and connects u10 to v10.
There are q01+ s− 1 deleted or used even and odd vertices inQ01

n (u01 is not counted). Since
q01 + s− 1 ≤ k − 2 ≤ (n− 2)− 2, it follows from (L) that there exists a Hamiltonian cycle γ′′

for Q01
n minus all deleted or used vertices. This cycle contains u01. Let v01 be an odd neighbor

of u01 in γ′′ such that its even neighbor u′
11

of v01 in Q11
n is different from u11. Since q11 = 0,

u′
11
is neither a deleted nor used vertex. We denote by γ4 the Hamiltonian path for Q01

n minus all

deleted or used vertices that is de�ned by γ′′ and connects v01 to u01.
Now we continue the construction of a Hamiltonian cycle for Qn − F for both subcases

(D)(1)(a)(i) and (D)(1)(a)(ii).

There are q11 + t − 1 deleted or used even and q11 + t deleted or used odd vertices in Q11
n .

Since q11 + t − 1 ≤ k − 3 ≤ (n − 2) − 3, it follows from (CG) that there exists a Hamiltonian

path γ3 for Q11
n minus all deleted and used vertices which connects u11 to u′

11
.

Then, to �nish the construction of a Hamiltonian cycle for Qn −F we extend the previously

constructed path γ0 with the path

v00
γ1−→ v′00 → u10

γ2−→ v10 → u11
γ3−→ u′

11 → v01
γ4−→ u01.

(D)(1)(b) Q10
n has a negative charge and Q01

n is neutral.

Let the charge of Q10
n be p > 0, hence p+ t = s ≤ k − 2 and s + q01 ≤ k − 1. Notice also

that q00 + s ≤ k − 2, q10 + p + t ≤ k − 1 and q11 + p + t ≤ k − 1 since there are even (odd)

deleted vertices in at least three of the four plates.

Take a model path µ in Q11
n which begins with an even vertex e11 = u11 and following µ

make p− 1 short cycles of the type

e11 → (o, e)01 → o00 → e10 → (o, e′)11.

We denote the end vertex of the resulting path by a11.
Then begin with e11 = a11 and following µ make t− 1 short cycles of the type

e11 → (o, e)01 → o00 → (e, o)10 → e′11.

We denote the end vertex of the resulting path by a′
11
.

Finally, begin with e11 = a′
11

and following µ make the following path with length four

e11 → (o, e)01 → o00 → e10.

We denote the resulting path by γ0 and its end vertex by u10.
The total number of the constructed short cycles is p − 1+ t − 1+ 1 = p+ t − 1 ≤ k − 3,

hence the length of µ is enough for that construction.

There are q01+ p− 1+ t− 1+ 1 = q01+ s− 1 ≤ k− 2 even and odd deleted or used vertices

in Q01
n . Since k − 2 ≤ (n − 2) − 2, it follows from (L) that there exists a Hamiltonian cycle

γ′ for Q01
n minus all deleted or used vertices. Let (u01, v01) be any edge in γ′ such that the even

neighbor u′
11

of v01 in Q11
n and the odd neighbor v00 of u01 in Q00

n are neither deleted nor used

vertices. We denote by γ3 the Hamiltonian path for Q01
n minus all deleted and used vertices that

is de�ned by γ′ and connects u01 to v01.
Let v′

00
be any unused and undeleted odd vertex inQ00

n different from v00 which even neighbor
u′
10
inQ10

n is neither deleted nor used vertex. There are q00+s used or deleted even and q00+p−
1+t−1+1 = q00+s−1 used or deleted odd vertices inQ00

n . Since q00+s−1 ≤ k−3 ≤ (n−2)−3,
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it follows from (CG) that there exists a Hamiltonian path γ2 for Q00
n minus all deleted and used

vertices which connects v′
00

to v00.
There are q10 + p− 1+ t− 1 = q10 + p+ t− 2 used or deleted even and q10 + p− 1+ t−

1+ 1 = q10 + p+ t− 1 deleted or used odd vertices in Q10
n (u10 and u′

10
are not counted). Since

q10+p+ t−2 ≤ (k−1)−2 ≤ (n−2)−3, it follows from (CG) that there exists a Hamiltonian

path γ1 for Q10
n minus all deleted and used vertices which connects u10 to u′

10
.

There are q11 + p− 1+ t− 1 = q11 + p+ t− 2 deleted or used even and q11 + p− 1+ t =
q11+p+t−1 deleted or used odd vertices inQ11

n . Since q11+p+t−2 ≤ (k−1)−2 ≤ (n−2)−3,

it follows from (CG) that there exists a Hamiltonian path γ4 for Q11
n minus all deleted and used

vertices which connects u′
11

to u11.
Finally, to �nish the construction of a Hamiltonian cycle forQn−F we extend the previously

constructed path γ0 with the path

u10
γ1−→ u′

10 → v′00
γ2−→ v00 → u01

γ3−→ v01 → u′
11

γ4−→ u11.

(D)(1)(c) Q01
n and Q10

n have negative charges.

Let the charge of Q01
n be p and the charge of Q10

n be r. Then p + t + r = s ≤ k − 2 and

s + q11 ≤ k − 1. Notice also that q00 + s ≤ k − 2, q10 + s ≤ k − 1 and q01 + s ≤ k − 1 since

there are even (odd) deleted vertices in at least three of the four plates.

Take a model path µ in Q01
n which begins with an even vertex e01 = u01 and following µ

make p− 1 short cycles of the type

e01 → o00 → (e, o)10 → (e, o)11 → e′01.

We denote the end vertex of the resulting path by a01.
Then begin with e01 = a01 and following µ make r − 1 short cycles of the type

e01 → o00 → e10 → (o, e)11 → (o, e′)01.

We denote the end vertex of the resulting path by a′
01
.

Now begin with e01 = a′
01

and following µ make t short cycles of the type

e01 → o00 → (e, o)10 → e11 → (o, e′)01.

We denote the end vertex of the resulting path by a′′
01
.

Finally, begin with e01 = a′′
01

and following µ make the following path with length three

e01 → o00 → e10 → o11.

We denote the end vertex of the resulting path by v11.
The total number of the constructed short cycles is p− 1+ r− 1+ t = s− 2 ≤ k− 4, hence

the length of µ is enough for that construction.

There are q10 + p − 1+ t+ r − 1+ 1 = q10 + s − 1 ≤ k − 2 even and odd deleted or used

vertices in Q10
n . Since k − 2 ≤ (n − 2) − 2, it follows from (L) that there exists a Hamiltonian

cycle γ′ for Q10
n minus all deleted or used vertices. Let (u10, v10) be any edge in γ′ such that the

even neighbor u11 of v10 in Q11
n and the odd neighbor v00 of u10 in Q00

n are neither deleted nor

used vertices. We denote by γ2 the Hamiltonian path for Q10
n minus all deleted and used vertices

that is de�ned by γ′ and connects v10 to u10.
There are q11 + p− 1+ t+ r− 1 = q11 + s− 2 deleted or used even and odd vertices in Q11

n .

Since q11+s−2 ≤ (k−1)−2 ≤ (n−2)−3, it follows from (T ) that there exists a Hamiltonian

path γ1 for Q11
n minus all deleted and used vertices which connects v11 to u11.

Let v′
00
be any unused and undeleted odd vertex inQ00

n different from v00 which even neighbor
u′
01

in Q01
n is neither deleted nor used vertex. There are q00 + s used or deleted even and q00 +

p − 1 + t + r − 1 + 1 = q00 + s − 1 used or deleted odd vertices in Q00
n . Since q00 + s − 1 ≤

k− 3 ≤ (n− 2)− 3, it follows from (CG) that there exists a Hamiltonian path γ3 for Q00
n minus

all deleted and used vertices which connects v00 to v′
00
.

There are q01 + p − 1 + t + r − 1 = q01 + s − 2 used or deleted even and q01 + p + t +
r − 1 = q01 + s − 1 deleted or used odd vertices in Q01

n (u01 and u′
01

are not counted). Since

q01 + s − 2 ≤ (k − 1)− 2 ≤ (n − 2)− 3, it follows from (CG) that there exists a Hamiltonian

path γ4 for Q01
n minus all deleted and used vertices which connects u′

01
to u01.
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Finally, to �nish the construction of a Hamiltonian cycle forQn−F we extend the previously

constructed path with the path

v11
γ1−→ u11 → v10

γ2−→ u10 → v00
γ3−→ v′00 → u′

01

γ4−→ u01.

(D)(1)(d) Q01
n has a positive charge and Q10

n has a negative charge.

Let the charge of Q01
n be p > 0 and the charge of Q10

n be r > 0. Since there are odd vertices

in at least three of the four plates, either in Q00
n or in Q01

n there is a deleted odd vertex. Using

the symmetry of this case, without loss of generality, we can assume that there is an odd deleted

vertex in Q00
n . Then q01 + p + q00 + s ≤ k − 1, hence q01 + p + s ≤ k − 2 and therefore

p + s = t + r ≤ k − 2. Notice also that q00 + p + s ≤ k − 1, q10 + r + t ≤ k − 1 and

q11 + r+ t ≤ k− 1, since there are even (odd) deleted vertices in at least three of the four plates.

Take a model path µ in Q11
n which begins with an even vertex e11 = u11 and following µ

make a total of t+ r − 2 = p+ s− 2 short cycles of the types

e11 → (o, e)01 → o00 → e10 → (o, e′)11;

e11 → o01 → (e, o)00 → e10 → (o, e′)11;

e11 → o01 → (e, o)00 → (e, o)10 → e′11;

e11 → (o, e)01 → o00 → (e, o)10 → e′11;

such that at the end all plates have charge one. We denote the end vertex of the resulting path by

a11.
Finally, begin with e11 = a11 and following µ make the following path with length four

e11 → (o, e)01 → o00 → e10.

We denote the end vertex of the resulting path by u10.
The total number of the constructed short cycles is p − 1+ s − 1+ 1 = p+ s − 1 ≤ k − 3,

hence the length of µ is enough for that construction.

There are q00+p−1+ s = q00+p+ s−1 deleted or used even and q00+p−1+ s−1+1 =
q00+ p+ s− 1 deleted or used odd vertices inQ00

n . Since q00+ p+ s− 1 ≤ k− 2 ≤ (n− 2)− 2,

it follows from (L) that there exists a Hamiltonian cycle γ′ for Q00
n minus all deleted or used

vertices. Let (u00, v00) be any edge in γ′ such that the even neighbor u′
10

of v00 in Q10
n and

the odd neighbor v01 of u00 in Q01
n are neither deleted nor used vertices. We denote by γ2 the

Hamiltonian path for Q00
n minus all deleted and used vertices that is de�ned by γ′ and connects

v00 to u00.
There are q10+ r−1+ t−1 = q10+ r+ t−2 used or deleted even and q10+ r+ t−1 deleted

or used odd vertices in Q10
n (u10 and u′

10
are not counted). Since q10 + r+ t− 2 ≤ (k− 1)− 2 ≤

(n − 2) − 3, it follows from (CG) that there exists a Hamiltonian path γ1 for Q10
n minus all

deleted and used vertices which connects u10 to u′
10
.

Let v′
01

be any unused and undeleted odd vertex in Q01
n different from v01 such that its even

neighbor u′
11
inQ11

n is neither a deleted nor used vertex. There are q01+p+s−1+1 = q01+p+s
deleted or used even and q01 + p− 1+ s− 1+ 1 = q01 + p+ s− 1 deleted or used odd vertices

inQ01
n . Since q01+ p+ s− 1 ≤ (k− 2)− 1 ≤ (n− 2)− 3, it follows from (CG) that there exists

a Hamiltonian path γ3 for Q01
n minus all deleted and used vertices which connects v01 to v′

01
.

There are q11+ t−1+ r−1 = q11+ t+ r−2 deleted or used even and q11+ t+ r−1 deleted

or used odd vertices in Q11
n . Since q11 + t+ r − 2 ≤ (k − 1)− 2 ≤ (n− 2)− 3, it follows from

(CG) that there exists a Hamiltonian path γ4 for Q11
n minus all deleted or used vertices which

connects u′
11

to u11.
Then, to �nish the construction of a Hamiltonian cycle for Qn −F we extend the previously

constructed path with the path

u10
γ1−→ u′

10 → v00
γ2−→ u00 → v01

γ3−→ v′01 → u′
11

γ4−→ u11.

(D)(2) K1 and K2 are at distance one.

Without loss of generality we can assume that K1 = Q00
n and K2 = Q01

n . Then, up to

symmetry and up to interchanging positive and negative charge, there are six different cases: (a)
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Q10
n and Q11

n are neutral; (b) Q10
n is neutral and Q11

n has a negative charge; (c) Q10
n has a negative

charge and Q11
n is neutral; (d) Q10

n and Q11
n have negative charges; (e) Q10

n has a negative charge

and Q11
n has a positive charge; and (f) Q10

n has a positive charge and Q11
n has a negative charge.

(D)(2)(a) Q10
n and Q11

n are neutral.

According to Assumption we do not need to consider this case.

(D)(2)(b) Q10
n is neutral and Q11

n has a negative charge.

This case is equivalent to case (D)(1)(b).

(D)(2)(c) Q10
n has a negative charge and Q11

n is neutral.

Let the charge of Q10
n be p > 0, hence p+ t = s ≤ k − 2 and s + q11 ≤ k − 1. Notice also

that q00 + s ≤ k − 2, q10 + p + t ≤ k − 1 and q01 + p + t ≤ k − 1 since there are even (odd)

deleted vertices in at least three of the four plates.

Take a model path µ in Q01
n which begins with an even vertex e01 = u01 and following µ

make t− 1 short cycles of the type

e01 → o00 → (e, o)10 → (e, o)11 → e′01.

We denote the end vertex of the resulting path by a01.
Then begin with e01 = a01 and following µ make p− 1 short cycles of the type

e01 → o00 → e10 → (o, e)11 → (o, e′)01.

We denote the end vertex of the resulting path by a′
01
.

Finally, begin with e01 = a′
01

and following µ make the following path with length three

e01 → o00 → e10 → o11.

We denote the end vertex of the resulting path by v11.
The total number of the constructed short cycles is t− 1+ p− 1 = t+ p− 2 ≤ k − 4, hence

the length of µ is enough for that construction.

There are q10 + p − 1+ t − 1+ 1 = q10 + p+ t − 1 ≤ k − 2 even and odd deleted or used

vertices in Q10
n . Since k − 2 ≤ (n − 2) − 2, it follows from (L) that there exists a Hamiltonian

cycle γ′ for Q10
n minus all deleted or used vertices. Let (u10, v10) be any edge in γ′ such that the

even neighbor u11 of v10 in Q11
n and the odd neighbor v00 of u10 in Q00

n are neither deleted nor

used vertices. We denote by γ2 the Hamiltonian path for Q10
n minus all deleted and used vertices

that is de�ned by γ′ and connects v10 to u10.
There are q11 + p − 1 + t − 1 = q11 + p + t − 2 deleted or used even and odd vertices in

Q11
n . Since q11 + p+ t− 2 ≤ (k − 1)− 2 ≤ (n− 2)− 3, it follows from (T ) that there exists a

Hamiltonian path γ1 for Q11
n minus all deleted and used vertices which connects v11 to u11.

Let v′
00
be any unused and undeleted odd vertex inQ00

n different from v00 which even neighbor
u′
01
inQ01

n is neither deleted nor used vertex. There are q00+s used or deleted even and q00+p−
1+t−1+1 = q00+s−1 used or deleted odd vertices inQ00

n . Since q00+s−1 ≤ k−3 ≤ (n−2)−3,

it follows from (CG) that there exists a Hamiltonian path γ3 for Q00
n minus all deleted and used

vertices which connects v00 to v′
00
.

There are q01 + p− 1+ t− 1 = q01 + p+ t− 2 used or deleted even and q01 + p− 1+ t−
1+ 1 = q01 + p+ t− 1 deleted or used odd vertices in Q01

n (u01 and u′
01

are not counted). Since

q01+p+ t−2 ≤ (k−1)−2 ≤ (n−2)−3, it follows from (CG) that there exists a Hamiltonian

path γ4 for Q01
n minus all deleted and used vertices which connects u′

01
to u01.

Then, to �nish the construction of a Hamiltonian cycle for Qn −F we extend the previously

constructed path with the path

v11
γ1−→ u11 → v10

γ2−→ u10 → v00
γ3−→ v′00 → u′

01

γ4−→ u01.

(D)(2)(d) Q10
n and Q11

n have negative charges.

This case is equivalent to case (D)(1)(c).

(D)(2)(e) Q10
n has a negative charge and Q11

n has a positive charge.

Let the charge of Q10
n be p > 0 and the charge of Q11

n be r > 0. Since there are odd vertices

in at least three of the four plates, either in Q00
n or in Q11

n there is a deleted odd vertex. Using

the symmetry of this case, without loss of generality, we can assume that there is an odd deleted

vertex in Q00
n . Then q00 + s + q11 + r ≤ k − 1, hence q11 + s + r ≤ k − 2 and therefore
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r + s = t + p ≤ k − 2. Notice also that q00 + s + r ≤ k − 1, q10 + t + p ≤ k − 1 and

q01+ t+ p ≤ k− 1, since there are even (odd) deleted vertices in at least three of the four plates.

Take a model path µ in Q01
n which begins with an even vertex e01 = u01 and following µ

make a total of t+ p− 2 = r + s− 2 short cycles of the types

e01 → (o, e)00 → (o, e)10 → o11 → e′01;

e01 → o00 → e10 → (o, e)11 → (o, e′)01;

e01 → o00 → (e, o)10 → (e, o)11 → e′01;

(e, o)01 → (e, o)00 → e10 → o11 → e′01;

such that at the end all plates to have charge one. We denote the end vertex of the resulting path

by a01 and let its odd neighbor inQ00
n be v00. We extend the constructed path so far with the edge

(a01, v00).
The total number of the constructed short cycles is r− 1+ s− 1 = r+ s− 2 ≤ k− 4, hence

the length of µ is enough for that construction.

Let v′
00

be any unused and undeleted odd vertex in Q00
n different from v00 whose even neigh-

bor u10 inQ10
n is neither a deleted nor used vertex. There are q00+ s+ r−1 deleted or used even

and q00+s+r−2 deleted or used odd vertices inQ00
n . Since q00+s+r−2 ≤ k−3 ≤ (n−2)−3,

it follows from (CG) that there exists a Hamiltonian path γ1 for Q00
n minus all deleted and used

vertices which connects v00 to v′
00
.

Let u′
10
be any unused and undeleted odd vertex inQ10

n different from u10 whose odd neighbor
v11 inQ11

n is neither a deleted nor used vertex. There are q10+ p+ t−2 deleted or used even and

q10 + p+ t− 1 deleted or used odd vertices in Q10
n . Since q10 + p+ t− 2 ≤ k− 3 ≤ (n− 2)− 3,

it follows from (CG) that there exists a Hamiltonian path γ2 for Q10
n minus all deleted and used

vertices which connects u10 to u′
10
.

Let v′
11

be any unused and undeleted odd vertex in Q11
n different from v11 whose even neigh-

bor u′
01
inQ01

n is neither a deleted nor used vertex. There are q11+ s+ r−1 deleted or used even

and q11+s+r−2 deleted or used odd vertices inQ11
n . Since q11+s+r−2 ≤ k−3 ≤ (n−2)−3,

it follows from (CG) that there exists a Hamiltonian path γ3 for Q11
n minus all deleted and used

vertices which connects v11 to v′
11
.

There are q01+ p+ t−2 deleted or used even and q01+ p+ t−1 deleted or used odd vertices

in Q01
n . Since q01 + p + t − 2 ≤ k − 3 ≤ (n − 2) − 3, it follows from (CG) that there exists a

Hamiltonian path γ4 for Q10
n minus all deleted and used vertices which connects u′

01
to u01.

Then, to �nish the construction of a Hamiltonian cycle for Qn −F we extend the previously

constructed path with the path

v00
γ1−→ v′00 → u10

γ2−→ u′
10 → v11

γ3−→ v′11 → u′
01

γ4−→ u01.

(D)(2)(f) Q10
n has a positive charge and Q11

n has a negative charge.

This case is equivalent to case (D)(1)(d).

Note 2. For the remaining cases Remark 3.4 applies.

Case (E) There exists a column A inM2 which separates the deleted even vertices in the way

(r, k − r), where 2 ≤ r ≤ k − 2, and another column B in M2 which separates the deleted odd

vertices in different way than A and the deleted even vertices in the same way as A.
We split the hypercube using A and B. Without loss of generality, we can assume that the

deleted vertices are distributed as follows:

{v1, . . . , vp} ⊂ Q00
n , {u1, . . . , ur, vp+1, . . . , vs} ⊂ Q10

n , {vs+1, . . . , vt} ⊂ Q11
n , and

{vt+1, . . . , vk, ur+1, . . . , uk} ⊂ Q01
n ,

where 2 ≤ r ≤ k − 2, 0 ≤ p ≤ k − 2, 1 ≤ s ≤ k − 1, and 2 ≤ t ≤ k, since there are odd vertices

in at least three of the hypercubes.

If r ≤ s− p < t then necessarily k − r > k − t. If r > s− p then there are two possibilities:

k−r ≤ k−t or k−r > k−t. Since the cases r ≤ s−p, k−r > k−t and r > s−p, k−r ≤ k−t
are symmetric, there are only two subcases to consider: (E)(1) 2 ≤ r ≤ s−p ≤ k−2; and (E)(2)

s− p < r ≤ k − 2 and 0 ≤ k − t < k − r ≤ k − 2.

(E)(1) 2 ≤ r ≤ s− p ≤ k − 2.
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Take a model path µ in Q01
n which begins with an odd vertex o01 = v01.

We know that there are odd vertices in at least three of the hypercubes and since s − p ≥ 2,

we conclude that there are odd vertices in Q10
n . Hence there are three possibilities: (E)(1)(a)

t− s ≥ 1 and k− t ≥ 1; (E)(1)(b) t− s ≥ 1 and p ≥ 1; and (E)(1)(c) k− t ≥ 1 and p ≥ 1. Since

case (E)(1)(c) is symmetric to case (E)(1)(a), we consider only cases (E)(1)(a) and (E)(1)(b).

To construct a Hamiltonian cycle forQn−F in each one of these cases we proceed as follows.

(E)(1)(a) t− s ≥ 1 and k − t ≥ 1.

In this case 3 ≤ s+ 1 ≤ t ≤ k − 1.

Begin with o01 = v01 and following µ make s− p− r short cycles of the type

o01 → (e, o)00 → e10 → (o, e)11 → o′01.

We denote the end vertex of the resulting path by a′
01
.

Now begin with o01 = a′
01

and following µ make p cycles of the type

o01 → e00 → (o, e)10 → (o, e)11 → o′01.

We denote the end vertex of the resulting path by a′′
01
.

Finally, begin with o01 = a′′
01

and following µ make t− s− 1 cycles of the type

o01 → (e, o)00 → (e, o)10 → e11 → o′01.

We denote the end vertex of the resulting path by a′′′
01
.

Let the neighbor of a′′′
01
inQ00

n be u00. We extend the constructed path with the edge (a′′′
01
, u00).

The total number of the constructed short cycles is s−p−r+p+t−s−1 = t−r−1 ≤ k−3,

hence the length of µ is enough for that construction.

There are s−p−r+p+r+t−s−1 = t−1 used or deleted even and s−p+p+t−s−1 = t−1

odd used or deleted vertices inQ10
n . Since t− 1 ≤ (k− 1)− 1 ≤ (n− 2)− 2, it follows from (L)

that there exists a Hamiltonian cycle γ′ for Q10
n minus all deleted or used vertices. Let (u10, v10)

be any edge in γ′ such that the even neighbor u11 of v10 in Q11
n and the odd neighbor v00 of

u10 in Q00
n are neither deleted nor used vertices. Such edge exists since there are only p deleted

odd vertices in Q00
n that could be neighbors of u10 and should be avoided. We denote by γ2 the

Hamiltonian path for Q10
n minus all deleted or used vertices that is de�ned by γ′ and connects

u10 to v10.
There are s− p− r+ p+ t− s− 1 = t− r− 1 even and odd deleted or used vertices in Q00

n

(u00 is not counted). Since t− r − 1 ≤ (k − 1)− 2− 1 ≤ (n− 2)− 4, it follows from (T ) that
there exists a Hamiltonian path γ1 for Q00

n minus all deleted or used vertices which connects u00
to v00.

There are s−p−r+p+t−s−1 = t−r−1 used even and s−p−r+p+t−s = t−r odd deleted
or used vertices in Q11

n . Let u′
11

be any unused even vertex in Q11
n such that its odd neighbor v′

01

in Q01
n is neither a deleted nor used vertex. Since t − r − 1 ≤ (k − 1) − 2 − 1 ≤ (n − 2) − 4,

it follows from (CG) that there exists a Hamiltonian path γ3 for Q11
n minus all deleted or used

vertices which connects u11 to u′
11
.

There are k − r deleted even and s − p − r + p+ t − s − 1+ k − t = k − r − 1 deleted or

used odd vertices in Q01
n . Since k − r − 1 ≤ k − 2− 1 ≤ (n− 2)− 3, it follows from (CG) that

there exists a Hamiltonian path γ4 for Q01
n minus all deleted or used vertices which connects v′

01

to v01.
Then, to �nish the construction of a Hamiltonian cycle for Qn −F we extend the previously

constructed path with the path

u00
γ1−→ v00 → u10

γ2−→ v10 → u11
γ3−→ u′

11 → v′01
γ4−→ v01.

(E)(1)(b) t− s ≥ 1 and p ≥ 1.

In this case t = k.
Begin with o01 = v01 and following µ make s− p− r short cycles of the type

o01 → (e, o)00 → e10 → (o, e)11 → o′01.

We denote the end vertex of the resulting path by a′
01
.
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Now begin with o01 = a′
01

and following µ make p− 1 cycles of the type

o01 → e00 → (o, e)10 → (o, e)11 → o′01.

We denote the end vertex of the resulting path by a′′
01
.

Finally, begin with o01 = a′′
01

and following µ make t− s− 1 cycles of the type

o01 → (e, o)00 → (e, o)10 → e11 → o′01.

We denote the end vertex of the resulting path by a′′′
01
. Following µ we extend the constructed

path with the path

a′′′01 → (e, o)00 → e10.

We denote the end vertex of the resulting path by u10.
The total number of the constructed short cycles is s−p−r+p−1+t−s−1 = t−r−2 ≤ k−4,

hence the length of µ is enough for that construction.

There are s−p−r+p−1+r+t−s−1 = t−2 used or deleted even and s−p+p−1+t−s−1 =
t− 2 odd used or deleted vertices in Q10

n . Since t− 2 ≤ k− 2 ≤ (n− 2)− 2, it follows from (L)
that there exists a Hamiltonian cycle γ′ for Q10

n minus all deleted or used vertices. This cycle

contains the vertex u10. Let v10 be a vertex which is a neighbor of u10 in γ′. Clearly, the even
neighbor u11 of v10 in Q11

n is neither a deleted nor used vertex. We denote by γ1 the Hamiltonian

path for Q10
n minus all deleted or used vertices that is de�ned by γ′ and connects u10 to v10.

There are s−p−r+p−1+t−s−1 = t−r−2 used even and s−p−r+p−1+t−s = t−r−1

odd deleted or used vertices in Q11
n . Let u′

11
be any unused even vertex in Q11

n such that its odd

neighbor v′
01

in Q01
n is neither a deleted nor used vertex. Clearly, the even neighbor u00 of v′

01

in Q00
n is also neither a deleted nor used vertex. Since t − r − 2 ≤ k − 2 − 2 ≤ (n − 2) − 4,

it follows from (CG) that there exists a Hamiltonian path γ2 for Q11
n minus all deleted or used

vertices which connects u11 to u′
11
.

There are s − p − r + p − 1+ t − s − 1 = t − r − 2 even and s − p − r + t − s − 1+ p =
t − r − 1 odd deleted or used vertices in Q00

n (u00 is not counted). Let u
′
00

be any unused even

vertex in Q00
n such that its odd neighbor v′′

01
in Q01

n is neither a deleted nor used vertex. Since

t− r − 2 ≤ k − 2− 2 ≤ (n− 2)− 4, it follows from (CG) that there exists a Hamiltonian path

γ3 for Q00
n minus all deleted or used vertices that connects u00 to u′

00
.

There are k− r deleted even and s− p− r+ p− 1+ t− s− 1+ 1+ k− t = k− r− 1 deleted

or used odd vertices in Q01
n . Since k − r − 1 ≤ k − 2 − 1 ≤ (n− 2)− 3, it follows from (CG)

that there exists a Hamiltonian path γ4 forQ01
n minus all deleted or used vertices which connects

v′′
01

to v01.
Then, to �nish the construction of a Hamiltonian cycle for Qn −F we extend the previously

constructed path with the path

u10
γ1−→ v10 → u11

γ2−→ u′
11 → v′01 → u00

γ3−→ u′
00 → v′′01

γ4−→ v01.

(E)(2) s− p < r ≤ k − 2 and 0 ≤ k − t < k − r ≤ k − 2.

Since there are odd vertices in at least three of the hypercubes and because of the symmetry,

without loss of generality, we can assume that p ≥ 1. Again thanks to the symmetrical situation

we can also assume that p ≥ t − s and r − (s − p) ≤ k − r − (k − t). Since p + (t − s) =
(r − (s − p)) + (k − r − (k − t)), either t − s ≤ r − (s − p) ≤ k − r − (k − t) ≤ p or

r − (s− p) ≤ t− s ≤ p ≤ k − r − (k − t). Since both cases are symmetrical, we consider only

the case

t− s ≤ r − (s− p) ≤ k − r − (k − t) ≤ p.

There are two possibilities: (E)(2)(a) p ≥ t− s ≥ 1; and (E)(2)(b) p ≥ 2 and t− s = 0.

(E)(2)(a) p ≥ t− s ≥ 1.

Either t < k or s− p > 0. Since both cases are symmetrical we consider below only the case

s− p > 0, hence k − (s− p)− 2 ≤ k − 3.

Begin with o01 = v01 and following µ make t− r − 1 short cycles of the type

o01 → e00 → (o, e)10 → (o, e)11 → o′01.

We denote the end vertex of the resulting path by a′
01
.
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Now begin with o01 = a′
01

and following µ make t− s− 1 cycles of the type

(o, e)01 → (o, e)00 → o10 → e11 → o′01.

We denote the end vertex of the resulting path by a′′
01
.

Finally, begin with o01 = a′′
01

and following µ make p− t+ r cycles of the type

o01 → e00 → o10 → (e, o)11 → (e, o′)01.

We denote the end vertex of the resulting path by a′′′
01
. Let the neighbor of a′′′

01
in Q00

n be u00. We

extend the constructed path with the edge (a′′′
01
, u00).

The total number of the constructed short cycles is t − r − 1 + t − s − 1 + p − t + r =
t − (s − p) − 2. Since there are odd vertices in at least three hypercubes, either t < k or s > p,
hence t− (s− p)− 2 ≤ k − 3 and therefore the length of µ is enough for that construction.

There are t− r− 1+ r = t− 1 even and t− r− 1+ t− s− 1+ p− t+ r+ s− p = t− 2 used

or deleted odd vertices in Q10
n . Also, there are k − r + t− s− 1+ p− t+ r = k − (s− p)− 1

deleted or used even and k − t+ t− r − 1+ t− s− 1+ p− t+ r = k − (s− p)− 2 deleted or

used odd vertices in Q01
n .

We �x one deleted vertex u in Q10
n . Since t − 2 ≤ k − 2 ≤ (n − 2) − 2, it follows from

(L) that there exists a Hamiltonian cycle γ′ for Q10
n minus all deleted or used vertices except u.

This cycle contains u. Let v10 and v′
10
be the neighbors of u in γ′. Clearly, the even neighbor u11

of v′
10

in Q11
n and u′

00
of v10 in Q00

n are neither deleted nor used vertices. We denote by γ2 the
Hamiltonian path forQ10

n minus all deleted or used vertices that is de�ned by γ′ and connects v10
to v′

10
. Let u′

11
be any unused even vertex in Q11

n such that its odd neighbor v′
01

in Q01
n is neither

deleted nor used vertex. Since k − (s− p)− 2 ≤ k − 3, it follows from (CG) that there exists a
Hamiltonian path γ4 for Q01

n minus all deleted or used vertices which connects v′
01

to v01.
There are t−r−1+t−s−1+p−t+r = t−(s−p)−2 even and t−s−1+p = t−(s−p)−1

odd deleted or used vertices inQ00
n (u00 is not counted). Since t−(s−p)−2 ≤ k−3 ≤ (n−2)−3,

it follows from (CG) that there exists a Hamiltonian path γ1 for Q00
n minus all deleted or used

vertices which connects u00 to u′
00
.

There are t−r−1+t−s−1+p−t+r = t−(s−p)−2 used even and t−r−1+p−t+r+t−s =
t− (s− p)− 1 odd deleted or used vertices in Q11

n . Since t− (s− p)− 2 ≤ k− 3 ≤ (n− 2)− 3,

it follows from (CG) that there exists a Hamiltonian path γ3 for Q11
n minus all deleted or used

vertices which connects u11 to u′
11
.

Then, to �nish the construction of a Hamiltonian cycle for Qn −F we extend the previously

constructed path with the path

u00
γ1−→ u′

00 → v10
γ2−→ v′10 → u11

γ3−→ u′
11 → v′01

γ4−→ v01.

(E)(2)(b) p ≥ 2 and t− s = 0.

Then t < k and s− p > 0, hence t− 1 ≤ k − 2 and k − (s− p)− 2 ≤ k − 3.

Begin with o01 = v01 and following µ make t− r − 1 short cycles of the type

o01 → e00 → (o, e)10 → (o, e)11 → o′01.

We denote the end vertex of the resulting path by a′
01
.

Finally, begin with o01 = a′
01

and following µ make r − (s− p)− 1 cycles of the type

o01 → e00 → o10 → (e, o)11 → (e, o′)01.

We denote the end vertex of the resulting path by a′′
01
. Let the neighbor of a′′

01
in Q00

n be e00, the
neighbor of e00 in Q10

n be o10, and the neighbor of o10 in Q11
n be u11. We extend the constructed

path with the path

v′′01 → e00 → o10 → u11.

The total number of the constructed short cycles is t−r−1+r−(s−p)−1 = t−s+p−2 =
p− 2 ≤ (k − 2)− 2 = k − 4, hence the length of µ is enough for that construction.

There are t−r−1+r = t−1 used or deleted even and t−r−1+r−s+p−1+s−p+1 = t−1

used or deleted odd vertices in Q10
n . Since t − 1 ≤ k − 2 ≤ (n − 2) − 2, it follows from (L)

that there exists a Hamiltonian cycle γ′ for Q10
n minus all deleted or used vertices. Let u10 and
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v10 be two neighbors in γ′. Clearly, the even neighbor v11 of u10 in Q11
n and u00 of v10 in Q00

n

are neither deleted nor used vertices. We denote by γ2 the Hamiltonian path for Q10
n minus all

deleted or used vertices that is de�ned by γ′ and connects u10 to v10.
There are t − r − 1+ r − s+ p − 1 = t − s+ p − 2 = p − 2 used even and odd deleted or

used vertices in Q11
n . Since p− 2 ≤ k − 4 ≤ (n− 2)− 4, it follows from (T ) that there exists a

Hamiltonian path γ1 for Q11
n minus all deleted or used vertices which connects u11 to v11.

There are t − r − 1 + r − s + p − 1 = t − s + p − 2 = p − 2 even and t − s − 1 + p =
t − s + p − 1 = p − 1 odd deleted or used vertices in Q00

n (u00 is not counted). Let u
′
00

be any

unused even vertex inQ00
n such that its odd neighbor v′

01
inQ01

n is neither deleted nor used vertex.

Since p − 2 ≤ k − 2 − 2 ≤ (n − 2) − 4, it follows from (CG) that there exists a Hamiltonian

path γ3 for Q00
n minus all deleted or used vertices which connects u00 to u′

00
.

Also, there are k−r+r−s+p−1 = k−(s−p)−1 deleted or used even and k−t+t−r−1+
r−s+p−1 = k− (s−p)−2 deleted or used odd vertices inQ01

n . Since k− (s−p)−2 ≤ k−3,

it follows from (CG) that there exists a Hamiltonian path γ4 for Q01
n minus all deleted or used

vertices which connects v′
01

to v01.
Then, to �nish the construction of a Hamiltonian cycle for Qn −F we extend the previously

constructed path with the path

u11
γ1−→ v11 → u10

γ2−→ v10 → u00
γ3−→ u′

00 → v′01
γ4−→ v01.

Note 3. For the remaining cases Remark 3.5 applies.

Case (F ) There exists a column A inM2 which separates the even vertices in the way (r, k−
r), where 2 ≤ r ≤ k − 2, and a column B in Mo which separates the odd vertices in a different

way than A. Also, either A or B separates the odd vertices in the way (s, k − s), where 2 ≤ s ≤
k − 2.

If B separates the deleted odd vertices in the way (1, k − 1) and all deleted vertices in the

way (1, 2k − 1) then that would be case (B). If B separates the deleted odd vertices in the way

(2, k − 2) and all deleted vertices in the way (2, 2k − 2) then that would be case (C). Therefore
we assume that B separates the deleted odd vertices in the way (s, k− s) and all deleted vertices
in the way (s, 2k − s), where 3 ≤ s ≤ k − 1.

We split the hypercube using A and B. Without loss of generality, we can assume that the

deleted vertices are distributed as follows:

{v1, . . . , vp} ⊂ Q00
n , {vt+1, . . . , vk, ur+1, . . . , uk} ⊂ Q01

n , {vp+1, . . . , vs} ⊂ Q10
n , and

{u1, . . . , ur, vs+1, . . . , vt} ⊂ Q11
n ,

where 2 ≤ r ≤ k − 2, 0 ≤ p ≤ k − 2, 3 ≤ s ≤ k − 1, and 2 ≤ t ≤ k, since there are odd vertices

in at least three of the hypercubes. Also, either k − r > k − t or r > t − s since in at least one

of the hypercubes Q00
n or Q10

n there is an odd vertex. Without loss of generality, we assume that

k− r > k− t. Finally, it follows from our assumptions that A and B separate the odd vertices in

such a way that either k − s ≥ 2 or 2 ≤ t− p ≤ k − 2.

We consider two cases.

(F)(1) r ≤ t− s.
There are two subcases to consider.

(F)(1)(a) t ≤ k − 1, hence there is at least one odd vertex in Q01
n .

(F)(1)(a)(i) There is an odd vertex in Q00
n , hence p ≥ 1.

Take a model path µ inQ01
n which begins with an odd vertex o01 = v01 and following µmake

p− 1 short cycles of the type

o01 → e00 → (o, e)10 → (o, e)11 → o′01.

We denote the end vertex of the resulting path by a′
01
.

Now begin with o01 = a′
01

and following µ make s− p cycles of the type

o01 → (e, o)00 → e10 → (o, e)11 → o′01.

We denote the end vertex of the resulting path by a′′
01
.

Finally, begin with o01 = a′′
01

and following µ make t− s− r cycles of the type

o01 → (e, o)00 → (e, o)10 → e11 → o′01.
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We denote the end vertex of the resulting path by a′′′
01
. Let the neighbor of a′′′

01
in Q00

n be u00. We

extend the constructed path with the edge (a′′′
01
, u00).

The total number of the constructed short cycles is p−1+s−p+t−s−r = t−r−1 ≤ k−3,

hence the length of µ is enough for that construction.

There are p−1+s−p+t−s−r+r = t−1 deleted or used even and p−1+s−p+t−s = t−1

used or deleted odd vertices in Q11
n . Since t− 1 ≤ k − 1− 1 ≤ (n− 2)− 2, it follows from (L)

that there exists a Hamiltonian cycle γ′ for Q11
n minus all deleted or used vertices. Let u11 and

v11 be two neighbors in γ′ such that the odd neighbor v′
01

of u11 in Q01
n is different from v01 and

is neither deleted nor used vertex. Clearly, the even neighbor u10 of v11 in Q10
n is also neither

deleted nor used vertex. We denote by γ3 the Hamiltonian path forQ11
n minus all deleted or used

vertices that is de�ned by γ′ and connects v11 to u11.
Let u′

00
be neither deleted nor used vertex in Q00

n different from u00, whose neighbor v10
in Q10

n is neither deleted nor used vertex. There are p − 1 + s − p + t − s − r = t − r − 1

used even and p + s − p + t − s − r = t − r deleted or used odd vertices in Q00
n . Since

t− r − 1 ≤ k − 1− 3 ≤ (n− 2)− 4, it follows from (CG) that there exists a Hamiltonian path

γ1 for Q00
n minus all deleted or used vertices which connects u00 to u′

00
.

There are p−1+s−p+t−s−r = t−r−1 used even and p−1+t−s−r+s−p = t−r−1

deleted or used odd vertices inQ10
n . Since t−r−1 ≤ k−1−3 ≤ (n−2)−4, it follows from (T )

that there exists a Hamiltonian path γ2 forQ10
n minus all deleted or used vertices which connects

v10 to u10.
There are k− r deleted even and p− 1+ s− p+ t− s− r+ k− t = k− r− 1 odd deleted or

used vertices in Q01
n (v01 is not counted). Since k − r − 1 ≤ k − 1− 3 ≤ (n− 2)− 4, it follows

from (CG) that there exists a Hamiltonian path γ4 for Q01
n minus all deleted or used vertices

which connects v′
01

to v01.
Then, to �nish the construction of a Hamiltonian cycle for Qn − F we extend the previously

constructed path with the path

u00
γ1−→ u′

00 → v10
γ2−→ u10 → v11

γ3−→ u11 → v′01
γ4−→ v01.

(F)(1)(a)(ii) There is an odd vertex in Q10
n , hence s− p ≥ 1.

This case is similar to the previous case in (i). To obtain a solution of that case just switch

the roles of Q00
n and Q10

n in the above solution. Then in the beginning of the construction make

p cycles of the type
o01 → e00 → (o, e)10 → (o, e)11 → o′01,

instead of p− 1 and then make s− p− 1 cycles of the type

o01 → (e, o)00 → e10 → (o, e)11 → o′01,

instead of s− p cycles. At the end �nish the construction of a Hamiltonian cycle for Qn −F by

extending the previously constructed path with the path

u00
γ1−→ v00 → u10

γ2−→ u′
10 → v11

γ3−→ u11 → v′01
γ4−→ v01.

(F)(1)(b) t = k, hence there are no odd vertices in Q01
n .

Since there are no odd vertices in Q01
n , there must be odd vertices in the other three hyper-

cubes. Also, since 2 ≤ r ≤ k− 2, the difference between deleted even and odd vertices in Q01
n is

k − r ≥ 2.

Take a model path µ in Q00
n which begins with an even vertex e00 = u00 and following µ

make t− s− r short cycles of the type

e00 → o01 → e11 → (o, e)10 → (o, e′)00.

We denote the end vertex of the resulting path by b′
00
.

Now begin with e00 = b′
00

and following µ make s− p− 1 cycles of the type

e00 → o01 → (e, o)11 → e10 → (o, e′)00.

We denote the end vertex of the resulting path by b′′
00
.
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Finally, begin with e00 = b′′
00

and following µ make p− 1 cycles of the type

e00 → o01 → (e, o)11 → (e, o)10 → e′00.

We denote the end vertex of the resulting path by b′′′
00
. Let the neighbor of b′′′

00
in Q01

n be v′′
01

and

the neighbor of v′′
01

in Q11
n be u11. We extend the constructed path with the edges (b′′′

00
, v′′

01
) and

(v′′
01
, u11).
The total number of the constructed short cycles is p−1+s−p−1+t−s−r = t−r−2 ≤ k−4,

hence the length of µ is enough for that construction.

There are p − 1 + s − p − 1 + t − s − r + r = t − 2 = k − 2 deleted or used even and

p − 1 + s − p − 1 + t − s = t − 2 = k − 2 used or deleted odd vertices in Q11
n . Since

k − 2 ≤ (n− 2)− 2, it follows from (L) that there exists a Hamiltonian cycle γ′ for Q11
n minus

all deleted or used vertices. Clearly, γ′ contains u11. Let v11 be a neighbor of u11 in γ′. Then

the even neighbor u10 of v11 in Q10
n is neither deleted nor used vertex. We denote by γ1 the

Hamiltonian path for Q11
n minus all deleted or used vertices that is de�ned by γ′ and connects

u11 to v11.
Let e′′

00
and o′′

00
be two neighbors in γ′ such that the odd neighbor v01 of e

′′
00

in Q01
n is neither

deleted nor used vertex. Clearly, the even neighbor u′
10

of o′′
00

in Q10
n is also neither deleted nor

used vertex. There are p−1+s−p−1+t−s−r = t−r−2 used even and p−1+t−s−r+s−p =
t−r−1 deleted or used odd vertices inQ10

n . Since t−r−2 ≤ k−2−2 ≤ (n−2)−4, it follows

from (CG) that there exists a Hamiltonian path γ2 for Q10
n minus all deleted or used vertices

which connects u10 to u′
10
.

Let v′
01

be neither deleted nor used vertex in Q01
n different from v01, whose neighbor u

′
00

in

Q00
n is neither deleted nor used vertex. There are k− r deleted even and p− 1+ s− p− 1+ t−

s − r + 1 + k − t = k − r − 1 odd deleted or used vertices in Q01
n (v01 is not counted). Since

k − r − 1 ≤ k − 2− 1 ≤ (n− 2)− 3, it follows from (CG) that there exists a Hamiltonian path

γ3 for Q01
n minus all deleted or used vertices which connects v01 to v′

01
.

There are p−1+s−p−1+t−s−r+1 = t−r−1 used even and p+s−p−1+t−s−r+1 = t−r
deleted or used odd vertices in Q00

n . Since t− r − 1 ≤ k − 2− 1 ≤ (n− 2)− 3, it follows from

(CG) that there exists a Hamiltonian path γ4 for Q00
n minus all deleted or used vertices which

connects u′
00

to u00.
Then, to �nish the construction of a Hamiltonian cycle for Qn −F we extend the previously

constructed path with the path

u11
γ1−→ v11 → u10

γ2−→ u′
10 → o′′00 → e′′00 → v01

γ3−→ v′01 → u′
00

γ4−→ u00.

(F)(2) r > t− s.
We have k − r > k − t and r > t − s. Since (t − r) + r − (t − s) = s ≥ 3, we have either

(k − r) − (k − t) = t − r ≥ 2 or r − (t − s) ≥ 2. Also, since s ≥ 3, we have either p ≥ 2

or s − p ≥ 2. There are two possibilities: either (k − r) − (k − t) = t − r ≥ 2 and p ≥ 2 (or

equivalently, r − (t− s) ≥ 2 and s− p ≥ 2) or we do not have any of the previous cases and we

have (k − r)− (k − t) = t− r ≥ 2 and p ≤ 1 (or r − (t− s) ≥ 2 and s− p ≤ 1), instead.

Since the cases in each group are symmetric of each other, we consider only the �rst cases

from each group.

(F)(2)(a) (k − r)− (k − t) = t− r ≥ 2 and p ≥ 2.

For easier explanation of how we balance the plates we assume that (k − r) − (k − t) =
t− r ≥ r − (t− s). The other case is similar: the balancing of the plates is slightly different but

the rest of the construction is the same.

There are three possibilities:

(F)(2)(a)(i) t − r ≥ max(p, s − p), (F)(2)(a)(ii) s − p ≤ t − r ≤ p, and (F)(2)(a)(iii) p ≤
t− r ≤ s− p.

We consider all cases below.

In case (F)(2)(a)(i) we have t− r ≥ max(p, s− p) ≥ min(p, s− p) ≥ r − t+ s.
Take a model path µ inQ01

n which begins with an odd vertex o01 = v01 and following µmake

r − t+ s− 1 short cycles of the type

o01 → (e, o)00 → e10 → o11 → (e, o′)01.

We denote the end vertex of the resulting path by a′
01
.
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Now begin with o01 = a′
01

and following µ make t− p− r cycles of the type

o01 → (e, o)00 → e10 → (o, e)11 → o′01.

We denote the end vertex of the resulting path by a′′
01
.

Then, begin with o01 = a′′
01

and following µ make p− 2 cycles of the type

o01 → e00 → (o, e)10 → (o, e)11 → o′01.

We denote the end vertex of the resulting path by a′′′
01
.

Finally, begin with o01 = a′′′
01

and following µ, extend the resulting path with the following

path with length four

o01 → e00 → (o, e)10 → o11.

We denote the end vertex of the resulting path by v11.
In case (F)(2)(a)(ii) we have

s− p ≤ r − t+ s ≤ t− r ≤ p.

In that case, begin with o01 = v01 and following µ make s− p− 1 short cycles of the type

o01 → (e, o)00 → e10 → o11 → (e, o′)01.

We denote the end vertex of the resulting path by a′
01
.

Now begin with o01 = a′
01

and following µ make p+ r − t cycles of the type

o01 → e00 → (o, e)10 → o11 → (e, o′)01.

We denote the end vertex of the resulting path by a′′
01
.

Then, begin with o01 = a′′
01

and following µ make t− r − 2 cycles of the type

o01 → e00 → (o, e)10 → (o, e)11 → o′01.

We denote the end vertex of the resulting path by a′′′
01
. Let the neighbor of a′′′

01
in Q00

n be u00.
Finally, begin with o01 = a′′′

01
and following µ, extend the resulting path with the following

path with length four

o01 → e00 → (o, e)10 → o11.

We denote the end vertex of the resulting path by v11.
In case (F)(2)(a)(iii) we have

p ≤ r − t+ s ≤ t− r ≤ s− p.

In that case, begin with o01 = v01 and following µ make p− 2 short cycles of the type

o01 → e00 → (o, e)10 → o11 → (e, o′)01.

We denote the end vertex of the resulting path by a′
01
.

Now begin with o01 = a′
01

and following µ make r − t+ s− p+ 1 cycles of the type

o01 → (e, o)00 → e10 → o11 → (e, o′)01.

We denote the end vertex of the resulting path by a′′
01
.

Then, begin with o01 = a′′
01

and following µ make t− r − 2 cycles of the type

o01 → (e, o)00 → e10 → (o, e)11 → o′01.

We denote the end vertex of the resulting path by a′′′
01
. Let the neighbor of a′′′

01
in Q00

n be u00.
Finally, begin with o01 = a′′′

01
and following µ, extend the resulting path with the following

path with length four

o01 → e00 → (o, e)10 → o11.

We denote the end vertex of the resulting path by v11.
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The total number of the constructed short cycles is r− t+ s−1+ t−p− r+p−2 = s−3 in

(i), s−p−1+p+r− t+ t−r−2 = s−3 in (ii), and p−2+r− t+s−p+1+ t−r−2 = s−3

in (iii). Since s− 3 ≤ k − 4 ≤ n− 6, the length of µ is enough for that construction.

Let v′
11
be neither deleted nor used odd vertex in Q00

n different from v11. Clearly, its neighbor
u10 in Q10

n is not an used vertex. There are r − t + s + t − p − r + p − 2 = s − 2 deleted or

used even and r − t + s − 1 + t − p − r + p − 2 = s − 3 used or deleted odd vertices in Q11
n .

Since s − 3 ≤ k − 1 − 3 ≤ (n − 2) − 4, it follows from (CG) that there exists a Hamiltonian

path γ′ for Q11
n minus all deleted or used vertices which connects v11 to v′

11
. Let v′′

11
and u11

be two neighbors in γ′ such that v′′
11

is closer to v′′
11

and the odd neighbor v′
01

of u11 in Q01
n is

different from v01 and is neither deleted nor used vertex. Clearly, the even neighbor u
′
10
of v′′

11
in

Q10
n is also neither deleted nor used vertex. We denote by γ1 the path in Q11

n de�ned by γ′ which
connects v11 to v′′

11
and by γ2 the path de�ned by γ′ which connects v′

11
to u11.

There are r− t+s−1+ t−p− r+p−2+1 = s−2 used even and s−p+p−2+1 = s−1

deleted or used odd vertices inQ10
n . Since s−2 ≤ k−1−2 ≤ (n−2)−3, it follows from (CG)

that there exists a Hamiltonian path γ3 forQ10
n minus all deleted or used vertices which connects

u′
10

to u10.
Let u00 be the even neighbor of v′

01
in Q00

n . Clearly, u00 is not a deleted vertex. Let u′
00

be

another unused even vertex in Q10
n different from u00 and such that its odd neighbor v′′

01
in Q10

n

is neither deleted nor used vertex. There are r − t + s − 1 + t − p − r + p − 2 + 1 = s − 2

used even and r − t+ s− 1+ t− p− r + p = s− 1 deleted or used odd vertices in Q00
n . Since

s − 2 ≤ k − 1 − 2 ≤ (n − 2) − 3, it follows from (CG) that there exists a Hamiltonian path γ4
for Q00

n minus all deleted or used vertices which connects u00 to u′
00
.

There are k − r + r − t+ s − 1 = k − t+ s − 1 ≤ s − 1 deleted even and r − t+ s − 1+
t − p − r + p − 2 + 1 = s − 2 odd deleted or used vertices in Q01

n (v01 is not counted). Since
s − 2 ≤ k − 1 − 2 ≤ (n − 2) − 3, it follows from (CG) that there exists a Hamiltonian path γ5
for Q01

n minus all deleted or used vertices which connects v′′
01

to v01.
Then, to �nish the construction of a Hamiltonian cycle for Qn −F we extend the previously

constructed path with the path

v11
γ1−→ v′′11 → u′

10

γ3−→ u10 → v′11
γ2−→ u11 →

v′01 → u00
γ4−→ u′

00 → v′′01
γ5−→ v01.

(F)(2)(b) (k − r)− (k − t) = t− r ≥ 2 and p ≤ 1.

Since s ≥ 3 and p ≤ 1, we have s− p ≥ 2. Therefore if r− t+ s ≥ 2 then that would be case

(a). Thus, we have r − t+ s = 1 ≥ p and since r ≥ 2, we conclude that t − s ≥ 1, hence there

exists at least one odd deleted vertex inQ11
n . Also, it follows that t− r > r− t+ s. Finally, since

s ≥ 3, we have s− p ≥ 2, hence p ≤ s− p. Therefore we have p ≤ r − t+ s ≤ t− r ≤ s− p.
There are two cases: t− s ≥ 2 or t− s = 1. If t− s ≥ 2 then s ≤ k− 2. Let t− s = 1. Since

there exists at most one deleted odd vertex in Q00
n , there must be at least one deleted odd vertex

in Q01
n for at least one of both coordinates A or B separates the deleted vertices in two groups

with at least two deleted odd vertises in each group. Hence, again s ≤ k− 2. Therefore in either

case we have s ≤ k − 2.

We consider two cases below: (F)(2)(b)(i) t = k and therefore there are no deleted odd

vertices in Q01
n , hence p = 1; and (F)(2)(b)(ii) t ≤ k − 1 and therefore there is at least one

deleted odd vertex in Q01
n , hence p ≤ 1.

(F)(2)(b)(i) t = k and therefore there are no deleted odd vertices in Q01
n , hence p = 1.

Take a model path µ inQ01
n which begins with an odd vertex o01 = v01 and following µmake

t− r − 2 = k − r − 2 short cycles of the type

o01 → (e, o)00 → e10 → (o, e)11 → o′01.

We denote the end vertex of the resulting path by a′
01
.

Then begin with o01 = a′
01

and following µ make r − t+ s = r + s− k cycles of the type

o01 → (e, o)00 → e10 → o11 → (e, o′)01.

We denote the end vertex of the resulting path by a′′
01
.
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Finally, begin with o01 = a′′
01

and following µ, extend the resulting path with the following

path with length four

o01 → (e, o)00 → e10 → o11.

We denote the end vertex of the resulting path by v11.
The total number of the constructed short cycles is k − r − 2 + r + s − k + 1 = s − 1 ≤

(k − 2)− 1 ≤ k − 3, hence the length of µ is enough for that construction.

There are k−r−2+r = k−2 deleted or used even and k−r−2+r+s−k+k−s = k−2

used or deleted odd vertices in Q11
n (v11 is not counted). Since k − 2 ≤ (n − 2) − 2, it follows

from (L) that there exists a Hamiltonian cycle γ′ forQ11
n minus all deleted or used vertices. This

cycle contains v11. Let u11 be a neighbor of v11 in γ′. We denote by γ1 the Hamiltonian path for

Q11
n minus all deleted or used vertices de�ned by γ′ which connects v11 to u11.
Clearly, the odd neighbor v′

01
inQ01

n of u11 is not an used vertex and not a deleted vertex since
there are no deleted odd vertices in Q01

n . Let u00 be the even neighbor of v′
01

in Q00
n . Then u00

is neither deleted nor used even vertex in Q00
n (there are no deleted even vertices in Q00

n ). There

are k − r − 2 + r + s − k + 1 = s − 1 ≤ k − 3 ≤ (n − 2) − 3 used or deleted odd vertices in

Q00
n . Therefore there exists an odd neighbor v00 of u00 in Q00

n which is neither deleted nor used

vertex.

Let u10 be the even neighbor of v00 in Q10
n . Clearly, u10 is neither used nor deleted vertex

(there are no deleted even vertices inQ10
n ). Let also v10 be an undeleted odd vertex inQ10

n whose

even neighbor u′
00

in Q00
n is not an used vertex. There are k − r − 2 + r + s − k + 1 = s − 1

used even and s− 1 deleted odd vertices in Q10
n . Since s− 1 ≤ k − 3 ≤ (n− 2)− 3, it follows

from (T ) that there exists a Hamiltonian path γ2 forQ10
n minus all deleted or used vertices which

connects u10 to v10.
Let u′′

00
be an unused even vertex in Q00

n different from u′
10
, whose odd neighbor v′′

01
in

Q01
n is neither deleted nor used vertex. There are k − r − 2 + r + s − k + 1 = s − 1 used

even and k − r − 2 + r + s − k + 1 + 1 = s deleted or used odd vertices in Q00
n . Since

s− 1 ≤ (k− 2)− 1 ≤ (n− 2)− 3, it follows from (CG) that there exists a Hamiltonian path γ3
for Q00

n minus all deleted or used vertices which connects u′
00

to u′′
00
.

There are k − r+ r+ s− k = s deleted or used even and k − r− 2+ r+ s− k+ 1 = s− 1

used or deleted odd vertices inQ01
n (v01 is not counted). Since s−1 ≤ (k−2)−1 ≤ (n−2)−3,

it follows from (CG) that there exists a Hamiltonian path γ4 for Q01
n minus all deleted or used

vertices which connects v′′
01

to v01.
Then, to �nish the construction of a Hamiltonian cycle for Qn −F we extend the previously

constructed path with the path

v11
γ1−→ u11 → v′01 → (u00, v00) → u10

γ2−→ v10 →

u′
00

γ3−→ u′′
00 → v′′01

γ4−→ v01.

(F)(2)(b)(ii) t ≤ k − 1 and therefore there is at least one deleted odd vertex in Q01
n , hence

p ≤ 1.

Take a model path µ inQ01
n which begins with an odd vertex o01 = v01 and following µmake

r − t+ s− 1 short cycles of the type

o01 → (e, o)00 → e10 → o11 → (e, o′)01.

We denote the end vertex of the resulting path by a′
01
.

Then begin with o01 = a′
01

and following µ make p short cycles of the type

o01 → e00 → (o, e)10 → (o, e)11 → o′01.

We denote the end vertex of the resulting path by a′′
01

(if p = 0 we do not make such cycles).

Next, begin with o01 = a′′
01

and following µ make t− r − p− 1 cycles of the type

o01 → (e, o)00 → e10 → (o, e)11 → o′01.

We denote the end vertex of the resulting path by a′′′
01
.

Finally, begin with o01 = a′′′
01

and following µ, extend the resulting path with the following

path with length four

o01 → (e, o)00 → e10 → o11.
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We denote the end vertex of the resulting path by v11.
The total number of the constructed short cycles is r − t+ s− 1+ p+ t− r − p− 1+ 1 =

s− 1 ≤ (k − 2)− 1 ≤ k − 3, hence the length of µ is enough for that construction.

Let v′
11
be neither deleted nor used odd vertex inQ11

n different from v11, whose even neighbor
u10 in Q10

n is not an used vertex. There are p + t − r − p − 1 + r = t − 1 used even and

r − t + s − 1 + p + t − r − p − 1 + t − s = t − 2 used or deleted odd vertices in Q11
n . Since

t− 2 ≤ (k− 1)− 1 = k− 3 ≤ (n− 2)− 3, it follows from (CG) that there exists a Hamiltonian

path γ1 for Q11
n minus all deleted or used vertices.

Let u′
10
be an unused even vertex inQ10

n different from u10, whose odd neighbor v00 inQ00
n is

neither deleted nor used vertex. There are r − t+ s − 1+ p+ t − r − p − 1+ 1 = s − 1 used

even and p+ s− p = s used or deleted odd vertices in Q10
n . Since s− 1 ≤ k − 3 ≤ (n− 2)− 3,

it follows from (CG) that there exists a Hamiltonian path γ2 for Q10
n minus all deleted or used

vertices which connects u10 to u′
10
.

Let u00 be an unused even vertex in Q00
n whose odd neighbor v′

01
in Q01

n is neither deleted

nor used vertex. There are r − t + s − 1 + p + t − r − p − 1 + 1 = s − 1 used even and

r − t + s − 1 + t − r − p − 1 + 1 + p = s − 1 deleted or used odd vertices in Q10
n . Since

s − 1 ≤ (k − 2) − 1 ≤ (n − 2) − 3, it follows from (T ) that there exists a Hamiltonian path γ3
for Q00

n minus all deleted or used vertices which connects v00 to u00.
There are r− t+s−1+k− r = k− t+s−1 deleted or used even and r− t+s−1+p+ t−

r− p− 1+ k− t = k− t+ s− 2 used odd vertices in Q01
n (v01 is not counted). Since t− s > 0,

we have k − (t − s) − 2 ≤ k − 3 ≤ (n − 2) − 3. Then it follows from (CG) that there exists a
Hamiltonian path γ4 for Q01

n minus all deleted or used vertices which connects v′
01

to v01.
Then, to �nish the construction of a Hamiltonian cycle for Qn −F we extend the previously

constructed path with the path

v11
γ1−→ v′11 → u10

γ2−→ u′
10 → v00

γ3−→ u00 → v′01
γ4−→ v01.

Case (G) k ≤ n− 3 and there exists a column A in M2 which separates the even vertices in

the way (r, k − r), where 2 ≤ r ≤ k − 2, and the odd vertices in the way (1, k − 1). Also, there
exists a column B inMo which separates the odd vertices in the way (1, k− 1) but in a different
way than A.

Since B separates the deleted odd vertices in the way (1, k− 1), according to Remark 3.3, B
separates all deleted vertices in the way (k + 1, k − 1).

We split Qn using A and B. Without loss of generality, we can assume that the deleted

vertices are distributed as follows:

{v1} ⊂ Q00
n , {ur+1, . . . , uk} ⊂ Q01

n , {v2, . . . , vk−1} ⊂ Q10
n , and {u1, . . . , ur, vk} ⊂ Q11

n .

Take a model path µ inQ01
n which begins with an odd vertex o01 = v01 and following µmake

k − r − 1 short cycles of the type

o01 → (e, o)00 → e10 → (o, e)11 → o′01.

We denote the end vertex of the resulting path by a′
01
.

Then begin with o01 = a′
01

and following µ make r − 1 short cycles of the type

o01 → (e, o)00 → e10 → o11 → (e, o′)01.

We denote the end vertex of the resulting path by a′′
01
.

Let the neighbor of a′′
01
inQ00

n be u00. We extend the constructed path with the edge (a′′
01
, u00).

The total number of the constructed short cycles is k− r− 1+ r− 1 = k− 2 ≤ (n− 3)− 2,

hence the length of µ is enough for that construction.

There are r + k − r − 1 = k − 1 deleted or used even and k − r − 1 + r − 1 + 1 = k − 1

used or deleted odd vertices in Q11
n . Since k − 1 ≤ (n − 3) − 1 = (n − 2) − 2, it follows from

(L) that there exists a Hamiltonian cycle γ′ for Q11
n minus all deleted or used vertices. Let u11

and v11 be two neighbors in γ′ such that the odd neighbor v′
01

of u11 in Q01
n is different from v01

and is neither deleted nor used vertex. Clearly, the even neighbor u10 of v11 inQ10
n is also neither

deleted nor used vertex. We denote by γ3 the Hamiltonian path forQ11
n minus all deleted or used

vertices that is de�ned by γ′ and connects v11 to u11.
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Let u′
00

be neither deleted nor used vertex in Q00
n different from u00, whose neighbor v10 in

Q10
n is neither deleted nor used vertex. There are k − r − 1 + r − 1 = k − 2 used even and

k− r− 1+ r− 1+ 1 = k− 1 used or deleted odd vertices in Q00
n . Since k− 2 ≤ (n− 3)− 2 =

(n − 2) − 3, it follows from (CG) that there exists a Hamiltonian path γ1 for Q00
n minus all

deleted or used vertices which connects u00 to u′
00
.

There are k − r − 1+ r − 1 = k − 2 used even and k − 2 deleted odd vertices in Q10
n . Since

k − 2 ≤ (n − 2) − 3, it follows from (T ) that there exists a Hamiltonian path γ2 for Q10
n minus

all deleted or used vertices which connects v10 to u10.
There are k − r + r − 1 = k − 1 deleted or used even and k − r − 1+ r − 1 = k − 2 used

odd vertices in Q01
n (v01 is not counted). Since k − 2 ≤ (n − 2) − 3, it follows from (CG) that

there exists a Hamiltonian path γ4 for Q01
n minus all deleted or used vertices which connects v′

01

to v01.
Then, to �nish the construction of a Hamiltonian cycle for Qn −F we extend the previously

constructed path with the path

u00
γ1−→ u′

00 → v10
γ2−→ u10 → v11

γ3−→ u11 → v′01
γ4−→ v01.

Note 4. For the remaining cases Remark 3.6 applies.

Case (H) There exists a column A inMo which separates the deleted odd vertices in the way

(s, k−s), where 2 ≤ s ≤ k−2, and a column B inMe which separates the deleted even vertices

in the way (r, k − r), where 2 ≤ r ≤ k − 2.

We splitQn using A and B. Without loss of generality we can assume that r ≥ s and that the
deleted vertices are distributed as follows:

{v1, v2, . . . , vs} ⊂ Q00
n , {u1, u2, . . . , ur} ⊂ Q11

n , and {vs+1, . . . , vk, ur+1, . . . , uk} ⊂ Q01
n .

Take a model path µ in Q10
n which begins with an even vertex e10 = u10 and following µ

make r − s short cycles of the type

e10 → o11 → e01 → (o, e)00 → (o, e′)10

(if r− s = 0 we do not make such cycles). We denote the end vertex of the resulting path by a′
10
.

There are k − s pairs of even and odd deleted or used vertices in Q01
n . Since 2 ≤ s ≤ k − 2,

we have 2 ≤ k − s ≤ k − 2 ≤ (n − 2) − 2. Then, it follows from (L) that there exists a

Hamiltonian cycle µ′ for Q01
n minus all deleted or used vertices. Let µ′′ be the projection of µ′

on Q10
n . Clearly, a′

10
belongs to µ′′.

Now begin with e10 = a′
10

and following µ′′ (and µ′), continue with s− 1 cycles of the type

e10 → o11 → (e, o)01 → e00 → (o, e′)10.

We denote the end vertex of the resulting path by a′′
10
.

Let the neighbor of a′′
10
inQ11

n be v11. We extend the constructed path with the edge (a′′
10
, v11).

Since we have been following µ′, 2(s − 1) consecutive vertices from µ′ have been used in

these short cycles for all edges of the type (e, o)01. The length of µ′ is 2n−2 − 2(k− s) and since
2k > 4k for k ≥ 5, we have

2n−2 − 2(k − s) > 2k − 2k > 2k > 2(s− 1).

Therefore what remains unused from γ1 forms a path γ2. Notice that the end vertices of γ2 have
different parity. We denote these end vertices by u01 and v01.

Denote the neighbor of u01 in Q11
n by v′

11
. Clearly, v′

11
has not been used so far and is not a

deleted vertex. There are r deleted even vertices and r − s + s − 1 = r − 1 used odd vertices

in Q11
n . Since r − 1 ≤ k − 3, we can use (CG) to �nd a Hamiltonian path γ1 for Q11

n minus all

deleted or used vertices which connects v11 to v′
11
.

Denote the neighbor of v01 in Q00
n by u00 and let u′

00
be any other undeleted and unused even

vertex in Q00
n . Then its neighbor v10 in Q10

n has not been used so far. There are r − s + s = r
deleted or used odd vertices and r−s+s−1 = r−1 used even vertices inQ00

n . Since r−1 ≤ k−3,

we can use (CG) to �nd a Hamiltonian path γ3 forQ00
n minus all deleted and used vertices which

connects u00 to u′
00
.



PROOF OF LOCKE'S CONJECTURE, I 369

There are r−s+s−1 = r−1 pairs of used even and odd vertices inQ10
n . Since r−1 ≤ k−3,

we can use (T ) to �nd a Hamiltonian path γ4 for Q10
n minus all used vertices which connects v10

to u10.
Then, to �nish the construction of a Hamiltonian cycle for Qn −F we extend the previously

constructed path with the path

v11
γ1−→ v′11 → u01

γ2−→ v01 → u00
γ3−→ u′

00 → v10
γ4−→ u10.

Note 5. For the remaining cases Remark 3.7 applies. Therefore k ≤ n − 3 and that every

coordinate which separates only the deleted odd vertices separates them in the way (1, k − 1),
and therefore it separates all vertices in the way (k + 1, k − 1).

Case (I) k ≤ n− 3, there is a column A in Mo and there is a column B in Me.

We split Qn using A and B. Without loss of generality, we can assume that the deleted

vertices are distributed as follows:

{v1, v2, . . . , vs} ⊂ Q00
n , {u1, u2, . . . , uk−1} ⊂ Q11

n , and {vs+1, . . . , vk, uk} ⊂ Q01
n .

Take a model path µ in Q10
n which begins with an even vertex e10 = u10 and following µ

make k − 1− s short cycles of the type

e10 → o11 → e01 → (o, e)00 → (o, e′)10

(if k − 1 − s = 0 we do not make such cycles). We denote the end vertex of the resulting path

by a′
10
.

Then begin with e10 = a′
10

and following µ make s− 1 cycles of the type

e10 → o11 → (e, o)01 → e00 → (o, e′)10.

We denote the end vertex of the resulting path by a′′
10
.

Let the neighbor of a′′
10
inQ11

n be v11. We extend the constructed path with the edge (a′′
10
, v11).

The total number of the constructed short cycles is k− 1− s+ s− 1 = k− 2 ≤ (n− 3)− 2,

hence the length of µ is enough for that construction.

There are k− s− 1+ s− 1+ 1 = k− 1 deleted or used even and k− s+ s− 1 = k− 1 used

or deleted odd vertices in Q01
n . Since k − 1 ≤ (n − 3) − 1 = (n − 2) − 2, it follows from (L)

that there exists a Hamiltonian cycle γ′ for Q01
n minus all deleted or used vertices. Let u01 and

v01 be two neighbors in γ′ such that the odd neighbor v′
11

of u01 in Q11
n is different from v11 and

is neither deleted nor used vertex and the even neighbor u00 of v01 in Q00
n is also neither deleted

nor used vertex. We denote by γ2 the Hamiltonian path forQ01
n minus all deleted or used vertices

that is de�ned by γ′ and connects u01 to v01.
There are k− 1 deleted even vertices and k− s− 1+ s− 1 = k− 2 used odd vertices inQ11

n .

Since k − 2 ≤ (n − 3) − 2 = (n − 2) − 3, we can use (CG) to �nd a Hamiltonian path γ1 for
Q11

n minus all deleted and used vertices which connects v11 to v′
11
.

Let u′
00

be any undeleted and unused odd vertex in Q00
n different from u00. Then its neighbor

v10 in Q10
n has not been used so far. There are k − s− 1+ s− 1 = k − 2 used even vertices and

k−s−1+s = k−1 deleted or used odd vertices inQ00
n . Since k−2 ≤ (n−3)−2 = (n−2)−3,

we can use (CG) to �nd a Hamiltonian path γ3 forQ00
n minus all deleted and used vertices which

connects u00 to u′
00
.

There are k − s − 1 + s − 1 = k − 2 pairs of used even and odd vertices in Q10
n . Since

k−2 ≤ (n−2)−3, we can use (T ) to �nd a Hamiltonian path γ4 forQ10
n minus all used vertices

which connects v10 to u10.
Then, to �nish the construction of a Hamiltonian cycle for Qn −F we extend the previously

constructed path with the path

v11
γ1−→ v′11 → u01

γ2−→ v01 → u00
γ3−→ u′

00 → v10
γ4−→ u10.

Case (J) k ≤ n−3, there is a column A inMo and there is a column B inM2 which separates

the odd vertices in a different way than A.
It follows from our hypotheses that A separates the deleted odd vertices in the way (1, k− 1)

and all vertices in the way (k + 1, k − 1). Also, B separates the odd and the even vertices in the

way (1, k − 1) and all vertices in the way (k, k). Therefore, without loss of generality, we can
assume that the deleted vertices are distributed as follows:
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{v1} ⊂ Q00
n , {v3, . . . , vk} ⊂ Q10

n , {u1, v2} ⊂ Q11
n , and {u2, . . . , uk} ⊂ Q01

n .

Take a model path µ in Q10
n which begins with an even vertex e10 = u10 and following µ

make k − 2 short cycles of the type

e10 → (o, e)11 → o01 → (e, o)00 → e′10.

We denote the end vertex of the resulting path by u′
10
. Let the neighbor of u′

10
in Q11

n be v11. We

extend the constructed path with the edge (u′
10
, v11).

The total number of the constructed short cycles is k − 2 ≤ (n− 3)− 2, hence the length of

µ is enough for that construction.

There are k − s+ s− 1 = k − 1 pairs of even and odd deleted or used vertices in Q01
n . Since

k − 1 ≤ (n− 3)− 1, it follows from (L) that there exists a Hamiltonian cycle γ′ for Q01
n minus

all deleted or used vertices.

There are k − 2 + 1 = k − 1 ≤ (n − 2) − 2 pairs of deleted or used even and odd vertices

in Q11
n . Therefore, according to (L), there exists a Hamiltonian cycle for Q11

n minus all deleted

or used vertices. This cycle contains v11. Let u11 be a neighbor of v11 in that cycle and let γ1 be
the Hamiltonian path for Q11

n minus all deleted or used vertices determined by this cycle which

connects v11 to u11.
The neighbor v01 of u11 is clearly neither deleted nor used odd vertex in Q01

n . Let v′
01

̸= v01
be any unused odd vertex in Q01

n . There are k − 1 deleted even vertices and k − 2 ≤ (n− 2)− 3

used odd vertices in Q01
n . Then it follows from (CG) that there exists a Hamiltonian path γ2 for

Q01
n minus all deleted or used vertices which connects v01 to v′

01
.

The neighbor u00 of v01 is clearly neither deleted nor used even vertex in Q00
n . Let u′

00
̸= u00

be any unused even vertex in Q00
n whose neighbor v10 is not a deleted even vertex in Q10

n . There

are k−2 ≤ (n−2)−3 used even vertices and k−2+1 = k−1 deleted or used even vertices in

Q00
n . Then it follows from (CG) that there exists a Hamiltonian path γ3 forQ00

n minus all deleted

or used vertices which connects u00 to u′
00
.

There are k−2 deleted odd and k−2 ≤ (n−2)−3 used even vertices inQ10
n . Then it follows

from (T ) that there exists a Hamiltonian path γ4 forQ10
n minus all deleted or used vertices which

connects v10 to u10.
Then, to �nish the construction of a Hamiltonian cycle for Qn −F we extend the previously

constructed path with the path

v11
γ1−→ u11 → v01

γ2−→ v′01 → u00
γ3−→ u′

00 → v10
γ4−→ u10.

The proof of Theorem 3.1 is completed.
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