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Abstract We study the existence of solutions for a Ginzburg-Landau ODE in the half-axis.

We obtain that the solution is unique in the class of non-negative �nite energy solutions. As a

by-product, we determine the minimizers of the corresponding Ginzburg-Landau functional.

1 Introduction

In this note, we study the existence and uniqueness of solutions for the following ODE{
−u′′ = (a− |u|2)u in R+ ,

u(0) = 0 ,
(1.1)

in the following class

C = {u ∈ H : u ≥ 0 in R+} , (1.2)

where

H = {u ∈ H1

loc(R+) : u′ ∈ L2(R+) and a− u2 ∈ L2(R+)} . (1.3)

Here a : R+ → R is a given function. Formally, the �rst equation in (1.1) can be regarded as the

Euler-Lagrange equation of the following functional

F(u) =

∫ ∞

0

(
|u′|2 + 1

2
(a− |u|2)2

)
dx . (1.4)

When a = 1, the functional in (1.4) is the celebrated Ginzburg-Landau energy without magnetic

�eld and the �rst equation in (1.1) is the corresponding Ginzburg-Landau equation.

Note that the space H in (1.3) is the natural energy space for the functional in (1.1). That is,

we look for solutions of (1.1) that have �nite energy (i.e. F(u) is �nite).
We prove the following theorem:

Theorem 1.1. Suppose that the function a satis�es
a ∈ C2(R+) ,

∃ c > 0, c ≤ a(x) ≤ 1 in R+ ,

lim
x→∞

a(x) = 1 ,

b(x) =
√
a(x) satis�es b′′(x) ≤ 0 in R+ and 1− b ∈ L2(R+) .

(1.5)

There exists a unique function u ∈ C solving the equation in (1.1).

As a by-product, we get:

Corollary 1.2. Suppose that the function a satis�es the assumptions in Theorem 1.1. Let

m = inf{F(u) : u ∈ H and u(0) = 0} . (1.6)
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Every minimizer v of the problem in (1.6) is given as follows,

v = eiθu ,

for some constant θ ∈ R. Here u ∈ C is the function solving (1.1).

Theorem 1.1 is well known for a = 1 (cf. [5, 1]). Theorems analogous to Theorem 1.1 are

proved for equations of the form (cf. [2])

−u′′(x) +
p

x
u′(x)− q

x2
u(x) = F (u(x)) in R+, u(0) = 0 , u(∞) = 1 .

Compared to (1.1), we take p = q = 0 and in the non-linear term we allow for F to be a function

of u(x) and x.
The rest of this note is devoted to the proofs of Theorem 1.1 and Corollary 1.2. The structure

of the proof is along the ones in [5, 3] but the presence of the Dirichlet boundary condition

requires some new ingredients. Let us point out that the result in Theorem 1.1 is still valid for

the Robin condition, i.e. when u satis�es u′(0) = γu(0) for γ ≥ 0. For this condition, the proof

is exactly as the one in [5].

2 Existence

Note that (1.1) is the Euler-Lagrange equation for the minimization problem in (1.6). The exis-

tence of a solution u ∈ C of (1.1) is then a consequence of:

Theorem 2.1. Let m be as in (1.6). Suppose that there exists c > 0 such that the function a
satis�es a ≥ c in R+.

There exists a function v ∈ H such that v(0) = 0 and

F(v) = m .

Furthermore, if v ∈ H is a minimizer of the problem in (1.6), then the function |v| belongs to
the space C and is a minimizer of the problem in (1.6) too, i.e. F(|v|) = m.

Proof. Let (vn) be a minimizing sequence of m, i.e.

∀ n ∈ N , vn ∈ H , vn(0) = 0 ,

and

lim
n→∞

F(vn) = m . (2.1)

Let q ∈ N andK = (0, q). We will prove that (vn) is bounded in the Sobolev spaceH1(K). The
convergence in (2.1) yields the existence of a constant M > 0 such that,

∀ n ∈ N , F(vn) ≤ M ,

and in turn this implies boundedness of

∥v′n∥L2(K) and
∥∥a− |vn|2

∥∥
L2(K)

.

Observing the simple identity (b =
√
a ),∫

K

(a− |vn|2)2 dx =

∫
K

(b+ |vn|)2(b− |vn|)2 dx ,

and the trivial inequality b + |vn| > 0, we deduce that
∥∥b − |vn|

∥∥
L2(K)

is bounded. Since the

interval K is bounded, we deduce further that ∥vn∥L2(K) is bounded.

Now, we have proved that (vn) is a bounded sequence in H1(K). This is true for every

interval of the form K = (0, q) and q > 0. We can apply the Banach-Alaoglu theorem and a
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diagonal argument to extract a subsequence of (vn) and a function v ∈ H1

loc
(R+) such that, along

this subsequence, for all q > 0,

vn ⇀ v in H1(0, q) , vn → v strongly in L2(0, q) and L4(0, q) .

The following two statements follow immediately from the aforementioned weak and strong

convergences respectively:

lim inf
n→∞

∥vn∥H1(0,q) ≥ ∥v∥H1(0,q) and lim
n→∞

∥vn∥Lp(0,q) = ∥v∥Lp(0,q) (p ∈ {2, 4}) .

This yields that,

lim inf
n→∞

∫ q

0

|v′n|2 dx ≥
∫ q

0

|v′|2 dx and lim
n→∞

∫ q

0

(a− |vn|2)2 dx =

∫ q

0

(a− |v|2)2 dx .

Now we apply the operation lim inf
n→∞

on both sides of the following trivial inequality:∫ ∞

0

(
|v′n|2 +

1

2
(a− |vn|2)2

)
dx ≥

∫ q

0

(
|v′n|2 +

1

2
(a− |vn|2)2

)
dx

and get,

lim inf
n→∞

∫ ∞

0

(
|v′n|2 +

1

2
(a− |vn|2)2

)
dx ≥ lim inf

n→∞

∫ q

0

(
|v′n|2 +

1

2
(a− |vn|2)2

)
dx

≥
∫ q

0

(
|v′|2 + 1

2
(a− |v|2)2

)
dx .

The following inequality holds for all q > 0:

lim inf
n→∞

∫ ∞

0

(
|v′n|2 +

1

2
(a− |vn|2)2

)
dx ≥

∫ q

0

(
|v′|2 + 1

2
(a− |v|2)2

)
dx .

We can apply the operation lim
q→∞

and use the monotone convergence theorem to write,

lim inf
n→∞

∫ ∞

0

(
|v′n|2 +

1

2
(a− |vn|2)2

)
dx ≥

∫ ∞

0

(
|v′|2 + 1

2
(a− |v|2)2

)
dx .

Recall that, our choice of the sequence (vn) ensures that the limit on the left hand side above is

equal to m. Thus, we have proved that F(v) ≤ m and v ∈ H. Furthermore, since vn(0) = 0 for

all n, then by taking n → ∞ we get v(0) = 0. Now, the de�nition of the minimum m yields the

additional condition m ≤ F(v) and in turn implies that F(v) = m.

This proves that a minimizer v of the functional F exists. Now we show that u = |v| is a
minimizer too. Using the celebrated pointwise inequality |u′| ≤ |v′| a.e. (see [4, thrm 6.17]), we

may write, F(u) ≤ F(v). Again, since F(v) = m, this guarantees that m ≤ F(u) ≤ F(v) = m.

Thus u is a minimizer of F too.

3 A priori estimates

In this section, we collect useful properties satis�ed by the functions in C that solve (1.1). Here-

after, we assume that the function a satis�es the assumptions in Theorem 1.1.

Let us start by noting the standard result:

Lemma 3.1. Let H be the space introduced in (1.3). If u ∈ H is a (weak) solution of (1.1), then

u ∈ C3([0,∞)).

Next we note that every function in the space H in (1.3) is bounded and has a �nite limit at

in�nity.

Lemma 3.2. Let H be the space introduced in (1.3). If u ∈ H, then

u ∈ L∞(R+) and lim
x→∞

|u(x)| = 1 .
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Proof. Note that, if u ∈ H, then F(u) < ∞, u′ ∈ L2(R+) and b − |u| ∈ L2(R+). Here

b =
√
a. By the assumption in Theorem 1.1, we know that 1 − b ∈ L2(R+). Consequently,

1 − |u| ∈ L2(R+). Thus 1 − |u| ∈ H1(R+). The conclusion in Lemma 3.2 now becomes a

consequence of the Sobolev embedding theorem.

The next two lemmas give us a priori estimates on every solution of (1.1) in the space C.

Lemma 3.3. Let C be the space in (1.2). If v ∈ C is a solution of (1.1), then v′ ∈ L∞(R+) and
lim
x→∞

v′(x) = 0.

Proof. Note that v ∈ H, hence v′ ∈ L2(R+), a − |v|2 ∈ L2(R+) and, by Lemma 3.2, v ∈
L∞(R+). Now, v satis�es the following ODE:

−v′′ = (a− |v|2)v in R+ .

Squaring both sides then integrating on R+, we get,∫
R+

|v′′|2 dx ≤
∫
R+

(a− |v|2)2v2 dx ≤ ∥v∥2∞
∫
R+

(a− |v|2)2 dx < ∞ .

This implies that v′′ ∈ L2(R+) and consequently, v′ ∈ H1(R+). The Sobolev embedding

theorem �nishes the proof of Lemma 3.3.

Lemma 3.4. Let C be the space in (1.2). If v ∈ C is solution of (1.1), then 0 < v <
√
a in R+.

Proof. We know that v ≥ 0 by de�nition of the space C. The proof of Lemma 3.4 is decomposed

into three steps.

Step 1. Let h(x) = b(x)− v(x) and b(x) =
√
a(x) . Suppose that

m = inf{h(x) : x ∈ R+} < 0 .

We will derive a contradiction to obtain that m ≥ 0 and deduce that v ≤ b in R+.

There exists a sequence (xn) in (0,∞) such that h(xn) → m. We can extract a subsequence

of (xn), denoted by (xn), and s ∈ [0,∞] such that, along this subsequence, xn → s.
Two cases may occur:

Case 1: 0 ≤ s < ∞. By smoothness of v, we have b(s) − v(s) = h(s) = m < 0.

Since b(s) > 0 and v(0) = 0 by (1.1), this yields that s ̸= 0. Similarly, if v(s) = 0, then

0 < b(s) = b(s)− v(s) = h(s) = m < 0. This yields that v(s) ̸= 0.

Now, we know that 0 < s < ∞, v(s) > 0 and the function h has a local minimum at s.
Consequently h′′(s) ≥ 0. But the equation in (1.1) and the assumption b′′ ≤ 0 together yield

h′′(s) = b′′(s) + (a(s)− v2(s))v(s) = b′′(s) + h(s)(b(s) + v(s))v(s) < 0.

This is a contradiction.

Case 2: s = ∞. In this case, we use Lemma 3.2 and the assumption lim
x→∞

a(x) = 1 to obtain

the following contradiction

0 = lim
n→∞

h(xn) = m < 0 .

Step 2.

Now, we prove that v < b in R+. Suppose that there exists x1 ∈ (0,∞) such that v(x1) =
b(x1). By Step 1, x1 becomes a minimum of the function h(x) = b(x) − v(x). Using the

assumption that b′′(x) ≤ 0 and the equation for v, we get,

−h′′ + ch = −b′′ ≥ 0 in R+ ,

where

c = (b+ v)v ≥ 0 ,

and

h(x1) = min
x∈(0,∞)

h(x) = 0 .
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The strong maximum principle yields that h is a constant function in R+, i.e. h ≡ h(x1) = 0.

Consequently, v ≡ b. In particular b(0) = v(0) = 0. But, by the assumption on the function a in
Theorem 1.1, b(0) > 0. This is a contradiction.

Step 3. Now, we prove that v > 0 in R+. Suppose that there exists x0 ∈ R+ such that

v(x0) = 0. We will derive a contradiction to deduce that this is impossible. Since v ∈ C, then
v ≥ 0. Thus,

v(x0) = min
x∈(0,∞)

v(x) = 0 .

Furthermore, by Step 1, 0 ≤ v ≤ b =
√
a in R+, and the equation in (1.1) yields that

−v′′ = (a− v2)v ≥ 0.

By the maximum principle, v becomes a constant function. Thanks to the boundary condition in

(1.1), we deduce that v = 0. But this function does not belong to the space C, hence we get a
contradiction.

In the next lemma, we determine the sign of the derivative of the non-negative solutions of

(1.1).

Lemma 3.5. Let C be the space introduced in (1.2). Suppose that v is a solution of (1.1). If

v ∈ C, then for all x ≥ 0, v′(x) > 0 .

Proof. Recall that the assumption v ∈ C yields that v is real-valued, v ≥ 0 and v(0) = 0, and by

Lemma 3.2, lim
x→∞

v(x) = 1. We claim that v′(x) > 0, for all x ≥ 0. Suppose that the claim is

false. There exists x0 ≥ 0 such that v′(x0) ≤ 0. In light of (1.1), by integrating the �rst equation

−v′′ = (a− v2)v between x0 and x, we get

v′(x) = v′(x0)+

∫ x

x0

v′′(t) dt = v′(x0)+

∫ x

x0

(|v(t)|2 − a(t))v(t)dt ≤
∫ x

x0

(|v(t)|2 − a(t))v(t)dt .

Now, we apply Lemma 3.4 to deduce that for all x > x0, v
′(x) < 0. Consequently, v is a

decreasing function in [x0,∞) and we should have 1 = lim
x→∞

v(x) ≤ v(x0) , contradiction to the

fact that v(x0) <
√
a ≤ 1.

Remark 3.6. (The case a = 1)1

In the case a = 1, we can prove the uniqueness of the solution by using the aforementioned

lemmas and separation of variables. Let u ∈ C be a solution of (1.1). We know that u is smooth,

u(0) = 0, u(∞) = 1, u′(∞) = 0, 0 < u < 1 and u′ > 0 in R+.

Multiplying the �rst equation in (1.1) by u′ yields

−u′u′′ = u′u− u′u3 i.e.
1

2
{(u′)2}′ = 1

4
(u4)′ − 1

2
(u2)′ .

Consequently,

|u′| =
√

1

2
u4 − u2 + C in R+ ,

for some constant C ∈ R. The conditions u′(∞) = 0, u(∞) = 1 and u′ > 0 yield C = 1

2
and

u′ =
1√
2
(1− u2) .

By separation of variables and the boundary condition u(0) = 0, we get

u(x) =
e
√
2 x − 1

e
√
2 x + 1

.

Let us note that such explicit computations can not be carried out when the function a is not

constant.

1This trick is indicated by A. Mourad.
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4 Uniqueness

Here we prove that, if v1 ∈ C and v2 ∈ C solve (1.1), then v1 = v2. This will be proved in several
lemmas.

Lemma 4.1. Let C be the space in (1.2). Suppose that v1 ∈ C and v2 ∈ C satisfy (1.1). For all

δ > 0, it holds the following.

(i) {λ ∈ (0, 1] : λv1(x) < v2(x) in [δ,∞)} ̸= ∅ .

(ii) Let λ∗(δ) = sup{λ ∈ (0, 1] : λv1(x) < v2(x) in [δ,∞)} . If λ∗(δ) < 1, then

a. inf{v2(x)− λ∗(δ)v1(x) : x ∈ [δ,∞)} = 0.

b. λ∗(δ) =
v2(δ)

v1(δ)
.

Proof. Let δ > 0. Lemma 3.5 yields, for all x ≥ δ, v2(
δ
2
) < v2(x). On the other hand,

Lemma 3.4 yields 0 < v2(
δ
2
) < 1 and for all x ≥ δ, 0 < v1(x) < 1. Thus, if we de�ne

λ = v2(
δ
2
), then λ satis�es λ ∈ (0, 1] and λv1 < v2 in [δ,∞). This �nishes the proof of the �rst

item in Lemma 4.1.

Now, let us de�ne the function wδ on the interval [δ,∞) in the following way:

wδ(x) = v2(x)− λ∗(δ)v1(x)

Under the assumption λ∗(δ) < 1, one can prove that mδ := inf
x∈[δ,∞)

wδ(x) = 0 as follows.

Suppose that mδ > 0. For all x ∈ [δ,∞), v2(x) − λ∗(δ)v1(x) ≥ mδ and 0 < v1 < 1 (cf.

Lemma 3.4). Consequently,

v2(x) ≥ λ∗(δ)v1(x) +mδ = (λ∗(δ) +mδ)v1(x) + (1− v1(x))mδ ≥ (λ∗(δ) +mδ)v1(x) .

Select ϵ > 0 such that λ∗(δ) + ϵ < 1. De�ne λ = min(λ∗(δ) + ϵ, λ∗(δ) + mδ). Clearly,

0 < λ < 1 and λ∗(δ) < λ. We get v2 ≥ λv1 on [δ,∞) and 0 < λ∗(δ) < λ < 1. This contradicts

the de�nition of λ∗(δ). Therefore, the item (2)-(a) in Lemma 4.1 is true.

Now we prove the item (2)-(b) in Lemma 4.1. Suppose that δ > 0 and 0 < λ∗(δ) < 1. Using

the ODEs satis�ed by v1 and v2, we have for all x ∈ [δ,∞),

−v′′2 = (a− |v|22)v2 ,

and

−λ∗(δ)v′′1 = (a− v21)λ
∗(δ)v1

= (a− |λ∗(δ)v1|2)λ∗(δ)v1 + (|λ∗(δ)|2 − 1)λ∗(δ)|v1|2v1

≤ (a− |λ∗(δ)v1|2)λ∗(δ)v1 .

Therefore the function wδ satis�es

−w′′
δ + cwδ ≥ awδ in [δ,∞) ,

where

c = v22 + λ∗(δ)v2v1 + λ∗2(δ)v21 ≥ 0 .

Now that we have infwδ = 0 on [δ,∞), there exists a sequence (xn) ⊂ [δ,∞) and a number

s ∈ [δ,∞] such that (xn) converges to s and wδ(xn) converges to zero. Three cases may occur:

Case 1. s = ∞.

Here we have a contradiction that follows simply by using Lemma 3.2 to write wδ(xn) =
v2(xn)−λ∗(δ)v1(xn) → 1−λ∗(δ) > 0. This is impossible since wδ(xn) → 0 by the assumption

on the sequence (xn) and the conclusion of the item (2)-(a).

Case 2. s ∈ (δ,∞).
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Here wδ(s) = inf
[δ,∞)

wδ(x) ≤ 0. The strong maximum principle yields

wδ(x) = wδ(s) = 0 for all x ∈ [δ,∞).

By the de�nition of wδ, we get that v2 = λ∗(δ)v1 in [δ,∞). Using the ODEs satis�ed by v1 and
v2, and the fact that v1 > 0, this contradicts the assumption that λ∗(δ) < 1.

Case 3. s = δ.

Here infx∈[δ,∞) wδ(x) = wδ(δ) = 0. This yields λ∗(δ) =
v2(δ)

v1(δ)
.

The next lemma compares two solutions v1 and v2 away from 0.

Lemma 4.2. Let C be the space in (1.2), v1 ∈ C and v2 ∈ C. If v1 and v2 satisfy (1.1), then

∃ δ1 > 0 , v1(x) ≤ v2(x) in [δ1,∞) .

Proof. For all δ > 0, recall that λ∗(δ) = sup{λ ∈ (0, 1] : λv1(x) < v2(x) in [δ,∞)}. It suf�ces
to prove that, ∃ δ1 > 0, λ∗(δ1) = 1 . We will prove this by contradiction. Note for all δ > 0,

0 < λ∗(δ) ≤ 1. Suppose that for all δ > 0, λ∗(δ) < 1. Lemma 4.1 yields,

∀ δ > 0 , λ∗(δ) =
v2(δ)

v1(δ)
. (4.1)

Furthermore, since v1 > 0 on R+, then the function λ∗(·) is a smooth function on R+. By

de�nition of λ∗(·), we see that it is an increasing function.
We will prove that λ∗(·) is a constant function. We insert v2 = λ∗v1 into the equation

−v′′
2
= (a− v2

2
)v2 then we multiply both sides of the resulting equation by v1 to get

−
(
(λ∗)′v21

)′
= (1− λ∗2)λ∗v41 .

Let x ∈ R+. For all α ∈ (0, x),∫ x

α

(
v21(t)λ

∗′
(t)

)′
dt = −

∫ x

α

(
1− λ∗2(t)

)
λ∗(t)v41(t) dt ≤ 0 .

Hence, integration of the left hand side above yields,

v21(x)λ
∗′
(x) ≤ v21(α)λ

∗′
(α) . (4.2)

In what follows, we will establish that

lim
α→0+

v1(α)λ
∗′
(α) = 0 .

By Lemma 3.5, we have v′
1
(0) > 0 and v′

2
(0) > 0. Using Taylor's formula and the initial

conditions v1(0) = v2(0) = 0 we can easily prove that

lim
α→0+

λ∗(α) = lim
α→0+

v2(α)

v1(α)
=

v′
2
(0)

v′
1
(0)

. (4.3)

On the other hand, differentiation of the relation v2 = λ∗v1 yields

v′2(α) = v1(α)λ
∗′
(α) + v′1(α)λ

∗(α). (4.4)

By letting α tend to zero in (4.4) and by using (4.3), we establish the result concerning the limit

of v1(α)λ∗′
(α).

We come back to (4.2) and we take α → 0+ to obtain

v21(x)λ
∗′
(x) ≤ 0, for allx ∈ R+.
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We get further,

λ∗′
(x) ≤ 0 for allx ∈ R+.

But, λ∗(·) is an increasing (and smooth) function on R+, hence

λ∗′
(x) ≥ 0, for allx ∈ R+.

This proves that the function λ∗(·) is constant on R+.

Now we observe that λ∗ = 1. This is true because, the fact that λ∗ is constant, the de�nition

of λ∗ and the conclusion in Lemma 3.2 altogether yield,

∀ x > 0 , λ∗(x) =
v2(x)

v1(x)
= lim

x→∞

v2(x)

v1(x)
= 1 .

The next lemma is the last piece we need in the proof of the uniqueness of the non-negative

solution of (1.1).

Lemma 4.3. Suppose that −∞ < c < d < ∞, c1 ∈ R and c2 ∈ R. Let v1 and v2 be solutions to
the following problem: 

−v′′ = (a− |v|2)v, in (c, d) ,

v(d) = c1,

v′(d) = c2,

0 ≤ v(x) ≤ 1 in [c, d] .

(4.5)

If |c− d| ≤
√
8

8
, then v1 = v2 in [c, d].

Proof. Let v be a solution of (4.5) and t ∈ [c, d]. We have

v′(t) = c2 +

∫ d

t

(
a(s)− |v|2(s)

)
v(s) ds .

Integrating the equation above from t = 0 to t = x ∈ [c, d], we get,

v(x) = c1 + c2x− c2d−
∫ d

x

∫ d

t

(
a(s)− |v|2(s)

)
v(s) ds for allx ∈ [c, d] . (4.6)

For every g ∈ C([c, d]), let us introduce the following norm:

∥g∥1 =
∫ d

c

|g(x)|dx.

We will prove that

∥v1 − v2∥1 ≤
1

2
∥v1 − v2∥1 .

This yields that v1 = v2 on [c, d].
Using (4.6) for v = v1 and v = v2 respectively, we may write, for all x ∈ [c, d],

v1(x)− v2(x) =

∫ d

x

∫ d

t

(
v2(s)− v1(s)

)(
a(s)− v21(s)− v22(s)− v1(s)v2(s)

)
ds .

This yields the following inequality (since 0 ≤ a, v1, v2 ≤ 1):

|v1(x)− v2(x)| ≤ 4

∫ d

x

∫ d

t

|v1(s)− v2(s)| ds

≤ 4

∫ d

x

∫ d

c

|v1(s)− v2(s)| ds

≤ 4(d− c)∥v1 − v2∥1.
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If |c− d| ≤
√
8

8
, then we get further,∫ d

c

|v1(x)− v2(x)|dx ≤ 1

2
∥v1 − v2∥1 .

Proof of Theorem 1.1: Uniqueness.

Let v1 ∈ C and v2 ∈ C satisfy (1.1). We will prove that v1 = v2 on R+. By Lemma 4.2 there

exist δ1 > 0 and δ2 > 0 such that,

v1 ≤ v2 in [δ1,∞) and v2 ≤ v1 in [δ2,∞) .

Let δ = max(δ1, δ2). We have v1 = v2 on [δ,∞). We will prove that v1 = v2 on [0, δ]. Select
n ∈ N such that n ≥

√
8 δ. For all k ∈ {1, · · · , n}, de�ne,

ck = (k − 1)
δ

n
, dk = k

δ

n
.

That way, we split the interval [0, δ] into n sub-intervals,

[0, δ] =
n∪

k=1

[ck, dk] ,

such that, for all k, |ck − dk| = δ
n ≤

√
8

8
and we can apply Lemma 4.3 in [ck, dk].

Clearly, v1 and v2 satisfy (4.5) in [cn, dn]. Thus, we deduce that v1 = v2 on [cn, dn]. Now, v1
and v2 satisfy (4.5) in [cn−1, dn−1] and we deduce that v1 = v2 in [cn−1, dn−1]. Repeating this

proof in [ck, dk] for k = n − 2, · · · , 1, we get that v1 = v2 on every [ck, dk]. This proves that
v1 = v2 on [0, δ].

5 Proof of Corollary 1.2

Let v be a minimizer of the problem in (1.6). By Theorem 2.1, w = |v| is a minimizer of (1.6).

Hence, w ∈ C and w is a solution of (1.1).

Now Theorem 1.1 yields that w = u inR+, where u ∈ C is the unique solution of (1.1). Thus,

|v(x)| = u(x) for allx ∈ R+.

Consequently, there exists a function α : R+ → C such that,

v(x) = α(x)u(x) and |α(x)| = 1 for allx ∈ R+.

Since u > 0, the function α inherits the smoothness from u and v. Inserting v = αu into the

equation −v′′ = (a − |v|2)v, multiplying both sides by u then using that −u′′ = (a − u2)u, we
get

d

dx
(α′u2) = 0 .

Since u(0) = 0 and u > 0, this gives us that α′ = 0 and the function α becomes a constant

function. Since |α| = 1, we get that α = eiθ for some constant θ ∈ R.
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