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Abstract. LetR be a prime ring, I a nonzero right ideal ofR, U the two sided Utumi quotient

ring of R, C = Z(U) extended centroid of R, f(x1, . . . , xn) a nonzero multilinear polynomial

over C and m ≥ 1 a �xed integer. We prove that if F is a generalized derivation of R such that

(F (f(x1, . . . , xn))m = f(x1, . . . , xn) for all x1, . . . , xn ∈ I , then one of the following holds:

(i) IC = eRC some idempotent e ∈ Soc(RC) and f(x1, . . . , xn) is central valued on eRCe;

(ii) m = 1 and there exist α, λ ∈ C and a ∈ U such that F (x) = (a+ λ)x for all x ∈ R, with
(a− α)I = 0 and α+ λ = 1.

1 Introduction

Throughout this paperR always denotes an associative prime ring with center Z(R), U its Utumi

ring of quotients andC extended centroid ofR (see [2] for more details). For any pair of elements

x, y ∈ R, the commutator [x, y] = xy − yx and skew commutator x ◦ y = xy + yx. An additive
mapping d : R → R is called a derivation, if d(xy) = d(x)y + xd(y) holds for all x, y ∈ R. In
particular, d is an inner derivation induced by an element a ∈ R, if d(x) = [a, x] for all x ∈ R.
An additive mapping F : R → R is called a generalized derivation, if there exists a derivation

d : R → R such that F (xy) = F (x)y + xd(y) holds for all x, y ∈ R.
In [11], Daif and Bell proved that if R is a semiprime ring with a nonzero ideal I such that

d([x, y]) = ±[x, y] for all x, y ∈ I , then I is central ideal. In particular, if I = R, then R is

commutative. These results of Daif and Bell was extended by Hongan in [17] to the central case.

In [17], Hongan proved that if R is a 2-torsion free semiprime ring and I a nonzero ideal of

R, then I is central if and only if d([x, y]) − [x, y] ∈ Z(R) or d([x, y]) + [x, y] ∈ Z(R) for all
x, y ∈ I .

Recently in [14], De Filippis and Huang studied the situation (F ([x, y]))n = [x, y] for all
x, y ∈ I , where I is a nonzero ideal in a prime ring R, F a generalized derivation of R and n ≥ 1

�xed integer. In this case they conclude that either R is commutative or n = 1 and F (x) = x for

all x ∈ R.
In [1], Argac and Inceboz studied the situation d(x ◦ y)n = x ◦ y for all x, y in some nonzero

ideal of prime ring R. More precisely, they proved the following:

Let R be a prime ring, I a nonzero ideal of R, d a derivation of R and n a �xed positive

integer. (i) If d(x ◦ y)n = x ◦ y for all x, y ∈ I , then R is commutative. (ii) If char (R) ̸= 2 and

d(x ◦ y)n − x ◦ y ∈ Z(R) for all x, y ∈ I , then R is commutative. Very recently, Huang [18]

proved the following:

Let R be a prime ring, I a nonzero ideal of R and n a �xed positive integer. If R admits a

generalized derivation F associated with a nonzero derivation d such that (F (x ◦ y))n = x ◦ y
for all x, y ∈ I , then R is commutative.

In the present paper, we study the situations when (i) (F (f(x1, . . . , xn)))m−f(x1, . . . , xn) =
0; (ii) (F (f(x1, . . . , xn)))m − f(x1, . . . , xn) ∈ Z(R); for all x1, . . . , xn in some subsets of R,
where f(x1, . . . , xn) is a nonzero multilinear polynomial over C and m ≥ 1 is an integer.



488 Asma Ali, Basudeb Dhara and Shahoor Khan

Let R be a prime ring, U be the Utumi quotient ring of R and C = Z(U), the center of

U . Note that U is also a prime ring with C a �eld. We will make use of the following notation

extensively: f(x1, . . . , xn) = x1x2 . . . xn+
∑

I ̸=σ∈Sn

ασxσ(1) . . . xσ(n), where Sn is the permutation

group over n elements and ασ ∈ C. We denote by fd(x1, . . . , xn) the polynomial obtained from

f(x1, . . . , xn) by replacing each coef�cient ασ with d(ασ.1). Thus we write

d(f(x1, . . . , xn)) = fd(x1, . . . , xn) +
∑
i

f(x1, . . . , d(xi), . . . , xn).

Denote by U ∗C C{X1, . . . , Xn} the free product of the C-algebra U and C{X1

, . . . , Xn}, the free C-algebra in noncommuting indeterminates X1, . . . , Xn. The standard poly-

nomial identity s4 in four variables is de�ned as s4(x1, x2, x3, x4) =
∑

σ∈S4

(−1)σxσ(1)xσ(2)xσ(3)xσ(4)

where (−1)σ is +1 or −1 according to σ being an even or an odd permutation in the symmetric

group s4.
Now we need the following facts to prove our theorems.

Fact 1. It is well known that any derivation of R can be uniquely extended to a derivation of

U (see [23, Lemma 2]).

Fact 2. Let I be a nonzero two-sided ideal of R. Then I , R, U satisfy the same generalized

polynomial identities with coef�cients in U (see [6]).

Fact 3. Let I be a nonzero two-sided ideal ofR. Then I ,R and U satisfy the same differential

identities with coef�cients in U (see [23, Theorem 2]).

Fact 4. Let I be a nonzero right ideal of R. If I satis�es a nontrivial polynomial identity,

then RC is a primitive ring with soc(RC) ̸= 0 and IC = eRC for some idempotent e = e2 ∈
soc(RC) (see [22, Proposition]).

Fact 5. Let I be a nonzero right ideal of R and a ∈ U . If for every x ∈ I , ax and x are

linearly C-dependent, then there exists α ∈ C such that (a− α)I = 0.

Proof. Let x ∈ I a �xed element. Then there exists α ∈ C such that ax = αx. Now choose any

element y ∈ I . By hypothesis, there exists αy ∈ C such that ay = αyy. If x and y are linearly

C-dependent, then x = βy, for β ∈ C. In this case, we see that ax = aβy = βay = βαyy =
αyβy = αyx, implying α = αy.

Now if x and y are linearlyC-independent, then we have αx+y(x+y) = a(x+y) = ax+ay =
αxx + αyy, which implies (αx+y − αx)x + (αx+y − αy)y = 0. Since x and y are linearly C-

independent, we have αx+y−αx = 0 = αx+y−αy and so α = αy. Thus for any x ∈ I , ax = αx,
where α ∈ C �xed. Hence, (a− α)I = 0. 2

Fact 6. R satis�es s4 if and only if R is commutative or R embeds in M2(K) for K a �eld

(see [3, Lemma 1]).

2 The case for both-sided ideals

We begin with a matrix ring case.

Lemma 2.1. Let R = Mk(F ) be the ring of k × k matrices over the �eld F with k ≥ 2. Let

f(x1, . . . , xn) be a multilinear polynomial over F which is not central valued on R, a, b ∈ R and

m ≥ 1 a �xed positive integer.

(I) If (af(x1, . . . , xn)+ f(x1, . . . , xn)b)m = f(x1, . . . , xn) for all x1, . . . , xn ∈ R, thenm = 1

and a, b ∈ F · Ik with a+ b = 1.

(II) If (af(x1, . . . , xn)+f(x1, . . . , xn)b)m−f(x1, . . . , xn) ∈ Z(R) for all x1, . . . , xn ∈ R, then

m = 1 and a, b ∈ F · Ik with a+ b = 1 or k = 2.

Proof. Let eij be the usual matrix unit with 1 in (i, j) entry and zero elsewhere. By our as-

sumption (af(r1, . . . , rn) + f(r1, . . . , rn)b)m − f(r1, . . . , rn) ∈ Z(R) for all r1, . . . , rn ∈ R.
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Since f(r1, . . . , rn) is not central valued on R, by [25, Lemma 2, proof of Lemma 3] there

exist r1, . . . , rn ∈ R such that f(r1, . . . , rn) = αeij , with 0 ̸= α ∈ F and i ̸= j. Since

the subset {f(r1, . . . , rn) : r1, . . . , rn ∈ R} is invariant under any F -automorphism, then for

any i ̸= j there exist t1, . . . , tn ∈ R such that f(t1, . . . , tn) = αeij . Thus for any i ̸= j,
(aαeij + αeijb)m − αeij ∈ Z(R). If k ≥ 3, then since rank of (aαeij + αeijb)m − αeij is ≤ 2,

we have

(aαeij + αeijb)
m − αeij = 0 (2.1)

in R. Right multiply by eij we get 0 = ((aαeij + αeijb)m − αeij)eij = (αeijb)meij . It follows
that the (j, i)-th entry of the matrix b is zero, for all i ̸= j and this means that b is diagonal,

that is b =
∑
t

αtett, with αt ∈ F . For any F -automorphism θ of R, bθ enjoys the same

property as b does, namely, (aθf(r1, . . . , rn)+ f(r1, . . . , rn)bθ)m− f(r1, . . . , rn) ∈ Z(R) for all

r1, . . . , rn ∈ R. Hence, bθ must be diagonal. Write b =
k∑

i=1

biieii; then for each j ̸= 1, we have

(1+ e1j)b(1− e1j) =
k∑

i=1

biieii + (bjj − b11)e1j

diagonal. Therefore, bjj = b11 and so b is a scalar matrix. Similarly, left multiplying by eij in
(2.1) and then by same argument as above we have that a is a scalar matrix. Therefore a, b ∈ F.Ik.

Then (2.1) becomes

(a+ b)m(αeij)
m = αeij . (2.2)

If m ≥ 2, then 0 = eij , a contradiction. Hence m = 1 and so (a + b − 1)αeij = 0, implying

a+ b− 1 = 0. 2

Lemma 2.2. Let R be a prime ring, I a nonzero ideal of R and f(x1, . . . , xn) a multilinear

polynomial over C which is not central valued on R. Suppose that F (x) = ax+ xb is an inner

generalized derivation of R such that (F (f(x1, . . . , xn))m = f(x1, . . . , xn) for all x1, . . . , xn ∈
I , where m ≥ 1 is a �xed integer. Then m = 1 and a, b ∈ C with a+ b = 1.

Proof. Since I , R and U satisfy the same generalized polynomial identities (see Fact-2), without

loss of generality, we may assume that (af(x1, . . . , xn)+ f(x1, . . . , xn)b)m = f(x1, . . . , xn) for
all x1, . . . , xn ∈ U .

First we assume thatU does not satisfy any nontrivial GPI. Then (af(x1, . . . , xn)+f(x1, . . . , xn)b)m =
f(x1, . . . , xn) is a trivial GPI forU . This implies that b ∈ C. ThenU satis�es ((a+b)f(x1, . . . , xn))m−
f(x1, . . . , xn) = 0. Again this implies that a + b ∈ C. Therefore, we have in this case that

a, b ∈ C.

Next we assume thatU satis�es nontrivial GPI (af(x1, . . . , xn)+f(x1, . . . , xn)b)m = f(x1, . . . , xn).
Let g(x1, . . . , xn) = (af(x1, . . . , xn) + f(x1, . . . , xn)b)m − f(x1, . . . , xn). In case C is in�nite,

we have g(r1, . . . , rn) = 0 for all r1, . . . , rn ∈ U ⊗C C, where C is the algebraic closure of C.

Since both U and U ⊗C C are centrally closed [15, Theorem 2.5 and 3.5] we may replace R by

U or U ⊗C C according as C is �nite or in�nite. Thus we may assume that R is centrally closed

over C which is either �nite or algebraically closed and g(r1, . . . , rn) = 0 for all r1, . . . , rn ∈ R.
By Martindale's theorem [26], R is a primitive ring having nonzero socle H with C as the asso-

ciated division ring. In light of Jacobson's theorem [19, p. 75], R is isomorphic to a dense ring

of linear transformations on a vector space V over C. Now, if V is �nite dimensional over C,

then the density of R on V implies that R ∼= Mk(C) with k =dimCV . Since f(x1, . . . , xn) is
not central valued on R, R must be noncommutative. Hence k ≥ 2. Then by Lemma 2.1(I), we

conclude that a, b ∈ C.

If V is in�nite dimensional over C, then as in [27, Lemma 2] the set f(R) is dense on R
and so from (af(r1, . . . , rn) + f(r1, . . . , rn)b)m = f(r1, . . . , rn) for all r1, . . . , rn ∈ R, we have
(ar+rb)m−r = 0 for all r ∈ R. Let v and bv are C-independent for some v ∈ R. By the density
of R, there exist r ∈ R such that rv = 0, rbv = v. Therefore we have 0 = ((ar + rb)m − r)v =
v ̸= 0, which is a contradiction. Thus v and bv must be C-dependent, for any v ∈ V . By standard
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argument, there exists α ∈ C such that bv = vα, for all v ∈ V . Let now r ∈ R and v ∈ V . As

we have just seen, there exist α ∈ C such that bv = vα, r(bv) = r(vα), and also b(rv) = (rv)α.
Thus [b, r]v = 0 for any v ∈ V , that is [b, r]V = 0. Since V is left faithful irreducible R-module,

[b, r] = 0 for all r ∈ R, i.e. b ∈ C. Similarly, we can prove that a ∈ C.

Thus in any case, we have proved that a, b ∈ C. By our hypothesis, we have (a+b)mf(x1, . . . , xn)m−
f(x1, . . . , xn) = 0 for all x1, . . . , xn ∈ R. If m = 1, then (a + b − 1)f(x1, . . . , xn) = 0 for all

x1, . . . , xn ∈ R, implying a+ b− 1 = 0, since f(x1, . . . , xn) is not an identity for R. If m ≥ 2,

then since (a + b)mf(x1, . . . , xn)m − f(x1, . . . , xn) = 0 is a polynomial identity for R, there
exists a �eld F such that R ⊆ Mk(F ) and R and Mk(F ) satisfy the same polynomial identity

(a+ b)mf(x1, . . . , xn)m − f(x1, . . . , xn) = 0 [21, Lemma 1]. Since f(x1, . . . , xn) is noncentral
valued on R, R must be noncommutative and hence k ≥ 2. By [25, Lemma 2, proof of Lemma

3] there exist r1, . . . , rn ∈ R such that f(r1, . . . , rn) = αeij , with 0 ̸= α ∈ F and i ̸= j. Thus
0 = (a+b)mf(r1, . . . , rn)m−f(r1, . . . , rn) = (a+b)m(αeij)m−αeij = −αeij , a contradiction.
2

Theorem 2.3. Let R be a prime ring, I a nonzero ideal of R and f(x1, . . . , xn) a multilinear

polynomial over C which is not central valued on R. Suppose that F is a generalized derivation

of R such that (F (f(x1, . . . , xn))m = f(x1, . . . , xn) for all x1, . . . , xn ∈ I , where m ≥ 1 is a

�xed integer. Then m = 1 and F (x) = x for all x ∈ R.

Proof. If F is an inner generalized derivation of R, then the result follows by Lemma 2.2. Since

I , R and U satisfy the same generalized polynomial identities (see Fact-2) as well as same dif-

ferential identities (see Fact-3), by Lee [24] F (x) = ax + d(x) for all x ∈ R, and hence U
satis�es U satis�es (a(f(x1, . . . , xn)+d(f(x1, . . . , xn)))m = f(x1, . . . , xn), where a ∈ U and d
is a derivation of U . Since F is not inner, d cannot be inner derivation of U . In this case U satis-

�es the differential identity (af(x1, . . . , xn)+ fd(x1, . . . , xn)+
∑
i

f(x1, . . . , d(xi), . . . xn))m =

f(x1, . . . , xn). Then by Kharchenko's Theorem in [20], U satis�es the generalized polynomial

identity (af(x1, . . . , xn) + fd(x1, . . . , xn) +
∑
i

f(x1, . . . , yi, . . . xn))m = f(x1, . . . , xn). In par-

ticular, by assuming x1 = 0, we have f(y1, . . . , xn)m = 0. This is a polynomial identity for U ,

hence there exists a �eld E such that U ⊆ Mk(E), moreover U and Mk(E) satis�es the same

polynomial identities [21, Lemma 1]. Thus Mk(E) satis�es f(y1, . . . , xn)m = 0. Then by [25,

Corollary 5] f(x1, . . . , xn) is an identity for Mk(F ) and so for R, a contradiction. 2

Corollary 2.4. Let R be a prime ring and I be a nonzero ideal of R. Suppose that F is a

generalized derivation with associated nonzero derivation d of R such that (F (x ◦ y))m = x ◦ y
for all x, y ∈ I , where m ≥ 1 is a �xed integer. Then R is commutative or m = 1 and F (x) = x
for all x ∈ R.

Proof. By Theorem 2.3, we conclude that x ◦ y ∈ Z(R) for all x, y ∈ R orm = 1 and F (x) = x
for all x ∈ R. Now we are only to consider the case x ◦ y ∈ Z(R), that is [xy + yx, z] = 0

for all x, y ∈ R. Then replacing y with yz we have [xy + yx, z]z + [y[z, x], z] = 0, implying

[y[z, x], z] = 0 for all x, y, z ∈ R. Again, replacing y with xy, we have 0 = [xy[z, x], z] =
x[y[z, x], z] + [x, z]y[z, x] = [x, z]y[z, x] for all x, y, z ∈ R. Since R is prime ring, we have

[x, z] = 0 for all x, z ∈ R, implying R to be commutative. 2

Corollary 2.5. Let R be a prime ring I be a nonzero ideal of R. Suppose that F is a generalized

derivation with associated nonzero derivation d of R such that (F ([x, y]))m = [x, y] for all

x, y ∈ I , where m ≥ 1 is a �xed integer. Then R is commutative or m = 1 and F (x) = x for all

x ∈ R.

Proof. By Theorem 2.3, we conclude that [x, y] ∈ Z(R) for all x, y ∈ R orm = 1 and F (x) = x
for all x ∈ R. Now we are only to consider the case [x, y] ∈ Z(R), that is [[x, y], z] = 0

for all x, y ∈ R. Then replacing y with yz we have [[x, y], z]z + [y[x, z], z] = 0, implying

[y[x, z], z] = 0 for all x, y, z ∈ R. Again, replacing y with xy, we have 0 = [xy[x, z], z] =
x[y[x, z], z] + [x, z]y[x, z] = [x, z]y[x, z] for all x, y, z ∈ R. Since R is prime ring, we have
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[x, z] = 0 for all x, z ∈ R, implying R to be commutative. 2

Theorem 2.6. Let R be a prime ring, I a nonzero ideal of R and f(x1, . . . , xn) a multilinear

polynomial over C which is not central valued on R. Suppose that F is a generalized derivation

of R such that (F (f(x1, . . . , xn))m−f(x1, . . . , xn) ∈ Z(R) for all x1, . . . , xn ∈ I , wherem ≥ 1

is a �xed integer. Then one of the following holds:

(1) m = 1 and F (x) = x for all x ∈ R;

(2) R satis�es s4;
(3) f(x1, . . . , xn)m ∈ C for all x1, . . . , xn ∈ R.

Proof. By the hypothesis

[F (f(x1, . . . , xn))
m − f(x1, . . . , xn), xn+1] = 0 (2.3)

for all x1, . . . , xn+1 ∈ I . Since I , R and U satisfy the same generalized polynomial identities

(see Fact-2) as well as same differential identities (see Fact-3), by Lee [24] F (x) = ax + d(x)
for all x ∈ R, and hence U satis�es

[(af(x1, . . . , xn) + d(f(x1, . . . , xn)))
m − f(x1, . . . , xn), xn+1] = 0, (2.4)

where a ∈ U and d is a derivation of U . Now we consider the following two cases:

Case-I: Let d be inner derivation of U , say d(x) = [b, x] for all x ∈ U and for some b ∈ U . Then

by (2.4), U satis�es

((a+ b)f(x1, . . . , xn)− f(x1, . . . , xn)b)
m − f(x1, . . . , xn) ∈ C. (2.5)

If ((a + b)f(x1, . . . , xn) − f(x1, . . . , xn)b)m − f(x1, . . . , xn) = 0 for all x1, . . . , xn ∈ U , then

by Lemma 2.2, m = 1 and a, b ∈ C, with a+ b = 1. In this case F (x) = x for all x ∈ U and so

for all x ∈ R, as desired.
If for some r1, . . . , rn ∈ U ((a + b)f(r1, . . . , rn) − f(r1, . . . , rn)b)m − f(r1, . . . , rn) ̸= 0, then

((a+ b)f(x1, . . . , xn)− f(x1, . . . , xn)b)m − f(x1, . . . , xn) ∈ C is a nonzero central generalized

identity for U , by [9, Theorem 1] U is a PI-ring and hence U is a nontrivial GPI-ring simple

with 1. By lemma 2 in [21] and Theorem 2.3.29 in [28], there exists a �eld E such that U ⊆
Mk(E) and U andMk(E) satisfy the same generalized identities. Thus ((a+ b)f(x1, . . . , xn)−
f(x1, . . . , xn)b)m − f(x1, . . . , xn) ∈ Z(Mk(E)) for all x1, . . . , xn ∈ Mk(E). Then by Lemma

2.1 (II), we conclude that either m = 1, a = 1 and b ∈ C or k = 2. In the �rst case F (x) = x
for all x ∈ R, as desired. In the second case, U and so R satis�es s4.
Case-II: Let d be not inner derivation of U . Then from (2.4), U satis�es[(

af(x1, . . . , xn)+fd(x1, . . . , xn)+
∑
i

f(x1, . . . , d(xi), . . . , xn)

)m

−f(x1, . . . , xn), xn+1

]
= 0.

By Kharchenko's Theorem [20], U satis�es the generalized polynomial identity[(
af(x1, . . . , xn)+ fd(x1, . . . , xn)+

∑
i

f(x1, . . . , yi, . . . , xn)

)m

− f(x1, . . . , xn), xn+1

]
= 0.

In particular, for x1 = 0, we have f(y1, . . . , xn)m ∈ C for all y1, x2, . . . , xn ∈ U and so for all

y1, x2, . . . , xn ∈ R. 2

3 The case for one sided ideals

In this section we will prove our next Theorem for a one sided ideal of R. To prove this theorem,

we need the following Lemmas.

Lemma 3.1. ([5, Lemma 2]) Let R be a prime ring, I a nonzero right ideal of R, f(x1, . . . , xn)
a multilinear polynomial over C, a ∈ R and m a �xed positive integer.

(I) If af(x1, . . . , xn)m = 0 for all x1, . . . , xn ∈ I , then either aI = 0 or f(I)I = 0.

(II) If f(x1, . . . , xn)ma = 0 for all x1, . . . , xn ∈ I , then either a = 0 or f(I)I = 0.
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Lemma 3.2. Let R be a prime ring with extended centroid C, I a nonzero right ideal of R and

f(x1, . . . , xn) a nonzero multilinear polynomial over C. If for some a, b ∈ R, (a(f(x1, . . . , xn)+
(f(x1, . . . , xn)b)m − f(x1, . . . , xn) = 0 for all x1, . . . , xn ∈ I , then R satisfy a nontrivial gener-

alized polynomial identity or m = 1 and there exists α ∈ C such that (a− α)I = 0, b ∈ C with

b+ α = 1.

Proof. By our hypothesis, for any u ∈ I , R satis�es the following generalized identity

(a(f(ux1, . . . , uxn) + (f(ux1, . . . , uxn)b)
m − f(ux1, . . . , uxn) = 0. (3.1)

We assume that this is a trivial GPI for R, for otherwise we are done. If there exists u ∈ I such

that {u, au} is linearly C-independent, then from above R satis�es

af(ux1, . . . , uxn)(af(ux1, . . . , uxn) + f(ux1, . . . , uxn)b)
m−1 = 0. (3.2)

Again, since {u, au} is linearly C-independent, we have from above relation that R satis�es

(af(ux1, . . . , uxn))
2(af(ux1, . . . , uxn) + f(ux1, . . . , uxn)b)

m−2 = 0 (3.3)

and hence (af(ux1, . . . , uxn))m = 0, which is nontrivial, a contradiction. Thus {u, au} is lin-

early dependent over C for all u ∈ I . Then by Fact-5 (a− α)I = 0 for some α ∈ C. Then (3.1)

becomes

(f(ux1, . . . , uxn)(b+ α))m − f(ux1, . . . , uxn) = 0. (3.4)

Since this is trivial identity for R, we have that b+ α ∈ C, that is b ∈ C. Thus identity reduces

to

(b+ α)mf(ux1, . . . , uxn)
m − f(ux1, . . . , uxn) = 0. (3.5)

Since this is trivial identity for R, we conclude that m = 1 and b+ α− 1 = 0. 2

Lemma 3.3. Let R be a prime ring with extended centroid C, I a nonzero right ideal of R,

f(x1, . . . , xn) a nonzero multilinear polynomial over C and m ≥ 1 a �xed integer. If F is

an inner generalized derivation of R such that (F (f(x1, . . . , xn))m = f(x1, . . . , xn) for all

x1, . . . , xn ∈ I , then one of the following holds:

(i) IC = eRC some idempotent e ∈ Soc(RC) and f(x1, . . . , xn) is central valued on eRCe;

(ii) m = 1 and there exist α, λ ∈ C and a ∈ U such that F (x) = (a+ λ)x for all x ∈ R, with

(a− α)I = 0 and α+ λ = 1.

Proof. Since F is inner, there exist a, b ∈ U such that F (x) = ax+ xb for all x ∈ R. If R does

not satisfy any nontrivial GPI, then by Lemma 3.2, we conclude that m = 1 and there exists

α ∈ C such that (a−α)I = 0, b ∈ C, b+α = 1. In this case F (x) = ax+ xb = (a+ b)x for all

x ∈ R, where 0 = (a− α)I = (a+ b− 1)I . This gives particular case of conclusion (2), when

λ = 0.

So we assume that R satis�es a nontrivial GPI. If I = R, then by Lemma 2.2, m = 1 and

a, b ∈ C with a+ b = 1. In this case we have F (x) = x for all x ∈ R. This is also a particular

case of conclusion (2).

So let I ̸= R. We assume �rst that [f(I), I]I = 0, that is [f(x1, . . . , xn), xn+1]xn+2 = 0 for

all x1, x2, . . . , xn+2 ∈ I . Then by Fact-4, IC = eRC for some idempotent e ∈ soc(RC).
Since [f(I), I]I = 0, we have [f(IR), IR]IR = 0 and hence [f(IU), IU ]IU = 0 by [6, The-

orem 2]. In particular, [f(IC), IC]IC = 0, or equivalently, [f(eRC), eRC]eRC = 0. Then

[f(eRCe), eRCe] = 0, that is, f(x1, . . . , xn) is central-valued on eRCe and hence conclusion

(1) is obtained.

So we assume that [f(I), I]I ̸= 0, that is [f(x1, . . . , xn), xn+1]xn+2 is not an identity for I . In
this case R is a prime GPI-ring and so is U (see Fact-2). Since U is centrally closed over C,

it follows that [26] U is a primitive ring with H = Soc(U) ̸= 0. Then [f(IH), IH]IH ̸= 0.

For otherwise [f(IU), IU ]IU = 0 by [6], a contradiction. Choose un, . . . , un+2 ∈ IH such that

[f(u1, . . . un), un+1]un+2 ̸= 0. Let u ∈ IH . Since H is a regular ring, there exists e2 = e ∈ H
such that eH = uH+u1H+· · ·+un+2H . Then e ∈ IH and u = eu, ui = eui for i = 1, . . . , n+2.
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Thus, we have 0 ̸= [f(eH), eH]eH = [f(eHe), eHe]H i.e., f(r1, . . . , rn) is not central-valued
in eHe.
By our assumption and by Fact-2 we may also assume that

(a(f(x1, . . . , xn) + (f(x1, . . . , xn)b)
m = f(x1, . . . , xn)

is an identity for IU . In particular,

(a(f(x1, . . . , xn) + (f(x1, . . . , xn)b)
m = f(x1, . . . , xn)

is an identity for IH and so for eH . It follows that for all r1, . . . , rn ∈ H

(a(f(er1, . . . , ern) + (f(er1, . . . , ern)b)
m = f(er1, . . . , ern) (3.6)

we may write

f(x1, . . . , xn) =
∑
i

ti(x1, . . . , xi−1, xi+1, . . . , xn)xi,

where ti is a suitable multilinear polynomial in n − 1 variables and xi never appears in any

monomials of ti. Since f(eHe) ̸= 0, there exists some ti which does not vanish in eHe. Without

loss of generality tn(eHe) ̸= 0. Let r ∈ R. Then replacing rn with r(1− e) in (3.6), we have(
atn(er1, . . . , ern−1)er(1− e) + tn(er1, . . . , ern−1)er(1− e)b

)m

= tn(er1, . . . , ern−1)er(1− e). (3.7)

Left multiplying by (1 − e) in (3.7), we obtain (1 − e)(atn(er1, . . . , ern−1)er(1 − e))m =
0, that is ((1 − e)atn(er1, . . . , ern−1)er)m+1 = 0 for all r ∈ H . By [16], we have (1 −
e)atn(er1, . . . , ern−1)eH = 0 implying (1−e)aetn(er1e, . . . , ern−1e) = 0 for all r1, . . . , rn−1 ∈
H . Since eHe is a simple Artinian ring and tn(eHe) ̸= 0 is invariant under the action of all inner

automorphisms of eHe, by [7, Lemma 2], (1 − e)ae = 0 that is, eae = ae. Analogously right

multiplying by e in (3.7) and then by above argument we conclude that (1−e)be = 0. Moreover,

since in particular from (3.6) we can write that H satis�es

e{(af(er1e, . . . , erne) + f(er1e, . . . , erne)b)
m − f(er1e, . . . , erne)}e = 0,

and so using the facts ae = eae and be = ebe, we have eHe satis�es

(eaef(r1, . . . , rn) + f(r1, . . . , rn)ebe)
m − f(r1, . . . , rn) = 0.

Then by Lemma 2.2, since f(r1, . . . , rn) is not central valued in eHe, we conclude that m = 1

and eae, ebe ∈ Ce. Therefore ae = eae ∈ Ce and be = ebe ∈ Ce. Thus au = aeu = eaeu ∈ Cu
and hence au, u are linearly C-dependent for each u ∈ I . So by Fact-5 (a − α)I = 0 for some

α ∈ C. Similarly (b− β)I = 0 for some β ∈ C.

Then our hypothesis

(af(r1, . . . , rn) + f(r1, . . . , rn)b)
m − f(r1, . . . , rn) = 0 (3.8)

for all r1, . . . , rn ∈ I gives

f(r1, . . . , rn)(b+ α)− f(r1, . . . , rn) = 0 (3.9)

for all r1, . . . , rn ∈ I , since m = 1. Thus

f(r1, . . . , rn)(b+ α− 1) = 0 (3.10)

for all r1, . . . , rn ∈ I. Then by Lemma 3.1(II), either b+α−1 = 0 or f(I)I = 0. Since f(I)I = 0

implies [f(I), I]I = 0, a contradiction, we have b = 1−α ∈ C. Thus F (x) = ax+xb = (a+b)x
for all x ∈ R, which gives our conclusion (2). 2

Now we are in a position to prove our main theorem for a one sided ideal of R.
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Theorem 3.4. Let R be a prime ring with extended centroid C, I a nonzero right ideal of R,

f(x1, . . . , xn) a nonzero multilinear polynomial over C and m ≥ 1 a �xed integer. If F is a

generalized derivation of R such that (F (f(x1, . . . , xn))m = f(x1, . . . , xn) for all x1, . . . , xn ∈
I , then one of the following holds:

(i) IC = eRC some idempotent e ∈ Soc(RC) and f(x1, . . . , xn) is central valued on eRCe;

(ii) m = 1 and there exist α, λ ∈ C and a ∈ U such that F (x) = (a+ λ)x for all x ∈ R, with

(a− α)I = 0 and α+ λ = 1.

Proof. If F is inner generalized derivation of R, then by Lemma 3.3, we are done. Now let F
be not inner. By [24], we have F (x) = ax+ d(x) for some a ∈ U and a derivation d on U . Let

u1, . . . , un ∈ I . Then by [21], U satis�es(
af(u1x1, . . . , u1xn) + d(f(u1x1, . . . , u1xn))

)m

= f(u1x1, . . . , u1xn),

that is (
af(u1x1, . . . , u1xn) + fd(u1x1, . . . , unxn)

+
∑
j

f(u1x1, . . . , d(uj)xj + ujd(xj), . . . , xn)

)m

= f(u1x1, . . . , u1xn).

Since F is not inner, d is also not inner derivation. Then by Kharchenko's theorem [20], U
satis�es (

af(u1x1, . . . , u1xn) + fd(u1x1, . . . , unxn)

+
∑
j

f(u1x1, . . . , d(uj)xj + ujyj , . . . , xn)

)m

= f(u1x1, . . . , u1xn).

In particular, putting x1 = 0, U satis�es

f(u1y1, . . . , unxn)
m = 0.

Since I and IU satis�es the same polynomial identities, we have that I satis�es f(x1, . . . , xn)m =
0. By Lemma 3.1, f(I)I = 0 and hence [f(I), I]I = 0. Then conclusion (1) is obtained by Fact-

4. 2
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