Generalized derivations and multilinear polynomials in prime rings

Asma Ali, Basudeb Dhara and Shahoor Khan

Communicated by Ayman Badawi

MSC 2010 Classifications: 16W25, 16W80, 16N60.

Keywords and phrases: Prime ring, derivation, generalized derivation, multilinear polynomial.

First named-author is supported by a grant from Science and Engineering Research Board (SERB), DST, New Delhi, India. Grant No. SR/S4/MS:852/13.

Abstract. Let R be a prime ring, I a nonzero right ideal of R, U the two sided Utumi quotient ring of R, C = Z(U) extended centroid of R, $f(x_1, \ldots, x_n)$ a nonzero multilinear polynomial over C and $m \ge 1$ a fixed integer. We prove that if F is a generalized derivation of R such that $(F(f(x_1, \ldots, x_n))^m = f(x_1, \ldots, x_n)$ for all $x_1, \ldots, x_n \in I$, then one of the following holds:

- (i) IC = eRC some idempotent $e \in Soc(RC)$ and $f(x_1, \ldots, x_n)$ is central valued on eRCe;
- (ii) m = 1 and there exist $\alpha, \lambda \in C$ and $a \in U$ such that $F(x) = (a + \lambda)x$ for all $x \in R$, with $(a \alpha)I = 0$ and $\alpha + \lambda = 1$.

1 Introduction

Throughout this paper R always denotes an associative prime ring with center Z(R), U its Utumi ring of quotients and C extended centroid of R (see [2] for more details). For any pair of elements $x, y \in R$, the commutator [x, y] = xy - yx and skew commutator $x \circ y = xy + yx$. An additive mapping $d : R \to R$ is called a derivation, if d(xy) = d(x)y + xd(y) holds for all $x, y \in R$. In particular, d is an inner derivation induced by an element $a \in R$, if d(x) = [a, x] for all $x \in R$. An additive mapping $F : R \to R$ is called a generalized derivation, if there exists a derivation $d : R \to R$ such that F(xy) = F(x)y + xd(y) holds for all $x, y \in R$.

In [11], Daif and Bell proved that if R is a semiprime ring with a nonzero ideal I such that $d([x, y]) = \pm [x, y]$ for all $x, y \in I$, then I is central ideal. In particular, if I = R, then R is commutative. These results of Daif and Bell was extended by Hongan in [17] to the central case. In [17], Hongan proved that if R is a 2-torsion free semiprime ring and I a nonzero ideal of R, then I is central if and only if $d([x, y]) - [x, y] \in Z(R)$ or $d([x, y]) + [x, y] \in Z(R)$ for all $x, y \in I$.

Recently in [14], De Filippis and Huang studied the situation $(F([x, y]))^n = [x, y]$ for all $x, y \in I$, where I is a nonzero ideal in a prime ring R, F a generalized derivation of R and $n \ge 1$ fixed integer. In this case they conclude that either R is commutative or n = 1 and F(x) = x for all $x \in R$.

In [1], Argac and Inceboz studied the situation $d(x \circ y)^n = x \circ y$ for all x, y in some nonzero ideal of prime ring R. More precisely, they proved the following:

Let R be a prime ring, I a nonzero ideal of R, d a derivation of R and n a fixed positive integer. (i) If $d(x \circ y)^n = x \circ y$ for all $x, y \in I$, then R is commutative. (ii) If char $(R) \neq 2$ and $d(x \circ y)^n - x \circ y \in Z(R)$ for all $x, y \in I$, then R is commutative. Very recently, Huang [18] proved the following:

Let R be a prime ring, I a nonzero ideal of R and n a fixed positive integer. If R admits a generalized derivation F associated with a nonzero derivation d such that $(F(x \circ y))^n = x \circ y$ for all $x, y \in I$, then R is commutative.

In the present paper, we study the situations when (i) $(F(f(x_1, \ldots, x_n)))^m - f(x_1, \ldots, x_n) = 0$; (ii) $(F(f(x_1, \ldots, x_n)))^m - f(x_1, \ldots, x_n) \in Z(R)$; for all x_1, \ldots, x_n in some subsets of R, where $f(x_1, \ldots, x_n)$ is a nonzero multilinear polynomial over C and $m \ge 1$ is an integer.

Let R be a prime ring, U be the Utumi quotient ring of R and C = Z(U), the center of U. Note that U is also a prime ring with C a field. We will make use of the following notation extensively: $f(x_1, \ldots, x_n) = x_1 x_2 \ldots x_n + \sum_{I \neq \sigma \in S_n} \alpha_\sigma x_{\sigma(1)} \ldots x_{\sigma(n)}$, where S_n is the permutation group over n elements and $\alpha_\sigma \in C$. We denote by $f^d(x_1, \ldots, x_n)$ the polynomial obtained from

group over *n* elements and $\alpha_{\sigma} \in C$. We denote by $f^{a}(x_{1}, \ldots, x_{n})$ the polynomial obtained from $f(x_{1}, \ldots, x_{n})$ by replacing each coefficient α_{σ} with $d(\alpha_{\sigma}.1)$. Thus we write

$$d(f(x_1,\ldots,x_n)) = f^d(x_1,\ldots,x_n) + \sum_i f(x_1,\ldots,d(x_i),\ldots,x_n).$$

Denote by $U *_C C\{X_1, \ldots, X_n\}$ the free product of the C-algebra U and $C\{X_1$

 $,\ldots, X_n$ }, the free *C*-algebra in noncommuting indeterminates X_1, \ldots, X_n . The standard polynomial identity s_4 in four variables is defined as $s_4(x_1, x_2, x_3, x_4) = \sum_{\sigma \in S_4} (-1)^{\sigma} x_{\sigma(1)} x_{\sigma(2)} x_{\sigma(3)} x_{\sigma(4)}$

where $(-1)^{\sigma}$ is +1 or -1 according to σ being an even or an odd permutation in the symmetric group s_4 .

Now we need the following facts to prove our theorems.

Fact 1. It is well known that any derivation of R can be uniquely extended to a derivation of U (see [23, Lemma 2]).

Fact 2. Let I be a nonzero two-sided ideal of R. Then I, R, U satisfy the same generalized polynomial identities with coefficients in U (see [6]).

Fact 3. Let I be a nonzero two-sided ideal of R. Then I, R and U satisfy the same differential identities with coefficients in U (see [23, Theorem 2]).

Fact 4. Let I be a nonzero right ideal of R. If I satisfies a nontrivial polynomial identity, then RC is a primitive ring with $soc(RC) \neq 0$ and IC = eRC for some idempotent $e = e^2 \in soc(RC)$ (see [22, Proposition]).

Fact 5. Let I be a nonzero right ideal of R and $a \in U$. If for every $x \in I$, ax and x are linearly C-dependent, then there exists $\alpha \in C$ such that $(a - \alpha)I = 0$.

Proof. Let $x \in I$ a fixed element. Then there exists $\alpha \in C$ such that $ax = \alpha x$. Now choose any element $y \in I$. By hypothesis, there exists $\alpha_y \in C$ such that $ay = \alpha_y y$. If x and y are linearly C-dependent, then $x = \beta y$, for $\beta \in C$. In this case, we see that $ax = a\beta y = \beta ay = \beta \alpha_y y = \alpha_y \beta y = \alpha_y x$, implying $\alpha = \alpha_y$.

Now if x and y are linearly C-independent, then we have $\alpha_{x+y}(x+y) = a(x+y) = ax+ay = \alpha_x x + \alpha_y y$, which implies $(\alpha_{x+y} - \alpha_x)x + (\alpha_{x+y} - \alpha_y)y = 0$. Since x and y are linearly C-independent, we have $\alpha_{x+y} - \alpha_x = 0 = \alpha_{x+y} - \alpha_y$ and so $\alpha = \alpha_y$. Thus for any $x \in I$, $ax = \alpha x$, where $\alpha \in C$ fixed. Hence, $(a - \alpha)I = 0$. \Box

Fact 6. R satisfies s_4 if and only if R is commutative or R embeds in $M_2(K)$ for K a field (see [3, Lemma 1]).

2 The case for both-sided ideals

We begin with a matrix ring case.

Lemma 2.1. Let $R = M_k(F)$ be the ring of $k \times k$ matrices over the field F with $k \ge 2$. Let $f(x_1, \ldots, x_n)$ be a multilinear polynomial over F which is not central valued on R, $a, b \in R$ and $m \ge 1$ a fixed positive integer.

- (I) If $(af(x_1, ..., x_n) + f(x_1, ..., x_n)b)^m = f(x_1, ..., x_n)$ for all $x_1, ..., x_n \in R$, then m = 1and $a, b \in F \cdot I_k$ with a + b = 1.
- (II) If $(af(x_1, ..., x_n) + f(x_1, ..., x_n)b)^m f(x_1, ..., x_n) \in Z(R)$ for all $x_1, ..., x_n \in R$, then m = 1 and $a, b \in F \cdot I_k$ with a + b = 1 or k = 2.

Proof. Let e_{ij} be the usual matrix unit with 1 in (i, j) entry and zero elsewhere. By our assumption $(af(r_1, \ldots, r_n) + f(r_1, \ldots, r_n)b)^m - f(r_1, \ldots, r_n) \in Z(R)$ for all $r_1, \ldots, r_n \in R$.

Since $f(r_1, \ldots, r_n)$ is not central valued on R, by [25, Lemma 2, proof of Lemma 3] there exist $r_1, \ldots, r_n \in R$ such that $f(r_1, \ldots, r_n) = \alpha e_{ij}$, with $0 \neq \alpha \in F$ and $i \neq j$. Since the subset $\{f(r_1, \ldots, r_n) : r_1, \ldots, r_n \in R\}$ is invariant under any F-automorphism, then for any $i \neq j$ there exist $t_1, \ldots, t_n \in R$ such that $f(t_1, \ldots, t_n) = \alpha e_{ij}$. Thus for any $i \neq j$, $(\alpha \alpha e_{ij} + \alpha e_{ij}b)^m - \alpha e_{ij} \in Z(R)$. If $k \geq 3$, then since rank of $(\alpha \alpha e_{ij} + \alpha e_{ij}b)^m - \alpha e_{ij}$ is ≤ 2 , we have

$$(a\alpha e_{ij} + \alpha e_{ij}b)^m - \alpha e_{ij} = 0 \tag{2.1}$$

in *R*. Right multiply by e_{ij} we get $0 = ((a\alpha e_{ij} + \alpha e_{ij}b)^m - \alpha e_{ij})e_{ij} = (\alpha e_{ij}b)^m e_{ij}$. It follows that the (j, i)-th entry of the matrix *b* is zero, for all $i \neq j$ and this means that *b* is diagonal, that is $b = \sum_{t} \alpha_t e_{tt}$, with $\alpha_t \in F$. For any *F*-automorphism θ of *R*, b^{θ} enjoys the same property as *b* does, namely, $(a^{\theta}f(r_1, \ldots, r_n) + f(r_1, \ldots, r_n)b^{\theta})^m - f(r_1, \ldots, r_n) \in Z(R)$ for all $r_1, \ldots, r_n \in R$. Hence, b^{θ} must be diagonal. Write $b = \sum_{i=1}^{k} b_{ii}e_{ii}$; then for each $j \neq 1$, we have

$$(1 + e_{1j})b(1 - e_{1j}) = \sum_{i=1}^{k} b_{ii}e_{ii} + (b_{jj} - b_{11})e_{1j}$$

diagonal. Therefore, $b_{jj} = b_{11}$ and so b is a scalar matrix. Similarly, left multiplying by e_{ij} in (2.1) and then by same argument as above we have that a is a scalar matrix. Therefore $a, b \in F.I_k$.

Then (2.1) becomes

$$(a+b)^m (\alpha e_{ij})^m = \alpha e_{ij}.$$
(2.2)

If $m \ge 2$, then $0 = e_{ij}$, a contradiction. Hence m = 1 and so $(a + b - 1)\alpha e_{ij} = 0$, implying a + b - 1 = 0. \Box

Lemma 2.2. Let R be a prime ring, I a nonzero ideal of R and $f(x_1, \ldots, x_n)$ a multilinear polynomial over C which is not central valued on R. Suppose that F(x) = ax + xb is an inner generalized derivation of R such that $(F(f(x_1, \ldots, x_n))^m = f(x_1, \ldots, x_n))$ for all $x_1, \ldots, x_n \in I$, where $m \ge 1$ is a fixed integer. Then m = 1 and $a, b \in C$ with a + b = 1.

Proof. Since *I*, *R* and *U* satisfy the same generalized polynomial identities (see Fact-2), without loss of generality, we may assume that $(af(x_1, \ldots, x_n) + f(x_1, \ldots, x_n)b)^m = f(x_1, \ldots, x_n)$ for all $x_1, \ldots, x_n \in U$.

First we assume that U does not satisfy any nontrivial GPI. Then $(af(x_1, \ldots, x_n) + f(x_1, \ldots, x_n)b)^m = f(x_1, \ldots, x_n)$ is a trivial GPI for U. This implies that $b \in C$. Then U satisfies $((a+b)f(x_1, \ldots, x_n))^m - f(x_1, \ldots, x_n) = 0$. Again this implies that $a + b \in C$. Therefore, we have in this case that $a, b \in C$.

Next we assume that U satisfies nontrivial GPI $(af(x_1, \ldots, x_n) + f(x_1, \ldots, x_n)b)^m = f(x_1, \ldots, x_n)$. Let $g(x_1, \ldots, x_n) = (af(x_1, \ldots, x_n) + f(x_1, \ldots, x_n)b)^m - f(x_1, \ldots, x_n)$. In case C is infinite, we have $g(r_1, \ldots, r_n) = 0$ for all $r_1, \ldots, r_n \in U \otimes_C \overline{C}$, where \overline{C} is the algebraic closure of C. Since both U and $U \otimes_C \overline{C}$ are centrally closed [15, Theorem 2.5 and 3.5] we may replace R by U or $U \otimes_C \overline{C}$ according as C is finite or infinite. Thus we may assume that R is centrally closed over C which is either finite or algebraically closed and $g(r_1, \ldots, r_n) = 0$ for all $r_1, \ldots, r_n \in R$. By Martindale's theorem [26], R is a primitive ring having nonzero socle H with C as the associated division ring. In light of Jacobson's theorem [19, p. 75], R is isomorphic to a dense ring of linear transformations on a vector space V over C. Now, if V is finite dimensional over C, then the density of R on V implies that $R \cong M_k(C)$ with $k = \dim_C V$. Since $f(x_1, \ldots, x_n)$ is not central valued on R, R must be noncommutative. Hence $k \ge 2$. Then by Lemma 2.1(I), we conclude that $a, b \in C$.

If V is infinite dimensional over C, then as in [27, Lemma 2] the set f(R) is dense on R and so from $(af(r_1, \ldots, r_n) + f(r_1, \ldots, r_n)b)^m = f(r_1, \ldots, r_n)$ for all $r_1, \ldots, r_n \in R$, we have $(ar+rb)^m - r = 0$ for all $r \in R$. Let v and bv are C-independent for some $v \in R$. By the density of R, there exist $r \in R$ such that rv = 0, rbv = v. Therefore we have $0 = ((ar + rb)^m - r)v =$ $v \neq 0$, which is a contradiction. Thus v and bv must be C-dependent, for any $v \in V$. By standard argument, there exists $\alpha \in C$ such that $bv = v\alpha$, for all $v \in V$. Let now $r \in R$ and $v \in V$. As we have just seen, there exist $\alpha \in C$ such that $bv = v\alpha$, $r(bv) = r(v\alpha)$, and also $b(rv) = (rv)\alpha$. Thus [b, r]v = 0 for any $v \in V$, that is [b, r]V = 0. Since V is left faithful irreducible R-module, [b, r] = 0 for all $r \in R$, i.e. $b \in C$. Similarly, we can prove that $a \in C$.

Thus in any case, we have proved that $a, b \in C$. By our hypothesis, we have $(a+b)^m f(x_1, \ldots, x_n)^m - f(x_1, \ldots, x_n) = 0$ for all $x_1, \ldots, x_n \in R$. If m = 1, then $(a+b-1)f(x_1, \ldots, x_n) = 0$ for all $x_1, \ldots, x_n \in R$, implying a+b-1=0, since $f(x_1, \ldots, x_n)$ is not an identity for R. If $m \ge 2$, then since $(a+b)^m f(x_1, \ldots, x_n)^m - f(x_1, \ldots, x_n) = 0$ is a polynomial identity for R, there exists a field F such that $R \subseteq M_k(F)$ and R and $M_k(F)$ satisfy the same polynomial identity $(a+b)^m f(x_1, \ldots, x_n)^m - f(x_1, \ldots, x_n) = 0$ [21, Lemma 1]. Since $f(x_1, \ldots, x_n)$ is noncentral valued on R, R must be noncommutative and hence $k \ge 2$. By [25, Lemma 2, proof of Lemma 3] there exist $r_1, \ldots, r_n \in R$ such that $f(r_1, \ldots, r_n) = \alpha e_{ij}$, with $0 \ne \alpha \in F$ and $i \ne j$. Thus $0 = (a+b)^m f(r_1, \ldots, r_n)^m - f(r_1, \ldots, r_n) = (a+b)^m (\alpha e_{ij})^m - \alpha e_{ij} = -\alpha e_{ij}$, a contradiction. \Box

Theorem 2.3. Let R be a prime ring, I a nonzero ideal of R and $f(x_1, \ldots, x_n)$ a multilinear polynomial over C which is not central valued on R. Suppose that F is a generalized derivation of R such that $(F(f(x_1, \ldots, x_n))^m = f(x_1, \ldots, x_n)$ for all $x_1, \ldots, x_n \in I$, where $m \ge 1$ is a fixed integer. Then m = 1 and F(x) = x for all $x \in R$.

Proof. If F is an inner generalized derivation of R, then the result follows by Lemma 2.2. Since I, R and U satisfy the same generalized polynomial identities (see Fact-2) as well as same differential identities (see Fact-3), by Lee [24] F(x) = ax + d(x) for all $x \in R$, and hence U satisfies U satisfies $(a(f(x_1, \ldots, x_n) + d(f(x_1, \ldots, x_n)))^m = f(x_1, \ldots, x_n))$, where $a \in U$ and d is a derivation of U. Since F is not inner, d cannot be inner derivation of U. In this case U satisfies the differential identity $(af(x_1, \ldots, x_n) + f^d(x_1, \ldots, x_n) + \sum f(x_1, \ldots, d(x_i), \ldots, x_n))^m = f(x_1, \ldots, x_n)$

 $f(x_1, \ldots, x_n)$. Then by Kharchenko's Theorem in [20], U satisfies the generalized polynomial identity $(af(x_1, \ldots, x_n) + f^d(x_1, \ldots, x_n) + \sum_i f(x_1, \ldots, y_i, \ldots, x_n))^m = f(x_1, \ldots, x_n)$. In particular, by assuming $x_1 = 0$, we have $f(y_1, \ldots, x_n)^m = 0$. This is a polynomial identity for U, hence there exists a field E such that $U \subseteq M_k(E)$, moreover U and $M_k(E)$ satisfies the same polynomial identities [21, Lemma 1]. Thus $M_k(E)$ satisfies $f(y_1, \ldots, x_n)^m = 0$. Then by [25, Corollary 5] $f(x_1, \ldots, x_n)$ is an identity for $M_k(F)$ and so for R, a contradiction. \Box

Corollary 2.4. Let R be a prime ring and I be a nonzero ideal of R. Suppose that F is a generalized derivation with associated nonzero derivation d of R such that $(F(x \circ y))^m = x \circ y$ for all $x, y \in I$, where $m \ge 1$ is a fixed integer. Then R is commutative or m = 1 and F(x) = x for all $x \in R$.

Proof. By Theorem 2.3, we conclude that $x \circ y \in Z(R)$ for all $x, y \in R$ or m = 1 and F(x) = x for all $x \in R$. Now we are only to consider the case $x \circ y \in Z(R)$, that is [xy + yx, z] = 0 for all $x, y \in R$. Then replacing y with yz we have [xy + yx, z]z + [y[z, x], z] = 0, implying [y[z, x], z] = 0 for all $x, y, z \in R$. Again, replacing y with xy, we have 0 = [xy[z, x], z] = x[y[z, x], z] + [x, z]y[z, x] = [x, z]y[z, x] for all $x, y, z \in R$. Since R is prime ring, we have [x, z] = 0 for all $x, z \in R$, implying R to be commutative. \Box

Corollary 2.5. Let R be a prime ring I be a nonzero ideal of R. Suppose that F is a generalized derivation with associated nonzero derivation d of R such that $(F([x,y]))^m = [x,y]$ for all $x, y \in I$, where $m \ge 1$ is a fixed integer. Then R is commutative or m = 1 and F(x) = x for all $x \in R$.

Proof. By Theorem 2.3, we conclude that $[x, y] \in Z(R)$ for all $x, y \in R$ or m = 1 and F(x) = x for all $x \in R$. Now we are only to consider the case $[x, y] \in Z(R)$, that is [[x, y], z] = 0 for all $x, y \in R$. Then replacing y with yz we have [[x, y], z]z + [y[x, z], z] = 0, implying [y[x, z], z] = 0 for all $x, y, z \in R$. Again, replacing y with xy, we have 0 = [xy[x, z], z] = x[y[x, z], z] + [x, z]y[x, z] = [x, z]y[x, z] for all $x, y, z \in R$. Since R is prime ring, we have

[x, z] = 0 for all $x, z \in R$, implying R to be commutative. \Box

Theorem 2.6. Let R be a prime ring, I a nonzero ideal of R and $f(x_1, \ldots, x_n)$ a multilinear polynomial over C which is not central valued on R. Suppose that F is a generalized derivation of R such that $(F(f(x_1, \ldots, x_n))^m - f(x_1, \ldots, x_n) \in Z(R))$ for all $x_1, \ldots, x_n \in I$, where $m \ge 1$ is a fixed integer. Then one of the following holds:

- (1) m = 1 and F(x) = x for all $x \in R$;
- (2) R satisfies s_4 ;
- (3) $f(x_1,\ldots,x_n)^m \in C$ for all $x_1,\ldots,x_n \in R$.

Proof. By the hypothesis

$$[F(f(x_1,\ldots,x_n))^m - f(x_1,\ldots,x_n),x_{n+1}] = 0$$
(2.3)

for all $x_1, \ldots, x_{n+1} \in I$. Since I, R and U satisfy the same generalized polynomial identities (see *Fact-2*) as well as same differential identities (see *Fact-3*), by Lee [24] F(x) = ax + d(x) for all $x \in R$, and hence U satisfies

$$[(af(x_1,\ldots,x_n)+d(f(x_1,\ldots,x_n)))^m - f(x_1,\ldots,x_n),x_{n+1}] = 0,$$
(2.4)

where $a \in U$ and d is a derivation of U. Now we consider the following two cases: <u>Case-I:</u> Let d be inner derivation of U, say d(x) = [b, x] for all $x \in U$ and for some $b \in U$. Then by (2.4), U satisfies

$$((a+b)f(x_1,\ldots,x_n) - f(x_1,\ldots,x_n)b)^m - f(x_1,\ldots,x_n) \in C.$$
(2.5)

If $((a+b)f(x_1,\ldots,x_n) - f(x_1,\ldots,x_n)b)^m - f(x_1,\ldots,x_n) = 0$ for all $x_1,\ldots,x_n \in U$, then by Lemma 2.2, m = 1 and $a, b \in C$, with a + b = 1. In this case F(x) = x for all $x \in U$ and so for all $x \in R$, as desired.

If for some $r_1, \ldots, r_n \in U$ $((a + b)f(r_1, \ldots, r_n) - f(r_1, \ldots, r_n)b)^m - f(r_1, \ldots, r_n) \neq 0$, then $((a + b)f(x_1, \ldots, x_n) - f(x_1, \ldots, x_n)b)^m - f(x_1, \ldots, x_n) \in C$ is a nonzero central generalized identity for U, by [9, Theorem 1] U is a PI-ring and hence U is a nontrivial GPI-ring simple with 1. By lemma 2 in [21] and Theorem 2.3.29 in [28], there exists a field E such that $U \subseteq M_k(E)$ and U and $M_k(E)$ satisfy the same generalized identities. Thus $((a + b)f(x_1, \ldots, x_n) - f(x_1, \ldots, x_n)b)^m - f(x_1, \ldots, x_n) \in Z(M_k(E))$ for all $x_1, \ldots, x_n \in M_k(E)$. Then by Lemma 2.1 (II), we conclude that either m = 1, a = 1 and $b \in C$ or k = 2. In the first case F(x) = x for all $x \in R$, as desired. In the second case, U and so R satisfies s_4 .

<u>*Case-II:*</u> Let d be not inner derivation of U. Then from (2.4), U satisfies

$$\left[\left(af(x_1,\ldots,x_n)+f^d(x_1,\ldots,x_n)+\sum_i f(x_1,\ldots,d(x_i),\ldots,x_n)\right)^m - f(x_1,\ldots,x_n),x_{n+1}\right] = 0$$

By Kharchenko's Theorem [20], U satisfies the generalized polynomial identity

$$\left[\left(af(x_1,\ldots,x_n)+f^d(x_1,\ldots,x_n)+\sum_i f(x_1,\ldots,y_i,\ldots,x_n)\right)^m-f(x_1,\ldots,x_n),x_{n+1}\right]=0.$$

In particular, for $x_1 = 0$, we have $f(y_1, \ldots, x_n)^m \in C$ for all $y_1, x_2, \ldots, x_n \in U$ and so for all $y_1, x_2, \ldots, x_n \in R$. \Box

3 The case for one sided ideals

In this section we will prove our next Theorem for a one sided ideal of R. To prove this theorem, we need the following Lemmas.

Lemma 3.1. ([5, Lemma 2]) Let R be a prime ring, I a nonzero right ideal of R, $f(x_1, ..., x_n)$ a multilinear polynomial over C, $a \in R$ and m a fixed positive integer. (I) If $af(x_1, ..., x_n)^m = 0$ for all $x_1, ..., x_n \in I$, then either aI = 0 or f(I)I = 0. (II) If $f(x_1, ..., x_n)^m a = 0$ for all $x_1, ..., x_n \in I$, then either a = 0 or f(I)I = 0. **Lemma 3.2.** Let R be a prime ring with extended centroid C, I a nonzero right ideal of R and $f(x_1, \ldots, x_n)$ a nonzero multilinear polynomial over C. If for some $a, b \in R$, $(a(f(x_1, \ldots, x_n) + (f(x_1, \ldots, x_n)b)^m - f(x_1, \ldots, x_n) = 0$ for all $x_1, \ldots, x_n \in I$, then R satisfy a nontrivial generalized polynomial identity or m = 1 and there exists $\alpha \in C$ such that $(a - \alpha)I = 0$, $b \in C$ with $b + \alpha = 1$.

Proof. By our hypothesis, for any $u \in I$, R satisfies the following generalized identity

$$(a(f(ux_1,...,ux_n) + (f(ux_1,...,ux_n)b)^m - f(ux_1,...,ux_n) = 0.$$
 (3.1)

We assume that this is a trivial GPI for R, for otherwise we are done. If there exists $u \in I$ such that $\{u, au\}$ is linearly C-independent, then from above R satisfies

$$af(ux_1, \dots, ux_n)(af(ux_1, \dots, ux_n) + f(ux_1, \dots, ux_n)b)^{m-1} = 0.$$
(3.2)

Again, since $\{u, au\}$ is linearly C-independent, we have from above relation that R satisfies

$$(af(ux_1, \dots, ux_n))^2 (af(ux_1, \dots, ux_n) + f(ux_1, \dots, ux_n)b)^{m-2} = 0$$
(3.3)

and hence $(af(ux_1, ..., ux_n))^m = 0$, which is nontrivial, a contradiction. Thus $\{u, au\}$ is linearly dependent over C for all $u \in I$. Then by Fact-5 $(a - \alpha)I = 0$ for some $\alpha \in C$. Then (3.1) becomes

$$(f(ux_1, \dots, ux_n)(b+\alpha))^m - f(ux_1, \dots, ux_n) = 0.$$
(3.4)

Since this is trivial identity for R, we have that $b + \alpha \in C$, that is $b \in C$. Thus identity reduces to

$$(b+\alpha)^m f(ux_1, \dots, ux_n)^m - f(ux_1, \dots, ux_n) = 0.$$
(3.5)

Since this is trivial identity for R, we conclude that m = 1 and $b + \alpha - 1 = 0$. \Box

Lemma 3.3. Let R be a prime ring with extended centroid C, I a nonzero right ideal of R, $f(x_1, \ldots, x_n)$ a nonzero multilinear polynomial over C and $m \ge 1$ a fixed integer. If F is an inner generalized derivation of R such that $(F(f(x_1, \ldots, x_n))^m = f(x_1, \ldots, x_n))$ for all $x_1, \ldots, x_n \in I$, then one of the following holds:

- (i) IC = eRC some idempotent $e \in Soc(RC)$ and $f(x_1, \ldots, x_n)$ is central valued on eRCe;
- (ii) m = 1 and there exist $\alpha, \lambda \in C$ and $a \in U$ such that $F(x) = (a + \lambda)x$ for all $x \in R$, with $(a \alpha)I = 0$ and $\alpha + \lambda = 1$.

Proof. Since F is inner, there exist $a, b \in U$ such that F(x) = ax + xb for all $x \in R$. If R does not satisfy any nontrivial GPI, then by Lemma 3.2, we conclude that m = 1 and there exists $\alpha \in C$ such that $(a - \alpha)I = 0, b \in C, b + \alpha = 1$. In this case F(x) = ax + xb = (a + b)x for all $x \in R$, where $0 = (a - \alpha)I = (a + b - 1)I$. This gives particular case of conclusion (2), when $\lambda = 0$.

So we assume that R satisfies a nontrivial GPI. If I = R, then by Lemma 2.2, m = 1 and $a, b \in C$ with a + b = 1. In this case we have F(x) = x for all $x \in R$. This is also a particular case of conclusion (2).

So let $I \neq R$. We assume first that [f(I), I]I = 0, that is $[f(x_1, \ldots, x_n), x_{n+1}]x_{n+2} = 0$ for all $x_1, x_2, \ldots, x_{n+2} \in I$. Then by Fact-4, IC = eRC for some idempotent $e \in soc(RC)$. Since [f(I), I]I = 0, we have [f(IR), IR]IR = 0 and hence [f(IU), IU]IU = 0 by [6, Theorem 2]. In particular, [f(IC), IC]IC = 0, or equivalently, [f(eRC), eRC]eRC = 0. Then [f(eRCe), eRCe] = 0, that is, $f(x_1, \ldots, x_n)$ is central-valued on eRCe and hence conclusion (1) is obtained.

So we assume that $[f(I), I]I \neq 0$, that is $[f(x_1, \ldots, x_n), x_{n+1}]x_{n+2}$ is not an identity for *I*. In this case *R* is a prime GPI-ring and so is *U* (see *Fact-2*). Since *U* is centrally closed over *C*, it follows that [26] *U* is a primitive ring with $H = Soc(U) \neq 0$. Then $[f(IH), IH]IH \neq 0$. For otherwise [f(IU), IU]IU = 0 by [6], a contradiction. Choose $u_n, \ldots, u_{n+2} \in IH$ such that $[f(u_1, \ldots, u_n), u_{n+1}]u_{n+2} \neq 0$. Let $u \in IH$. Since *H* is a regular ring, there exists $e^2 = e \in H$ such that $eH = uH + u_1H + \cdots + u_{n+2}H$. Then $e \in IH$ and u = eu, $u_i = eu_i$ for $i = 1, \ldots, n+2$.

Thus, we have $0 \neq [f(eH), eH]eH = [f(eHe), eHe]H$ i.e., $f(r_1, \ldots, r_n)$ is not central-valued in eHe.

By our assumption and by Fact-2 we may also assume that

$$(a(f(x_1,\ldots,x_n)+(f(x_1,\ldots,x_n)b)^m=f(x_1,\ldots,x_n)))^m$$

is an identity for IU. In particular,

$$(a(f(x_1,\ldots,x_n)+(f(x_1,\ldots,x_n)b)^m=f(x_1,\ldots,x_n))$$

is an identity for IH and so for eH. It follows that for all $r_1, \ldots, r_n \in H$

$$(a(f(er_1,\ldots,er_n)+(f(er_1,\ldots,er_n)b)^m=f(er_1,\ldots,er_n)$$
(3.6)

we may write

$$f(x_1, \dots, x_n) = \sum_i t_i(x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n)x_i,$$

where t_i is a suitable multilinear polynomial in n-1 variables and x_i never appears in any monomials of t_i . Since $f(eHe) \neq 0$, there exists some t_i which does not vanish in eHe. Without loss of generality $t_n(eHe) \neq 0$. Let $r \in R$. Then replacing r_n with r(1-e) in (3.6), we have

$$\left(at_n(er_1,\ldots,er_{n-1})er(1-e) + t_n(er_1,\ldots,er_{n-1})er(1-e)b\right)^m = t_n(er_1,\ldots,er_{n-1})er(1-e).$$
(3.7)

Left multiplying by (1 - e) in (3.7), we obtain $(1 - e)(at_n(er_1, ..., er_{n-1})er(1 - e))^m =$ 0, that is $((1 - e)at_n(er_1, ..., er_{n-1})er)^{m+1} = 0$ for all $r \in H$. By [16], we have $(1 - e)at_n(er_1, ..., er_{n-1})er^{m+1} = 0$ $e)at_n(er_1, \dots, er_{n-1})eH = 0$ implying $(1-e)aet_n(er_1e, \dots, er_{n-1}e) = 0$ for all $r_1, \dots, r_{n-1} \in C$ H. Since eHe is a simple Artinian ring and $t_n(eHe) \neq 0$ is invariant under the action of all inner automorphisms of eHe, by [7, Lemma 2], (1 - e)ae = 0 that is, eae = ae. Analogously right multiplying by e in (3.7) and then by above argument we conclude that (1-e)be = 0. Moreover, since in particular from (3.6) we can write that H satisfies

$$e\{(af(er_1e,...,er_ne) + f(er_1e,...,er_ne)b)^m - f(er_1e,...,er_ne)\}e = 0,$$

and so using the facts ae = eae and be = ebe, we have eHe satisfies

$$(eaef(r_1,\ldots,r_n)+f(r_1,\ldots,r_n)ebe)^m-f(r_1,\ldots,r_n)=0.$$

Then by Lemma 2.2, since $f(r_1, \ldots, r_n)$ is not central valued in eHe, we conclude that m = 1and $eae, ebe \in Ce$. Therefore $ae = eae \in Ce$ and $be = ebe \in Ce$. Thus $au = aeu = eaeu \in Cu$ and hence au, u are linearly C-dependent for each $u \in I$. So by Fact-5 $(a - \alpha)I = 0$ for some $\alpha \in C$. Similarly $(b - \beta)I = 0$ for some $\beta \in C$.

Then our hypothesis

$$(af(r_1, \dots, r_n) + f(r_1, \dots, r_n)b)^m - f(r_1, \dots, r_n) = 0$$
(3.8)

for all $r_1, \ldots, r_n \in I$ gives

$$f(r_1, \dots, r_n)(b+\alpha) - f(r_1, \dots, r_n) = 0$$
(3.9)

for all $r_1, \ldots, r_n \in I$, since m = 1. Thus

$$f(r_1, \dots, r_n)(b + \alpha - 1) = 0 \tag{3.10}$$

for all $r_1, \ldots, r_n \in I$. Then by Lemma 3.1(II), either $b + \alpha - 1 = 0$ or f(I)I = 0. Since f(I)I = 0implies [f(I), I]I = 0, a contradiction, we have $b = 1 - \alpha \in C$. Thus F(x) = ax + xb = (a+b)xfor all $x \in R$, which gives our conclusion (2). \Box

Now we are in a position to prove our main theorem for a one sided ideal of R.

Theorem 3.4. Let R be a prime ring with extended centroid C, I a nonzero right ideal of R, $f(x_1, \ldots, x_n)$ a nonzero multilinear polynomial over C and $m \ge 1$ a fixed integer. If F is a generalized derivation of R such that $(F(f(x_1, \ldots, x_n))^m = f(x_1, \ldots, x_n))$ for all $x_1, \ldots, x_n \in I$, then one of the following holds:

- (i) IC = eRC some idempotent $e \in Soc(RC)$ and $f(x_1, \ldots, x_n)$ is central valued on eRCe;
- (ii) m = 1 and there exist $\alpha, \lambda \in C$ and $a \in U$ such that $F(x) = (a + \lambda)x$ for all $x \in R$, with $(a \alpha)I = 0$ and $\alpha + \lambda = 1$.

Proof. If F is inner generalized derivation of R, then by Lemma 3.3, we are done. Now let F be not inner. By [24], we have F(x) = ax + d(x) for some $a \in U$ and a derivation d on U. Let $u_1, \ldots, u_n \in I$. Then by [21], U satisfies

$$\left(af(u_1x_1,\ldots,u_1x_n)+d(f(u_1x_1,\ldots,u_1x_n))\right)^m=f(u_1x_1,\ldots,u_1x_n),$$

that is

$$\left(af(u_1x_1, \dots, u_1x_n) + f^d(u_1x_1, \dots, u_nx_n) + \sum_j f(u_1x_1, \dots, d(u_j)x_j + u_jd(x_j), \dots, x_n)\right)^m = f(u_1x_1, \dots, u_1x_n).$$

Since F is not inner, d is also not inner derivation. Then by Kharchenko's theorem [20], U satisfies

$$\left(af(u_1x_1,...,u_1x_n) + f^d(u_1x_1,...,u_nx_n) + \sum_j f(u_1x_1,...,d(u_j)x_j + u_jy_j,...,x_n)\right)^m = f(u_1x_1,...,u_1x_n).$$

In particular, putting $x_1 = 0$, U satisfies

$$f(u_1y_1,\ldots,u_nx_n)^m=0.$$

Since I and IU satisfies the same polynomial identities, we have that I satisfies $f(x_1, \ldots, x_n)^m = 0$. By Lemma 3.1, f(I)I = 0 and hence [f(I), I]I = 0. Then conclusion (1) is obtained by Fact-4. \Box

References

- N. Argac and H. G. Inceboz, Derivations of prime and semiprime rings, J. Korean Math. Soc., 997-1005, 46 (5) (2009).
- [2] K. I. Beidar, W. S. Martindale and A. V. Mikhalev, Rings with Generalized Identities, Monographs and Textbooks in Pure and Applied Mathematics, 196. Marcel Dekker, Inc., New York, 1996.
- [3] M. Brešar, Commuting traces of biadditive mappings, commutativity-preserving mappings and Lie mappings, *Trans. Amer. Math. Soc.*, 525-546, 335 (2) (1993).
- [4] M. Brešar, On the distance of the composition of the two derivations to be the generalized derivations, *Glasgow Math. J.*, 89-93, 33 (1) (1991).
- [5] C. M. Chang, Power central values of derivations on multilinear polynomials, *Taiwanese J. Math.*, 329-338, 7 (2)(2003).
- [6] C. L. Chuang, GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc., 723-728, 103 (3) (1988).
- [7] C. L. Chuang and T. K. Lee, Rings with annihilator conditions on multilinear polynomials, *Chinese J. Math.*, 177-185, 24 (2) (1996).
- [8] C. L. Chuang, The additive subgroup generated by a polynomial, Israel J. Math., 98-106, 59 (1) (1987).

- [9] C. M. Chang and T. K. Lee, Annihilator of power values of derivations in prime rings, *Comm. Algebra*, 2091-2113, 26 (7) (1998).
- [10] C. M. Chang, Power central values of derivations on multilinear polynomials, *Taiwanese J. Math.*, 329-338, 7 (2) (2003).
- [11] M. N. Daif and H. E. Bell, Remarks on derivations on semiprime rings, Internat. J. Math. & Math. Sci., 205–206, 15 (1) (1992).
- [12] B. Dhara, Remarks on generalized derivations in prime and semiprime rings, Int. J. Math. & Math. Sci. Vol. 2010, Article ID 646587, 6 pages.
- [13] V. De Filippis, Right ideals and derivations on multilinear polynomials, *Rend. Sem. Mat. Univ. Padova*, 171-183, 105 (2001).
- [14] V. De Filippis and S. Huang, Generalized derivations on semiprime rings, Bull. Korean Math. Soc., 1253-1259, 48 (6) (2011).
- [15] T. S. Erickson, W. S. Martindale III and J. M. Osborn, Prime nonassociative algebras, *Pacific J. Math.*, 49-63, 60 (1975).
- [16] B. Felzenszwalb, On a result of Levitzki, Canad. Math. Bull., 241-242, 21 (1978).
- [17] M. Hongan, A note on semiprime rings with derivations, *Internat. J. Math. & Math. Sci.*, 413-415, 20 (2) (1997).
- [18] S. Huang, On generalized derivations of prime and semiprime rings, *Taiwanese J. Math.*, 771-776, 16 (2) (2012).
- [19] N. Jacobson, Structure of rings, Amer. Math. Soc. Colloq. Pub., 37, Amer. Math. Soc., Providence, RI, 1964.
- [20] V. K. Kharchenko, Differantial identities of Prime rings, Algebra and Logic, 155-168, 17 (1978).
- [21] C. Lanski, An Engel condition with derivation, Proc. Amer. Math. Soc., 731-734, 118 (3) (1993).
- [22] T. K. Lee, Power reduction property for generalized identities of one-sided ideals, *Algebra Colloquium*, 19-24, 3 (1996).
- [23] T. K. Lee, Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sinica, 27-38, 20(1)(1992).
- [24] T. K. Lee, Generalized derivations of left faithful rings, Comm. Algebra, 4057-4073, 27 (8) (1999).
- [25] U. Leron, Nil and power central polynomials in rings, Trans. Amer. Math. Soc., 97-103, 202 (1975).
- [26] W. S. Martindale III, Prime rings satisfying a generalized polynomial identity. J. Algebra, 576-584, 12 (1969).
- [27] T. L. Wong, Derivations with power central values on multilinear polynomials, *Algebra Colloquium*, 369-378, 3 (4) (1996).
- [28] L. H. Rowen, *Polynomial identities in ring theory*, Pure and Applied Mathematics 84, Academic Press, New York, 1980.

Author information

Asma Ali, Department of Mathematics, Aligarh Muslim University, Aligarh-202002, India. E-mail: asma_ali2@rediffmail.com

Basudeb Dhara, Department of Mathematics, Belda College, Belda, Paschim Medinipur, 721424, W.B, India. E-mail: basu_dhara@yahoo.com

Shahoor Khan, Department of Mathematics Aligarh Muslim University, Aligarh-202002, India. E-mail: shahoor.khan@rediffmail.com

Received: March 18, 2016. Accepted: September 13, 2016.