Generalized derivations and multilinear polynomials in prime rings

Asma Ali, Basudeb Dhara and Shahoor Khan
Communicated by Ayman Badawi

MSC 2010 Classifications: $16 \mathrm{~W} 25,16 \mathrm{~W} 80,16 \mathrm{~N} 60$.
Keywords and phrases: Prime ring, derivation, generalized derivation, multilinear polynomial.
First named-author is supported by a grant from Science and Engineering Research Board (SERB), DST, New Delhi, India. Grant No. SR/S4/MS:852/13.

Abstract

Let R be a prime ring, I a nonzero right ideal of R, U the two sided Utumi quotient ring of $R, C=Z(U)$ extended centroid of $R, f\left(x_{1}, \ldots, x_{n}\right)$ a nonzero multilinear polynomial over C and $m \geq 1$ a fixed integer. We prove that if F is a generalized derivation of R such that $\left(F\left(f\left(x_{1}, \ldots, x_{n}\right)\right)^{m}=f\left(x_{1}, \ldots, x_{n}\right)\right.$ for all $x_{1}, \ldots, x_{n} \in I$, then one of the following holds: (i) $I C=e R C$ some idempotent $e \in S o c(R C)$ and $f\left(x_{1}, \ldots, x_{n}\right)$ is central valued on $e R C e$; (ii) $m=1$ and there exist $\alpha, \lambda \in C$ and $a \in U$ such that $F(x)=(a+\lambda) x$ for all $x \in R$, with $(a-\alpha) I=0$ and $\alpha+\lambda=1$.

1 Introduction

Throughout this paper R always denotes an associative prime ring with center $Z(R), U$ its Utumi ring of quotients and C extended centroid of R (see [2] for more details). For any pair of elements $x, y \in R$, the commutator $[x, y]=x y-y x$ and skew commutator $x \circ y=x y+y x$. An additive mapping $d: R \rightarrow R$ is called a derivation, if $d(x y)=d(x) y+x d(y)$ holds for all $x, y \in R$. In particular, d is an inner derivation induced by an element $a \in R$, if $d(x)=[a, x]$ for all $x \in R$. An additive mapping $F: R \rightarrow R$ is called a generalized derivation, if there exists a derivation $d: R \rightarrow R$ such that $F(x y)=F(x) y+x d(y)$ holds for all $x, y \in R$.

In [11], Daif and Bell proved that if R is a semiprime ring with a nonzero ideal I such that $d([x, y])= \pm[x, y]$ for all $x, y \in I$, then I is central ideal. In particular, if $I=R$, then R is commutative. These results of Daif and Bell was extended by Hongan in [17] to the central case. In [17], Hongan proved that if R is a 2-torsion free semiprime ring and I a nonzero ideal of R, then I is central if and only if $d([x, y])-[x, y] \in Z(R)$ or $d([x, y])+[x, y] \in Z(R)$ for all $x, y \in I$.

Recently in [14], De Filippis and Huang studied the situation $(F([x, y]))^{n}=[x, y]$ for all $x, y \in I$, where I is a nonzero ideal in a prime ring R, F a generalized derivation of R and $n \geq 1$ fixed integer. In this case they conclude that either R is commutative or $n=1$ and $F(x)=x$ for all $x \in R$.

In [1], Argac and Inceboz studied the situation $d(x \circ y)^{n}=x \circ y$ for all x, y in some nonzero ideal of prime ring R. More precisely, they proved the following:

Let R be a prime ring, I a nonzero ideal of R, d a derivation of R and n a fixed positive integer. (i) If $d(x \circ y)^{n}=x \circ y$ for all $x, y \in I$, then R is commutative. (ii) If char $(R) \neq 2$ and $d(x \circ y)^{n}-x \circ y \in Z(R)$ for all $x, y \in I$, then R is commutative. Very recently, Huang [18] proved the following:

Let R be a prime ring, I a nonzero ideal of R and n a fixed positive integer. If R admits a generalized derivation F associated with a nonzero derivation d such that $(F(x \circ y))^{n}=x \circ y$ for all $x, y \in I$, then R is commutative.

In the present paper, we study the situations when (i) $\left(F\left(f\left(x_{1}, \ldots, x_{n}\right)\right)\right)^{m}-f\left(x_{1}, \ldots, x_{n}\right)=$ 0 ; (ii) $\left(F\left(f\left(x_{1}, \ldots, x_{n}\right)\right)\right)^{m}-f\left(x_{1}, \ldots, x_{n}\right) \in Z(R)$; for all x_{1}, \ldots, x_{n} in some subsets of R, where $f\left(x_{1}, \ldots, x_{n}\right)$ is a nonzero multilinear polynomial over C and $m \geq 1$ is an integer.

Let R be a prime ring, U be the Utumi quotient ring of R and $C=Z(U)$, the center of U. Note that U is also a prime ring with C a field. We will make use of the following notation extensively: $f\left(x_{1}, \ldots, x_{n}\right)=x_{1} x_{2} \ldots x_{n}+\sum_{I \neq \sigma \in S_{n}} \alpha_{\sigma} x_{\sigma(1)} \ldots x_{\sigma(n)}$, where S_{n} is the permutation group over n elements and $\alpha_{\sigma} \in C$. We denote by $f^{d}\left(x_{1}, \ldots, x_{n}\right)$ the polynomial obtained from $f\left(x_{1}, \ldots, x_{n}\right)$ by replacing each coefficient α_{σ} with $d\left(\alpha_{\sigma} .1\right)$. Thus we write

$$
d\left(f\left(x_{1}, \ldots, x_{n}\right)\right)=f^{d}\left(x_{1}, \ldots, x_{n}\right)+\sum_{i} f\left(x_{1}, \ldots, d\left(x_{i}\right), \ldots, x_{n}\right) .
$$

Denote by $U *_{C} C\left\{X_{1}, \ldots, X_{n}\right\}$ the free product of the C-algebra U and $C\left\{X_{1}\right.$ $\left., \ldots, X_{n}\right\}$, the free C-algebra in noncommuting indeterminates X_{1}, \ldots, X_{n}. The standard polynomial identity s_{4} in four variables is defined as $s_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\sum_{\sigma \in S_{4}}(-1)^{\sigma} x_{\sigma(1)} x_{\sigma(2)} x_{\sigma(3)} x_{\sigma(4)}$ where $(-1)^{\sigma}$ is +1 or -1 according to σ being an even or an odd permutation in the symmetric group s_{4}.

Now we need the following facts to prove our theorems.
Fact 1. It is well known that any derivation of R can be uniquely extended to a derivation of U (see [23, Lemma 2]).

Fact 2. Let I be a nonzero two-sided ideal of R. Then I, R, U satisfy the same generalized polynomial identities with coefficients in U (see [6]).

Fact 3. Let I be a nonzero two-sided ideal of R. Then I, R and U satisfy the same differential identities with coefficients in U (see [23, Theorem 2]).

Fact 4. Let I be a nonzero right ideal of R. If I satisfies a nontrivial polynomial identity, then $R C$ is a primitive ring with $\operatorname{soc}(R C) \neq 0$ and $I C=e R C$ for some idempotent $e=e^{2} \in$ $\operatorname{soc}(R C)$ (see [22, Proposition]).

Fact 5. Let I be a nonzero right ideal of R and $a \in U$. If for every $x \in I, a x$ and x are linearly C-dependent, then there exists $\alpha \in C$ such that $(a-\alpha) I=0$.

Proof. Let $x \in I$ a fixed element. Then there exists $\alpha \in C$ such that $a x=\alpha x$. Now choose any element $y \in I$. By hypothesis, there exists $\alpha_{y} \in C$ such that $a y=\alpha_{y} y$. If x and y are linearly C-dependent, then $x=\beta y$, for $\beta \in C$. In this case, we see that $a x=a \beta y=\beta a y=\beta \alpha_{y} y=$ $\alpha_{y} \beta y=\alpha_{y} x$, implying $\alpha=\alpha_{y}$.

Now if x and y are linearly C-independent, then we have $\alpha_{x+y}(x+y)=a(x+y)=a x+a y=$ $\alpha_{x} x+\alpha_{y} y$, which implies $\left(\alpha_{x+y}-\alpha_{x}\right) x+\left(\alpha_{x+y}-\alpha_{y}\right) y=0$. Since x and y are linearly C independent, we have $\alpha_{x+y}-\alpha_{x}=0=\alpha_{x+y}-\alpha_{y}$ and so $\alpha=\alpha_{y}$. Thus for any $x \in I, a x=\alpha x$, where $\alpha \in C$ fixed. Hence, $(a-\alpha) I=0$.

Fact 6. R satisfies s_{4} if and only if R is commutative or R embeds in $M_{2}(K)$ for K a field (see [3, Lemma 1]).

2 The case for both-sided ideals

We begin with a matrix ring case.
Lemma 2.1. Let $R=M_{k}(F)$ be the ring of $k \times k$ matrices over the field F with $k \geq 2$. Let $f\left(x_{1}, \ldots, x_{n}\right)$ be a multilinear polynomial over F which is not central valued on $R, a, b \in R$ and $m \geq 1$ a fixed positive integer.
(I) If $\left(a f\left(x_{1}, \ldots, x_{n}\right)+f\left(x_{1}, \ldots, x_{n}\right) b\right)^{m}=f\left(x_{1}, \ldots, x_{n}\right)$ for all $x_{1}, \ldots, x_{n} \in R$, then $m=1$ and $a, b \in F \cdot I_{k}$ with $a+b=1$.
(II) If $\left(a f\left(x_{1}, \ldots, x_{n}\right)+f\left(x_{1}, \ldots, x_{n}\right) b\right)^{m}-f\left(x_{1}, \ldots, x_{n}\right) \in Z(R)$ for all $x_{1}, \ldots, x_{n} \in R$, then $m=1$ and $a, b \in F \cdot I_{k}$ with $a+b=1$ or $k=2$.
Proof. Let $e_{i j}$ be the usual matrix unit with 1 in (i, j) entry and zero elsewhere. By our assumption $\left(a f\left(r_{1}, \ldots, r_{n}\right)+f\left(r_{1}, \ldots, r_{n}\right) b\right)^{m}-f\left(r_{1}, \ldots, r_{n}\right) \in Z(R)$ for all $r_{1}, \ldots, r_{n} \in R$.

Since $f\left(r_{1}, \ldots, r_{n}\right)$ is not central valued on R, by [25, Lemma 2, proof of Lemma 3] there exist $r_{1}, \ldots, r_{n} \in R$ such that $f\left(r_{1}, \ldots, r_{n}\right)=\alpha e_{i j}$, with $0 \neq \alpha \in F$ and $i \neq j$. Since the subset $\left\{f\left(r_{1}, \ldots, r_{n}\right): r_{1}, \ldots, r_{n} \in R\right\}$ is invariant under any F-automorphism, then for any $i \neq j$ there exist $t_{1}, \ldots, t_{n} \in R$ such that $f\left(t_{1}, \ldots, t_{n}\right)=\alpha e_{i j}$. Thus for any $i \neq j$, $\left(a \alpha e_{i j}+\alpha e_{i j} b\right)^{m}-\alpha e_{i j} \in Z(R)$. If $k \geq 3$, then since rank of $\left(a \alpha e_{i j}+\alpha e_{i j} b\right)^{m}-\alpha e_{i j}$ is ≤ 2, we have

$$
\begin{equation*}
\left(a \alpha e_{i j}+\alpha e_{i j} b\right)^{m}-\alpha e_{i j}=0 \tag{2.1}
\end{equation*}
$$

in R. Right multiply by $e_{i j}$ we get $0=\left(\left(a \alpha e_{i j}+\alpha e_{i j} b\right)^{m}-\alpha e_{i j}\right) e_{i j}=\left(\alpha e_{i j} b\right)^{m} e_{i j}$. It follows that the (j, i)-th entry of the matrix b is zero, for all $i \neq j$ and this means that b is diagonal, that is $b=\sum_{t} \alpha_{t} e_{t t}$, with $\alpha_{t} \in F$. For any F-automorphism θ of R, b^{θ} enjoys the same property as b does, namely, $\left(a^{\theta} f\left(r_{1}, \ldots, r_{n}\right)+f\left(r_{1}, \ldots, r_{n}\right) b^{\theta}\right)^{m}-f\left(r_{1}, \ldots, r_{n}\right) \in Z(R)$ for all $r_{1}, \ldots, r_{n} \in R$. Hence, b^{θ} must be diagonal. Write $b=\sum_{i=1}^{k} b_{i i} e_{i i}$; then for each $j \neq 1$, we have

$$
\left(1+e_{1 j}\right) b\left(1-e_{1 j}\right)=\sum_{i=1}^{k} b_{i i} e_{i i}+\left(b_{j j}-b_{11}\right) e_{1 j}
$$

diagonal. Therefore, $b_{j j}=b_{11}$ and so b is a scalar matrix. Similarly, left multiplying by $e_{i j}$ in (2.1) and then by same argument as above we have that a is a scalar matrix. Therefore $a, b \in F . I_{k}$.

Then (2.1) becomes

$$
\begin{equation*}
(a+b)^{m}\left(\alpha e_{i j}\right)^{m}=\alpha e_{i j} . \tag{2.2}
\end{equation*}
$$

If $m \geq 2$, then $0=e_{i j}$, a contradiction. Hence $m=1$ and so $(a+b-1) \alpha e_{i j}=0$, implying $a+b-1=0$.

Lemma 2.2. Let R be a prime ring, I a nonzero ideal of R and $f\left(x_{1}, \ldots, x_{n}\right)$ a multilinear polynomial over C which is not central valued on R. Suppose that $F(x)=a x+x b$ is an inner generalized derivation of R such that $\left(F\left(f\left(x_{1}, \ldots, x_{n}\right)\right)^{m}=f\left(x_{1}, \ldots, x_{n}\right)\right.$ for all $x_{1}, \ldots, x_{n} \in$ I, where $m \geq 1$ is a fixed integer. Then $m=1$ and $a, b \in C$ with $a+b=1$.

Proof. Since I, R and U satisfy the same generalized polynomial identities (see Fact-2), without loss of generality, we may assume that $\left(a f\left(x_{1}, \ldots, x_{n}\right)+f\left(x_{1}, \ldots, x_{n}\right) b\right)^{m}=f\left(x_{1}, \ldots, x_{n}\right)$ for all $x_{1}, \ldots, x_{n} \in U$.

First we assume that U does not satisfy any nontrivial GPI. Then $\left(a f\left(x_{1}, \ldots, x_{n}\right)+f\left(x_{1}, \ldots, x_{n}\right) b\right)^{m}=$ $f\left(x_{1}, \ldots, x_{n}\right)$ is a trivial GPI for U. This implies that $b \in C$. Then U satisfies $\left((a+b) f\left(x_{1}, \ldots, x_{n}\right)\right)^{m}-$ $f\left(x_{1}, \ldots, x_{n}\right)=0$. Again this implies that $a+b \in C$. Therefore, we have in this case that $a, b \in C$.

Next we assume that U satisfies nontrivial GPI $\left(a f\left(x_{1}, \ldots, x_{n}\right)+f\left(x_{1}, \ldots, x_{n}\right) b\right)^{m}=f\left(x_{1}, \ldots, x_{n}\right)$. Let $g\left(x_{1}, \ldots, x_{n}\right)=\left(a f\left(x_{1}, \ldots, x_{n}\right)+f\left(x_{1}, \ldots, x_{n}\right) b\right)^{m}-f\left(x_{1}, \ldots, x_{n}\right)$. In case C is infinite, we have $g\left(r_{1}, \ldots, r_{n}\right)=0$ for all $r_{1}, \ldots, r_{n} \in U \otimes_{C} \bar{C}$, where \bar{C} is the algebraic closure of C. Since both U and $U \otimes_{C} \bar{C}$ are centrally closed [15, Theorem 2.5 and 3.5] we may replace R by U or $U \otimes_{C} \bar{C}$ according as C is finite or infinite. Thus we may assume that R is centrally closed over C which is either finite or algebraically closed and $g\left(r_{1}, \ldots, r_{n}\right)=0$ for all $r_{1}, \ldots, r_{n} \in R$. By Martindale's theorem [26], R is a primitive ring having nonzero socle H with C as the associated division ring. In light of Jacobson's theorem [19, p. 75], R is isomorphic to a dense ring of linear transformations on a vector space V over C. Now, if V is finite dimensional over C, then the density of R on V implies that $R \cong M_{k}(C)$ with $k=\operatorname{dim}_{C} V$. Since $f\left(x_{1}, \ldots, x_{n}\right)$ is not central valued on R, R must be noncommutative. Hence $k \geq 2$. Then by Lemma 2.1(I), we conclude that $a, b \in C$.

If V is infinite dimensional over C, then as in [27, Lemma 2] the set $f(R)$ is dense on R and so from $\left(a f\left(r_{1}, \ldots, r_{n}\right)+f\left(r_{1}, \ldots, r_{n}\right) b\right)^{m}=f\left(r_{1}, \ldots, r_{n}\right)$ for all $r_{1}, \ldots, r_{n} \in R$, we have $(a r+r b)^{m}-r=0$ for all $r \in R$. Let v and $b v$ are C-independent for some $v \in R$. By the density of R, there exist $r \in R$ such that $r v=0, r b v=v$. Therefore we have $0=\left((a r+r b)^{m}-r\right) v=$ $v \neq 0$, which is a contradiction. Thus v and $b v$ must be C-dependent, for any $v \in V$. By standard
argument, there exists $\alpha \in C$ such that $b v=v \alpha$, for all $v \in V$. Let now $r \in R$ and $v \in V$. As we have just seen, there exist $\alpha \in C$ such that $b v=v \alpha, r(b v)=r(v \alpha)$, and also $b(r v)=(r v) \alpha$. Thus $[b, r] v=0$ for any $v \in V$, that is $[b, r] V=0$. Since V is left faithful irreducible R-module, $[b, r]=0$ for all $r \in R$, i.e. $b \in C$. Similarly, we can prove that $a \in C$.

Thus in any case, we have proved that $a, b \in C$. By our hypothesis, we have $(a+b)^{m} f\left(x_{1}, \ldots, x_{n}\right)^{m}-$ $f\left(x_{1}, \ldots, x_{n}\right)=0$ for all $x_{1}, \ldots, x_{n} \in R$. If $m=1$, then $(a+b-1) f\left(x_{1}, \ldots, x_{n}\right)=0$ for all $x_{1}, \ldots, x_{n} \in R$, implying $a+b-1=0$, since $f\left(x_{1}, \ldots, x_{n}\right)$ is not an identity for R. If $m \geq 2$, then since $(a+b)^{m} f\left(x_{1}, \ldots, x_{n}\right)^{m}-f\left(x_{1}, \ldots, x_{n}\right)=0$ is a polynomial identity for R, there exists a field F such that $R \subseteq M_{k}(F)$ and R and $M_{k}(F)$ satisfy the same polynomial identity $(a+b)^{m} f\left(x_{1}, \ldots, x_{n}\right)^{m}-f\left(x_{1}, \ldots, x_{n}\right)=0$ [21, Lemma 1]. Since $f\left(x_{1}, \ldots, x_{n}\right)$ is noncentral valued on R, R must be noncommutative and hence $k \geq 2$. By [25, Lemma 2, proof of Lemma 3] there exist $r_{1}, \ldots, r_{n} \in R$ such that $f\left(r_{1}, \ldots, r_{n}\right)=\alpha e_{i j}$, with $0 \neq \alpha \in F$ and $i \neq j$. Thus $0=(a+b)^{m} f\left(r_{1}, \ldots, r_{n}\right)^{m}-f\left(r_{1}, \ldots, r_{n}\right)=(a+b)^{m}\left(\alpha e_{i j}\right)^{m}-\alpha e_{i j}=-\alpha e_{i j}$, a contradiction.

Theorem 2.3. Let R be a prime ring, I a nonzero ideal of R and $f\left(x_{1}, \ldots, x_{n}\right)$ a multilinear polynomial over C which is not central valued on R. Suppose that F is a generalized derivation of R such that $\left(F\left(f\left(x_{1}, \ldots, x_{n}\right)\right)^{m}=f\left(x_{1}, \ldots, x_{n}\right)\right.$ for all $x_{1}, \ldots, x_{n} \in I$, where $m \geq 1$ is a fixed integer. Then $m=1$ and $F(x)=x$ for all $x \in R$.

Proof. If F is an inner generalized derivation of R, then the result follows by Lemma 2.2. Since I, R and U satisfy the same generalized polynomial identities (see Fact-2) as well as same differential identities (see Fact-3), by Lee [24] $F(x)=a x+d(x)$ for all $x \in R$, and hence U satisfies U satisfies $\left(a\left(f\left(x_{1}, \ldots, x_{n}\right)+d\left(f\left(x_{1}, \ldots, x_{n}\right)\right)\right)^{m}=f\left(x_{1}, \ldots, x_{n}\right)\right.$, where $a \in U$ and d is a derivation of U. Since F is not inner, d cannot be inner derivation of U. In this case U satisfies the differential identity $\left(a f\left(x_{1}, \ldots, x_{n}\right)+f^{d}\left(x_{1}, \ldots, x_{n}\right)+\sum_{i} f\left(x_{1}, \ldots, d\left(x_{i}\right), \ldots x_{n}\right)\right)^{m}=$ $f\left(x_{1}, \ldots, x_{n}\right)$. Then by Kharchenko's Theorem in [20], U satisfies the generalized polynomial identity $\left(\operatorname{af}\left(x_{1}, \ldots, x_{n}\right)+f^{d}\left(x_{1}, \ldots, x_{n}\right)+\sum_{i} f\left(x_{1}, \ldots, y_{i}, \ldots x_{n}\right)\right)^{m}=f\left(x_{1}, \ldots, x_{n}\right)$. In particular, by assuming $x_{1}=0$, we have $f\left(y_{1}, \ldots, x_{n}\right)^{m}=0$. This is a polynomial identity for U, hence there exists a field E such that $U \subseteq M_{k}(E)$, moreover U and $M_{k}(E)$ satisfies the same polynomial identities [21, Lemma 1]. Thus $M_{k}(E)$ satisfies $f\left(y_{1}, \ldots, x_{n}\right)^{m}=0$. Then by [25, Corollary 5] $f\left(x_{1}, \ldots, x_{n}\right)$ is an identity for $M_{k}(F)$ and so for R, a contradiction.

Corollary 2.4. Let R be a prime ring and I be a nonzero ideal of R. Suppose that F is a generalized derivation with associated nonzero derivation d of R such that $(F(x \circ y))^{m}=x \circ y$ for all $x, y \in I$, where $m \geq 1$ is a fixed integer. Then R is commutative or $m=1$ and $F(x)=x$ for all $x \in R$.

Proof. By Theorem 2.3, we conclude that $x \circ y \in Z(R)$ for all $x, y \in R$ or $m=1$ and $F(x)=x$ for all $x \in R$. Now we are only to consider the case $x \circ y \in Z(R)$, that is $[x y+y x, z]=0$ for all $x, y \in R$. Then replacing y with $y z$ we have $[x y+y x, z] z+[y[z, x], z]=0$, implying $[y[z, x], z]=0$ for all $x, y, z \in R$. Again, replacing y with $x y$, we have $0=[x y[z, x], z]=$ $x[y[z, x], z]+[x, z] y[z, x]=[x, z] y[z, x]$ for all $x, y, z \in R$. Since R is prime ring, we have $[x, z]=0$ for all $x, z \in R$, implying R to be commutative.

Corollary 2.5. Let R be a prime ring I be a nonzero ideal of R. Suppose that F is a generalized derivation with associated nonzero derivation d of R such that $(F([x, y]))^{m}=[x, y]$ for all $x, y \in I$, where $m \geq 1$ is a fixed integer. Then R is commutative or $m=1$ and $F(x)=x$ for all $x \in R$.

Proof. By Theorem 2.3, we conclude that $[x, y] \in Z(R)$ for all $x, y \in R$ or $m=1$ and $F(x)=x$ for all $x \in R$. Now we are only to consider the case $[x, y] \in Z(R)$, that is $[[x, y], z]=0$ for all $x, y \in R$. Then replacing y with $y z$ we have $[[x, y], z] z+[y[x, z], z]=0$, implying $[y[x, z], z]=0$ for all $x, y, z \in R$. Again, replacing y with $x y$, we have $0=[x y[x, z], z]=$ $x[y[x, z], z]+[x, z] y[x, z]=[x, z] y[x, z]$ for all $x, y, z \in R$. Since R is prime ring, we have
$[x, z]=0$ for all $x, z \in R$, implying R to be commutative.

Theorem 2.6. Let R be a prime ring, I a nonzero ideal of R and $f\left(x_{1}, \ldots, x_{n}\right)$ a multilinear polynomial over C which is not central valued on R. Suppose that F is a generalized derivation of R such that $\left(F\left(f\left(x_{1}, \ldots, x_{n}\right)\right)^{m}-f\left(x_{1}, \ldots, x_{n}\right) \in Z(R)\right.$ for all $x_{1}, \ldots, x_{n} \in I$, where $m \geq 1$ is a fixed integer. Then one of the following holds:
(1) $m=1$ and $F(x)=x$ for all $x \in R$;
(2) R satisfies s_{4};
(3) $f\left(x_{1}, \ldots, x_{n}\right)^{m} \in C$ for all $x_{1}, \ldots, x_{n} \in R$.

Proof. By the hypothesis

$$
\begin{equation*}
\left[F\left(f\left(x_{1}, \ldots, x_{n}\right)\right)^{m}-f\left(x_{1}, \ldots, x_{n}\right), x_{n+1}\right]=0 \tag{2.3}
\end{equation*}
$$

for all $x_{1}, \ldots, x_{n+1} \in I$. Since I, R and U satisfy the same generalized polynomial identities (see Fact-2) as well as same differential identities (see Fact-3), by Lee [24] $F(x)=a x+d(x)$ for all $x \in R$, and hence U satisfies

$$
\begin{equation*}
\left[\left(a f\left(x_{1}, \ldots, x_{n}\right)+d\left(f\left(x_{1}, \ldots, x_{n}\right)\right)\right)^{m}-f\left(x_{1}, \ldots, x_{n}\right), x_{n+1}\right]=0 \tag{2.4}
\end{equation*}
$$

where $a \in U$ and d is a derivation of U. Now we consider the following two cases:
Case-I: Let d be inner derivation of U, say $d(x)=[b, x]$ for all $x \in U$ and for some $b \in U$. Then by (2.4), U satisfies

$$
\begin{equation*}
\left((a+b) f\left(x_{1}, \ldots, x_{n}\right)-f\left(x_{1}, \ldots, x_{n}\right) b\right)^{m}-f\left(x_{1}, \ldots, x_{n}\right) \in C \tag{2.5}
\end{equation*}
$$

If $\left((a+b) f\left(x_{1}, \ldots, x_{n}\right)-f\left(x_{1}, \ldots, x_{n}\right) b\right)^{m}-f\left(x_{1}, \ldots, x_{n}\right)=0$ for all $x_{1}, \ldots, x_{n} \in U$, then by Lemma 2.2, $m=1$ and $a, b \in C$, with $a+b=1$. In this case $F(x)=x$ for all $x \in U$ and so for all $x \in R$, as desired.
If for some $r_{1}, \ldots, r_{n} \in U\left((a+b) f\left(r_{1}, \ldots, r_{n}\right)-f\left(r_{1}, \ldots, r_{n}\right) b\right)^{m}-f\left(r_{1}, \ldots, r_{n}\right) \neq 0$, then $\left((a+b) f\left(x_{1}, \ldots, x_{n}\right)-f\left(x_{1}, \ldots, x_{n}\right) b\right)^{m}-f\left(x_{1}, \ldots, x_{n}\right) \in C$ is a nonzero central generalized identity for U, by [9, Theorem 1] U is a PI-ring and hence U is a nontrivial GPI-ring simple with 1. By lemma 2 in [21] and Theorem 2.3.29 in [28], there exists a field E such that $U \subseteq$ $M_{k}(E)$ and U and $M_{k}(E)$ satisfy the same generalized identities. Thus $\left((a+b) f\left(x_{1}, \ldots, x_{n}\right)-\right.$ $\left.f\left(x_{1}, \ldots, x_{n}\right) b\right)^{m}-f\left(x_{1}, \ldots, x_{n}\right) \in Z\left(M_{k}(E)\right)$ for all $x_{1}, \ldots, x_{n} \in M_{k}(E)$. Then by Lemma 2.1 (II), we conclude that either $m=1, a=1$ and $b \in C$ or $k=2$. In the first case $F(x)=x$ for all $x \in R$, as desired. In the second case, U and so R satisfies s_{4}.
Case-II: Let d be not inner derivation of U. Then from (2.4), U satisfies

$$
\left[\left(a f\left(x_{1}, \ldots, x_{n}\right)+f^{d}\left(x_{1}, \ldots, x_{n}\right)+\sum_{i} f\left(x_{1}, \ldots, d\left(x_{i}\right), \ldots, x_{n}\right)\right)^{m}-f\left(x_{1}, \ldots, x_{n}\right), x_{n+1}\right]=0
$$

By Kharchenko's Theorem [20], U satisfies the generalized polynomial identity

$$
\left[\left(a f\left(x_{1}, \ldots, x_{n}\right)+f^{d}\left(x_{1}, \ldots, x_{n}\right)+\sum_{i} f\left(x_{1}, \ldots, y_{i}, \ldots, x_{n}\right)\right)^{m}-f\left(x_{1}, \ldots, x_{n}\right), x_{n+1}\right]=0
$$

In particular, for $x_{1}=0$, we have $f\left(y_{1}, \ldots, x_{n}\right)^{m} \in C$ for all $y_{1}, x_{2}, \ldots, x_{n} \in U$ and so for all $y_{1}, x_{2}, \ldots, x_{n} \in R . \square$

3 The case for one sided ideals

In this section we will prove our next Theorem for a one sided ideal of R. To prove this theorem, we need the following Lemmas.
Lemma 3.1. ([5, Lemma 2]) Let R be a prime ring, I a nonzero right ideal of $R, f\left(x_{1}, \ldots, x_{n}\right)$ a multilinear polynomial over $C, a \in R$ and m a fixed positive integer.
(I) If af $\left(x_{1}, \ldots, x_{n}\right)^{m}=0$ for all $x_{1}, \ldots, x_{n} \in I$, then either $a I=0$ or $f(I) I=0$.
(II) If $f\left(x_{1}, \ldots, x_{n}\right)^{m} a=0$ for all $x_{1}, \ldots, x_{n} \in I$, then either $a=0$ or $f(I) I=0$.

Lemma 3.2. Let R be a prime ring with extended centroid C, I a nonzero right ideal of R and $f\left(x_{1}, \ldots, x_{n}\right)$ a nonzero multilinear polynomial over C. If for some $a, b \in R,\left(a\left(f\left(x_{1}, \ldots, x_{n}\right)+\right.\right.$ $\left(f\left(x_{1}, \ldots, x_{n}\right) b\right)^{m}-f\left(x_{1}, \ldots, x_{n}\right)=0$ for all $x_{1}, \ldots, x_{n} \in I$, then R satisfy a nontrivial generalized polynomial identity or $m=1$ and there exists $\alpha \in C$ such that $(a-\alpha) I=0, b \in C$ with $b+\alpha=1$.

Proof. By our hypothesis, for any $u \in I, R$ satisfies the following generalized identity

$$
\begin{equation*}
\left(a \left(f\left(u x_{1}, \ldots, u x_{n}\right)+\left(f\left(u x_{1}, \ldots, u x_{n}\right) b\right)^{m}-f\left(u x_{1}, \ldots, u x_{n}\right)=0\right.\right. \tag{3.1}
\end{equation*}
$$

We assume that this is a trivial GPI for R, for otherwise we are done. If there exists $u \in I$ such that $\{u, a u\}$ is linearly C-independent, then from above R satisfies

$$
\begin{equation*}
a f\left(u x_{1}, \ldots, u x_{n}\right)\left(a f\left(u x_{1}, \ldots, u x_{n}\right)+f\left(u x_{1}, \ldots, u x_{n}\right) b\right)^{m-1}=0 \tag{3.2}
\end{equation*}
$$

Again, since $\{u, a u\}$ is linearly C-independent, we have from above relation that R satisfies

$$
\begin{equation*}
\left(a f\left(u x_{1}, \ldots, u x_{n}\right)\right)^{2}\left(a f\left(u x_{1}, \ldots, u x_{n}\right)+f\left(u x_{1}, \ldots, u x_{n}\right) b\right)^{m-2}=0 \tag{3.3}
\end{equation*}
$$

and hence $\left(a f\left(u x_{1}, \ldots, u x_{n}\right)\right)^{m}=0$, which is nontrivial, a contradiction. Thus $\{u, a u\}$ is linearly dependent over C for all $u \in I$. Then by Fact-5 $(a-\alpha) I=0$ for some $\alpha \in C$. Then (3.1) becomes

$$
\begin{equation*}
\left(f\left(u x_{1}, \ldots, u x_{n}\right)(b+\alpha)\right)^{m}-f\left(u x_{1}, \ldots, u x_{n}\right)=0 \tag{3.4}
\end{equation*}
$$

Since this is trivial identity for R, we have that $b+\alpha \in C$, that is $b \in C$. Thus identity reduces to

$$
\begin{equation*}
(b+\alpha)^{m} f\left(u x_{1}, \ldots, u x_{n}\right)^{m}-f\left(u x_{1}, \ldots, u x_{n}\right)=0 . \tag{3.5}
\end{equation*}
$$

Since this is trivial identity for R, we conclude that $m=1$ and $b+\alpha-1=0$. \square

Lemma 3.3. Let R be a prime ring with extended centroid C, I a nonzero right ideal of R, $f\left(x_{1}, \ldots, x_{n}\right)$ a nonzero multilinear polynomial over C and $m \geq 1$ a fixed integer. If F is an inner generalized derivation of R such that $\left(F\left(f\left(x_{1}, \ldots, x_{n}\right)\right)^{m}=f\left(x_{1}, \ldots, x_{n}\right)\right.$ for all $x_{1}, \ldots, x_{n} \in I$, then one of the following holds:
(i) $I C=e R C$ some idempotent $e \in \operatorname{Soc}(R C)$ and $f\left(x_{1}, \ldots, x_{n}\right)$ is central valued on $e R C e$;
(ii) $m=1$ and there exist $\alpha, \lambda \in C$ and $a \in U$ such that $F(x)=(a+\lambda) x$ for all $x \in R$, with $(a-\alpha) I=0$ and $\alpha+\lambda=1$.

Proof. Since F is inner, there exist $a, b \in U$ such that $F(x)=a x+x b$ for all $x \in R$. If R does not satisfy any nontrivial GPI, then by Lemma 3.2, we conclude that $m=1$ and there exists $\alpha \in C$ such that $(a-\alpha) I=0, b \in C, b+\alpha=1$. In this case $F(x)=a x+x b=(a+b) x$ for all $x \in R$, where $0=(a-\alpha) I=(a+b-1) I$. This gives particular case of conclusion (2), when $\lambda=0$.
So we assume that R satisfies a nontrivial GPI. If $I=R$, then by Lemma 2.2, $m=1$ and $a, b \in C$ with $a+b=1$. In this case we have $F(x)=x$ for all $x \in R$. This is also a particular case of conclusion (2).
So let $I \neq R$. We assume first that $[f(I), I] I=0$, that is $\left[f\left(x_{1}, \ldots, x_{n}\right), x_{n+1}\right] x_{n+2}=0$ for all $x_{1}, x_{2}, \ldots, x_{n+2} \in I$. Then by Fact-4, $I C=e R C$ for some idempotent $e \in \operatorname{soc}(R C)$. Since $[f(I), I] I=0$, we have $[f(I R), I R] I R=0$ and hence $[f(I U), I U] I U=0$ by [6, Theorem 2]. In particular, $[f(I C), I C] I C=0$, or equivalently, $[f(e R C), e R C] e R C=0$. Then $[f(e R C e), e R C e]=0$, that is, $f\left(x_{1}, \ldots, x_{n}\right)$ is central-valued on $e R C e$ and hence conclusion (1) is obtained.

So we assume that $[f(I), I] I \neq 0$, that is $\left[f\left(x_{1}, \ldots, x_{n}\right), x_{n+1}\right] x_{n+2}$ is not an identity for I. In this case R is a prime GPI-ring and so is U (see Fact-2). Since U is centrally closed over C, it follows that [26] U is a primitive ring with $H=\operatorname{Soc}(U) \neq 0$. Then $[f(I H), I H] I H \neq 0$. For otherwise $[f(I U), I U] I U=0$ by [6], a contradiction. Choose $u_{n}, \ldots, u_{n+2} \in I H$ such that $\left[f\left(u_{1}, \ldots u_{n}\right), u_{n+1}\right] u_{n+2} \neq 0$. Let $u \in I H$. Since H is a regular ring, there exists $e^{2}=e \in H$ such that $e H=u H+u_{1} H+\cdots+u_{n+2} H$. Then $e \in I H$ and $u=e u, u_{i}=e u_{i}$ for $i=1, \ldots, n+2$.

Thus, we have $0 \neq[f(e H), e H] e H=[f(e H e), e H e] H$ i.e., $f\left(r_{1}, \ldots, r_{n}\right)$ is not central-valued in $e H e$.
By our assumption and by Fact-2 we may also assume that

$$
\left(a \left(f\left(x_{1}, \ldots, x_{n}\right)+\left(f\left(x_{1}, \ldots, x_{n}\right) b\right)^{m}=f\left(x_{1}, \ldots, x_{n}\right)\right.\right.
$$

is an identity for $I U$. In particular,

$$
\left(a \left(f\left(x_{1}, \ldots, x_{n}\right)+\left(f\left(x_{1}, \ldots, x_{n}\right) b\right)^{m}=f\left(x_{1}, \ldots, x_{n}\right)\right.\right.
$$

is an identity for $I H$ and so for $e H$. It follows that for all $r_{1}, \ldots, r_{n} \in H$

$$
\begin{equation*}
\left(a \left(f\left(e r_{1}, \ldots, e r_{n}\right)+\left(f\left(e r_{1}, \ldots, e r_{n}\right) b\right)^{m}=f\left(e r_{1}, \ldots, e r_{n}\right)\right.\right. \tag{3.6}
\end{equation*}
$$

we may write

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{i} t_{i}\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right) x_{i}
$$

where t_{i} is a suitable multilinear polynomial in $n-1$ variables and x_{i} never appears in any monomials of t_{i}. Since $f(e H e) \neq 0$, there exists some t_{i} which does not vanish in $e H e$. Without loss of generality $t_{n}(e H e) \neq 0$. Let $r \in R$. Then replacing r_{n} with $r(1-e)$ in (3.6), we have

$$
\begin{gather*}
\left(a t_{n}\left(e r_{1}, \ldots, e r_{n-1}\right) \operatorname{er}(1-e)+t_{n}\left(e r_{1}, \ldots, e r_{n-1}\right) \operatorname{er}(1-e) b\right)^{m} \\
=t_{n}\left(e r_{1}, \ldots, e r_{n-1}\right) \operatorname{er}(1-e) \tag{3.7}
\end{gather*}
$$

Left multiplying by $(1-e)$ in (3.7), we obtain $(1-e)\left(a t_{n}\left(e r_{1}, \ldots, e r_{n-1}\right) \operatorname{er}(1-e)\right)^{m}=$ 0 , that is $\left((1-e) a t_{n}\left(e r_{1}, \ldots, e r_{n-1}\right) e r\right)^{m+1}=0$ for all $r \in H$. By [16], we have $(1-$ $e) a t_{n}\left(e r_{1}, \ldots, e r_{n-1}\right) e H=0$ implying $(1-e) a e t_{n}\left(e r_{1} e, \ldots, e r_{n-1} e\right)=0$ for all $r_{1}, \ldots, r_{n-1} \in$ H. Since $e H e$ is a simple Artinian ring and $t_{n}(e H e) \neq 0$ is invariant under the action of all inner automorphisms of $e \mathrm{He}$, by [7, Lemma 2], $(1-e) a e=0$ that is, eae $=a e$. Analogously right multiplying by e in (3.7) and then by above argument we conclude that $(1-e) b e=0$. Moreover, since in particular from (3.6) we can write that H satisfies

$$
e\left\{\left(a f\left(e r_{1} e, \ldots, e r_{n} e\right)+f\left(e r_{1} e, \ldots, e r_{n} e\right) b\right)^{m}-f\left(e r_{1} e, \ldots, e r_{n} e\right)\right\} e=0
$$

and so using the facts $a e=e a e$ and $b e=e b e$, we have $e H e$ satisfies

$$
\left(e a e f\left(r_{1}, \ldots, r_{n}\right)+f\left(r_{1}, \ldots, r_{n}\right) e b e\right)^{m}-f\left(r_{1}, \ldots, r_{n}\right)=0
$$

Then by Lemma 2.2, since $f\left(r_{1}, \ldots, r_{n}\right)$ is not central valued in $e H e$, we conclude that $m=1$ and $e a e, e b e \in C e$. Therefore $a e=e a e \in C e$ and $b e=e b e \in C e$. Thus $a u=a e u=e a e u \in C u$ and hence $a u, u$ are linearly C-dependent for each $u \in I$. So by Fact- $5(a-\alpha) I=0$ for some $\alpha \in C$. Similarly $(b-\beta) I=0$ for some $\beta \in C$.
Then our hypothesis

$$
\begin{equation*}
\left(a f\left(r_{1}, \ldots, r_{n}\right)+f\left(r_{1}, \ldots, r_{n}\right) b\right)^{m}-f\left(r_{1}, \ldots, r_{n}\right)=0 \tag{3.8}
\end{equation*}
$$

for all $r_{1}, \ldots, r_{n} \in I$ gives

$$
\begin{equation*}
f\left(r_{1}, \ldots, r_{n}\right)(b+\alpha)-f\left(r_{1}, \ldots, r_{n}\right)=0 \tag{3.9}
\end{equation*}
$$

for all $r_{1}, \ldots, r_{n} \in I$, since $m=1$. Thus

$$
\begin{equation*}
f\left(r_{1}, \ldots, r_{n}\right)(b+\alpha-1)=0 \tag{3.10}
\end{equation*}
$$

for all $r_{1}, \ldots, r_{n} \in I$. Then by Lemma 3.1(II), either $b+\alpha-1=0$ or $f(I) I=0$. Since $f(I) I=0$ implies $[f(I), I] I=0$, a contradiction, we have $b=1-\alpha \in C$. Thus $F(x)=a x+x b=(a+b) x$ for all $x \in R$, which gives our conclusion (2).

Now we are in a position to prove our main theorem for a one sided ideal of R.

Theorem 3.4. Let R be a prime ring with extended centroid C, I a nonzero right ideal of R, $f\left(x_{1}, \ldots, x_{n}\right)$ a nonzero multilinear polynomial over C and $m \geq 1$ a fixed integer. If F is a generalized derivation of R such that $\left(F\left(f\left(x_{1}, \ldots, x_{n}\right)\right)^{m}=f\left(x_{1}, \ldots, x_{n}\right)\right.$ for all $x_{1}, \ldots, x_{n} \in$ I, then one of the following holds:
(i) IC $=e R C$ some idempotent $e \in \operatorname{Soc}(R C)$ and $f\left(x_{1}, \ldots, x_{n}\right)$ is central valued on $e R C e$;
(ii) $m=1$ and there exist $\alpha, \lambda \in C$ and $a \in U$ such that $F(x)=(a+\lambda) x$ for all $x \in R$, with $(a-\alpha) I=0$ and $\alpha+\lambda=1$.

Proof. If F is inner generalized derivation of R, then by Lemma 3.3, we are done. Now let F be not inner. By [24], we have $F(x)=a x+d(x)$ for some $a \in U$ and a derivation d on U. Let $u_{1}, \ldots, u_{n} \in I$. Then by [21], U satisfies

$$
\left(a f\left(u_{1} x_{1}, \ldots, u_{1} x_{n}\right)+d\left(f\left(u_{1} x_{1}, \ldots, u_{1} x_{n}\right)\right)\right)^{m}=f\left(u_{1} x_{1}, \ldots, u_{1} x_{n}\right)
$$

that is

$$
\begin{gathered}
\left(a f\left(u_{1} x_{1}, \ldots, u_{1} x_{n}\right)+f^{d}\left(u_{1} x_{1}, \ldots, u_{n} x_{n}\right)\right. \\
\left.+\sum_{j} f\left(u_{1} x_{1}, \ldots, d\left(u_{j}\right) x_{j}+u_{j} d\left(x_{j}\right), \ldots, x_{n}\right)\right)^{m}=f\left(u_{1} x_{1}, \ldots, u_{1} x_{n}\right)
\end{gathered}
$$

Since F is not inner, d is also not inner derivation. Then by Kharchenko's theorem [20], U satisfies

$$
\begin{gathered}
\left(a f\left(u_{1} x_{1}, \ldots, u_{1} x_{n}\right)+f^{d}\left(u_{1} x_{1}, \ldots, u_{n} x_{n}\right)\right. \\
\left.+\sum_{j} f\left(u_{1} x_{1}, \ldots, d\left(u_{j}\right) x_{j}+u_{j} y_{j}, \ldots, x_{n}\right)\right)^{m}=f\left(u_{1} x_{1}, \ldots, u_{1} x_{n}\right)
\end{gathered}
$$

In particular, putting $x_{1}=0, U$ satisfies

$$
f\left(u_{1} y_{1}, \ldots, u_{n} x_{n}\right)^{m}=0
$$

Since I and $I U$ satisfies the same polynomial identities, we have that I satisfies $f\left(x_{1}, \ldots, x_{n}\right)^{m}=$ 0 . By Lemma 3.1, $f(I) I=0$ and hence $[f(I), I] I=0$. Then conclusion (1) is obtained by Fact4.

References

[1] N. Argac and H. G. Inceboz, Derivations of prime and semiprime rings, J. Korean Math. Soc.,997-1005, 46 (5) (2009).
[2] K. I. Beidar, W. S. Martindale and A. V. Mikhalev, Rings with Generalized Identities, Monographs and Textbooks in Pure and Applied Mathematics, 196. Marcel Dekker, Inc., New York, 1996.
[3] M. Brešar, Commuting traces of biadditive mappings, commutativity-preserving mappings and Lie mappings, Trans. Amer. Math. Soc., 525-546, 335 (2) (1993).
[4] M. Brešar, On the distance of the composition of the two derivations to be the generalized derivations, Glasgow Math. J., 89-93, 33 (1) (1991).
[5] C. M. Chang, Power central values of derivations on multilinear polynomials, Taiwanese J. Math., 329338, 7 (2)(2003).
[6] C. L. Chuang, GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc., 723-728, 103 (3) (1988).
[7] C. L. Chuang and T. K. Lee, Rings with annihilator conditions on multilinear polynomials, Chinese J. Math., 177-185, 24 (2) (1996).
[8] C. L. Chuang, The additive subgroup generated by a polynomial, Israel J. Math., 98-106, 59 (1) (1987).
[9] C. M. Chang and T. K. Lee, Annihilator of power values of derivations in prime rings, Comm. Algebra, 2091-2113, 26 (7) (1998).
[10] C. M. Chang, Power central values of derivations on multilinear polynomials, Taiwanese J. Math., 329338, 7 (2) (2003).
[11] M. N. Daif and H. E. Bell, Remarks on derivations on semiprime rings, Internat. J. Math. \& Math. Sci., 205-206, 15 (1) (1992).
[12] B. Dhara, Remarks on generalized derivations in prime and semiprime rings, Int. J. Math. \& Math. Sci. Vol. 2010, Article ID 646587, 6 pages.
[13] V. De Filippis, Right ideals and derivations on multilinear polynomials, Rend. Sem. Mat. Univ. Padova, 171-183, 105 (2001).
[14] V. De Filippis and S. Huang, Generalized derivations on semiprime rings, Bull. Korean Math. Soc., 12531259, 48 (6) (2011).
[15] T. S. Erickson, W. S. Martindale III and J. M. Osborn, Prime nonassociative algebras, Pacific J. Math., 49-63, 60 (1975).
[16] B. Felzenszwalb, On a result of Levitzki, Canad. Math. Bull., 241-242, 21 (1978).
[17] M. Hongan, A note on semiprime rings with derivations, Internat. J. Math. \& Math. Sci., 413-415, 20 (2) (1997).
[18] S. Huang, On generalized derivations of prime and semiprime rings, Taiwanese J. Math., 771-776, 16 (2) (2012).
[19] N. Jacobson, Structure of rings, Amer. Math. Soc. Colloq. Pub., 37, Amer. Math. Soc., Providence, RI, 1964.
[20] V. K. Kharchenko, Differantial identities of Prime rings, Algebra and Logic, 155-168, 17 (1978).
[21] C. Lanski, An Engel condition with derivation, Proc. Amer. Math. Soc., 731-734, 118 (3) (1993).
[22] T. K. Lee, Power reduction property for generalized identities of one-sided ideals, Algebra Colloquium, 19-24, 3 (1996).
[23] T. K. Lee, Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sinica, 27-38, 20 (1) (1992).
[24] T. K. Lee, Generalized derivations of left faithful rings, Comm. Algebra, 4057-4073, 27 (8) (1999).
[25] U. Leron, Nil and power central polynomials in rings, Trans. Amer. Math. Soc., 97-103, 202 (1975).
[26] W. S. Martindale III, Prime rings satisfying a generalized polynomial identity. J. Algebra, 576-584, 12 (1969).
[27] T. L. Wong, Derivations with power central values on multilinear polynomials, Algebra Colloquium, 369378, 3 (4) (1996).
[28] L. H. Rowen, Polynomial identities in ring theory, Pure and Applied Mathematics 84, Academic Press, New York, 1980.

Author information

Asma Ali, Department of Mathematics, Aligarh Muslim University, Aligarh-202002, India.
E-mail: asma_ali2@rediffmail.com
Basudeb Dhara, Department of Mathematics, Belda College, Belda, Paschim Medinipur, 721424, W.B, India.
E-mail: basu_dhara@yahoo.com
Shahoor Khan, Department of Mathematics Aligarh Muslim University, Aligarh-202002, India.
E-mail: shahoor.khan@rediffmail.com
Received: March 18, 2016.
Accepted: September 13, 2016.

