2-ABSORBING IDEALS IN FORMAL POWER SERIES RINGS

Malek Achraf, Hamed Ahmed and Benhissi Ali

Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 13A15, 13F25; Secondary 13E05.

Keywords and phrases: 2-absorbing ideals, Formal power series ring, Noetherian rings.

Abstract Let R be a commutative ring with identity. A proper ideal I of R is said to be 2-absorbing if whenever $x_1x_2x_3 \in I$ for $x_1, x_2, x_3 \in R$, then there are 2 of the x_i 's whose product is in I. In this paper, we prove that if R is a Noetherian ring, then for every proper ideal I of R, I is a 2-absorbing ideal if and only if I[[X]] is a 2-absorbing ideal in the formal power series ring R[[X]].

1 Introduction

All rings considered in this paper are commutative and unitary. Let R be a commutative and unitary ring and P a proper ideal of R. We say that P is a prime ideal if for all $a, b \in R$ such that $ab \in P$, we have $a \in P$ or $b \in P$. Prime ideals are very important for the study of commutative rings. Many generalizations of prime ideals were introduced like weakly prime ideals [8], n-absorbing ideals [1] and strongly prime ideals. In [2], Badawi generalized the concept of prime ideals as follows, a proper ideal I of R is a 2-absorbing ideal if whenever $x_1x_2x_3 \in I$, for $x_1, x_2, x_3 \in R$, then there are 2 of the x_i 's whose product is in I. Additionally, Badawi introduces a generalization of primary ideals in [4]. For more references about 2-absorbing ideals see [6], [7] and [3]. In [1], D. F. Anderson and A. Badawi asked the question: If I is an n-absorbing ideal of R, is I[X] an n-absorbing ideal of the polynomial ring R[X]?. For n = 2, they showed that I is a 2-absorbing ideal if and only if I[X] is a 2-absorbing ideal of R[X], see ([Theorem 4.15, [1]] or [Corollary 1.7, [9]]). It is natural to think about these results in the formal power series ring. In this paper, we show that in a Noetherian ring R, I is a 2-absorbing ideal if and only if I[[X]] is a 2-absorbing ideal of the formal power series ring R[[X]].

2 2-absorbing ideals

Definition 2.1. A proper ideal *I* of a ring *R* is said to be *n*-absorbing if whenever $x_1 \cdots x_{n+1} \in I$ for $x_1, \cdots, x_{n+1} \in R$, then there are *n* of the x_i 's whose product is in $I, n \in \mathbb{N}^*$.

Lemma 2.2. Let I be an ideal of a Noetherian ring R. Then

- (*i*) I[[X]] = IR[[X]].
- (*ii*) $\sqrt{I[[X]]} = \sqrt{I}[[X]].$

Proof. (i) See [Corollary 2.2.3, [5]].

(ii) " \subseteq " Since for all $P \in spec(R)$ with $I \subseteq P$, we have $I[[X]] \subseteq P[[X]]$ then, $\sqrt{I[[X]]} \subseteq P[[X]]$. Thus $\sqrt{I[[X]]} \subseteq \bigcap_{I \subseteq P} P[[X]] = (\bigcap_{I \subseteq P} P)[[X]] = \sqrt{I}[[X]]$. " \supseteq " We have $I \subseteq I[[X]]$, so $\sqrt{I} \subseteq \sqrt{I[[X]]}$. Thus $\sqrt{IR}[[X]] \subseteq \sqrt{I[[X]]}$. Since R is Noetherian, so $\sqrt{IR}[[X]] = \sqrt{I}[[X]]$ by (1). Hence the result.

Lemma 2.3. Let I be a 2-absorbing ideal of a Noetherian ring R and $f = \sum_{i\geq 0} a_i X^i \in \sqrt{I}[[X]].$

Then,

$$\bigcap_{n \ge 0} (I:a_n) R[[X]] = \bigcap_{n \ge 0} (I:a_n)[[X]] = (I:a_t)[[X]] \text{ for some } t \in \mathbb{N}$$

Proof. (i) If $\sqrt{I} = I$, then $f \in \sqrt{I}[[X]] = I[[X]]$. Thus, $(I : a_n) = R \ \forall n \in \mathbb{N}$. So, $(\bigcap_{n \ge 0} (I : a_n))R[[X]] = R[[X]] = \bigcap_{n \ge 0} (I : a_n)[[X]]$.

(ii) If $\sqrt{I} \neq I$, then set $H := \{(I : a_n) / n \in \mathbb{N}\}$. If $a_n \in I$, then $(I : a_n) = R$. Otherwise, for all $a_n, a_m \in \sqrt{I} \setminus I$, either $(I : a_n) \subseteq (I : a_m)$ or $(I : a_m) \subseteq (I : a_n) \forall n, m \in \mathbb{N}$ by [Theorem.2.5, [2]] and [Theorem.2.6, [2]]. Thus H is a nonempty totally ordered set of ideals of R. Since R is Noetherian, then H has a minimal element, and since H is totally ordered, this element is the smallest element. Hence $\bigcap_{n\geq 0} (I : a_n) = (I : a_t)$ for some $t \in \mathbb{N}$.

Lemma 2.4. Let I be a 2-absorbing ideal of R and p, q two prime ideals of R.

- (i) If $\sqrt{I} = p$, then $(I:_R x)$ is a 2-absorbing ideal of R for all $x \in R \setminus p$ with $\sqrt{(I:_R x)} = p$ and $S = \{(I:_R x) | x \in R\}$ is a totally ordered set.
- (ii) If $\sqrt{I} = p \cap q$, then $(I :_R x)$ is a 2-absorbing ideal of R, for all $x \in R \setminus p \cup q$ with $\sqrt{(I :_R x)} = p \cap q$ and $S = \{(I :_R x) / x \in R \setminus p \cup q\}$ is a totally ordered set.

Proof. See [*Theorem.*1.4, [9]].

Theorem 2.5. Let I be a 2-absorbing ideal of a Noetherian ring R and $f(X) = \sum_{i\geq 0} a_i X^i \in R[[X]].$

- (i) If $f(X) \in \sqrt{I[[X]]} \setminus I[[X]]$, then $(I[[X]] :_{R[[X]]} f(X)) = (I :_R a_t)R[[X]]$ for some $t \ge 0$ and is a prime ideal of R[[X]].
- (ii) If $f(X) \notin \sqrt{I[[X]]}$, then either $(I[[X]]]:_{R[[X]]} f(X)) = (I:_R a_t)R[[X]]$ for some $t \ge 0$ or $(I[[X]]:_{R[[X]]} f(X)) = P[[X]] \cap Q[[X]]$, where P and Q are two prime ideals of R.

Proof. (i) Suppose that $f(X) \in \sqrt{I[[X]]} \setminus I[[X]]$. First, we show that $\bigcap_{i \ge 0} (I : a_i)[[X]] = (I[[X]] :_{R[[X]]} f(X))$. Let $g(X) = \sum_{j \ge 0} b_j X^j \in \bigcap_{i \ge 0} (I : a_i)[[X]]$. Then for all $i, j \in \mathbb{N}, b_j a_i \in I$. Thus $f(X)g(X) = \sum_{n \ge 0} (\sum_{k=0}^n a_k b_{n-k}) X^n \in I[[X]]$. So $\bigcap_{i \ge 0} (I : a_i)[[X]] \subseteq (I[[X]] :_{R[[X]]} = I[[X]])$.

$$f(X)$$
). Conversely, let $g(X) \in (I[[X]]] :_{R[[X]]} f(X))$. We have $g(X)f(X) \in I[[X]]$. So

it is clear that $b_0 \in (I : a_0)$. Let $n \ge 1$ and suppose that $b_0 \in \bigcap_{k=0} (I : a_k)$. We show that

$$b_0 \in \bigcap_{k=0}^{n} (I:a_k)$$
. We have $c_n := \sum_{k=0}^{n} b_k a_{n-k} \in I$. Then $b_0 c_n = b_0^2 a_n + b_0 b_1 a_{n-1} + \dots + b_0 b_1 a_{n-1} + \dots + b_0 b_0 a_{n-1} + \dots + b_0 b_$

 $b_0a_0b_n \in I$. Thus $b_0^2a_n \in I$ and hence $b_0^2 \in (I : a_n)$. We have $f \in \sqrt{I[[X]]} = \sqrt{I[[X]]}$ by Lemma 2.2. So $a_n \in \sqrt{I}$. If $a_n \in I$, then $(I : a_n) = R$. Otherwise, $a_n \in \sqrt{I} \setminus I$ and then $(I : a_n)$ is prime by [*Theorem.*2.5, [2]] or [*Theorem.*2.6, [2]]. Hence $b_0 \in (I : a_n)$. So $b_0 \in (I : a_n) \forall n \in \mathbb{N}$. Now, let $k \ge 1$ and suppose that $b_0, \ldots, b_{k-1} \in (I : a_n) \forall n \in \mathbb{N}$. We prove that $b_k \in (I : a_n) \forall n \in \mathbb{N}$. For n = 0, $b_k c_k = b_k b_0 a_k + b_k b_1 a_{k-1} + \cdots + b_k^2 a_0 \in I$. Thus $b_k^2 a_0 \in I$. This means that $b_k^2 \in (I : a_0)$, so $b_k \in (I : a_0)$ since $(I : a_0)$ prime for $a_0 \in \sqrt{I} \setminus I$. Let $n \ge 1$. Suppose that $b_k \in (I : a_i), \forall i \in \{0, \ldots, n-1\}$. We prove that $b_k \in (I : a_n)$. We have $c_{k+n} = a_0 b_{k+n} + a_1 b_{k+n-1} + \cdots + a_n b_k + a_{n+1} b_{k-1} + \cdots + a_k + a_k b_0$. So $b_k c_{k+n} = b_k a_0 b_{k+n} + b_k a_1 b_{k+n-1} + \cdots + a_n b_k^2 + b_k a_{k+n} b_0$. Then $a_n b_k^2 \in I$

and thus $b_k^2 \in (I : a_n)$. So $b_k \in (I : a_n)$ since $(I : a_n)$ is prime for $a_n \in \sqrt{I} \setminus I$. Hence $b_k \in (I : a_n) \ \forall k \ \forall n \in \mathbb{N} \Rightarrow b_k \in \bigcap_{n \ge 0} (I : a_n) \ \forall k \in \mathbb{N}$. Therefore $g(X) \in \bigcap_{n \ge 0} (I : a_n) [[X]]$.

Thus,

$$(I[[X]]]:_{R[[X]]} f(X)) = \bigcap_{n \ge 0} (I:a_n)R[[X]] = \bigcap_{n \ge 0} (I:a_n)[[X]].$$

Now we show that $(I[[X]] :_{R[[X]]} f(X)) = (I :_R a_t)R[[X]]$ for some $t \ge 0$ and is a prime ideal of R[[X]]. By Lemma 2.3, $\bigcap_{n\ge 0} (I : a_n) = (I : a_t)$ for some $t \in \mathbb{N}$. So $(I[[X]] :_{R[[X]]} f(X)) = (I : a_t)R[[X]] = (I : a_t)[[X]]$ is prime because $(I : a_t)$ is prime for $a_t \in \sqrt{I} \setminus I$ by [Theorem.2.8, [2]] and [Theorem.2.9, [2]].

(ii) Suppose that $f(X) \notin \sqrt{I[[X]]}$. First, we show that $\bigcap (I : a_i)[[X]] = (I[[X]] :_{R[[X]]})$

$$f(X)$$
). Let $g(X) = \sum_{\substack{j \ge 0 \\ n}} b_j X^j \in \bigcap_{i \ge 0} (I : a_i)[[X]]$. Then for all $i, j \in \mathbb{N}, b_j a_i \in I$. Thus

$$f(X)g(X) = \sum_{n \ge 0} (\sum_{k=0}^{k=0} a_k b_{n-k}) X^n \in I[[X]]. \text{ So } \bigcap_{i \ge 0} (I : a_i)[[X]] \subseteq (I[[X]] :_{R[[X]]} f(X)).$$

Conversely, let $g(X) \in (I[[X]]] :_{R[[X]]} f(X))$. We have $g(X)f(X) \in I[[X]]$. We show that $b_k \in (I : a_0) \ \forall k \in \mathbb{N}$.

- a. If $a_0 \in \sqrt{I}$.
 - i. If $\sqrt{I} = P$, then $f(X)g(X) \in I[[X]] \subseteq \sqrt{I}[[X]] = P[[X]]$. Since $f(X) \notin P[[X]]$ then $g(X) \in P[[X]]$. Thus $a_0b_k \in P^2 \subseteq I \ \forall k \in \mathbb{N}$ by [Theorem.2.4, [2]].
 - ii. If $\sqrt{I} = P \cap Q$, then $f(X) \notin P[[X]]$ or $f(X) \notin Q[[X]]$ since $f(X) \notin \sqrt{I}[[X]] = (P \cap Q)[[X]] = P[[X]] \cap Q[[X]]$. Note first that if $f(X) \notin P[[X]] \cup Q[[X]]$, then $g(X) \in P[[X]] \cap Q[[X]] = (P \cap Q)[[X]]$ since $f(X)g(X) \in P[[X]] \cap Q[[X]]$. Thus $b_k \in P \cap Q = \sqrt{I} \forall k \in \mathbb{N}$. Hence $b_k a_0 \in PQ \subseteq I$ by [Theorem.2.4, [2]]. So $b_k \in (I : a_0) \forall k \in \mathbb{N}$. On the other hand, if $f(X) \in P[[X]]$ and $f(X) \notin Q[[X]]$, then $g(X) \in Q[[X]]$ since $f(X)g(X) \in Q[[X]]$. Thus $b_k \in (I : a_0) \forall k \in \mathbb{N}$ since $b_k a_0 \in QP \subseteq I$ by [Theorem.2.4, [2]].
- b. If $a_0 \notin \sqrt{I}$. We have $f(X)g(X) \in I[[X]]$ then $b_0a_0 \in I$. Let $k \ge 1$, suppose that $b_0, \ldots, b_{k-1} \in (I : a_0)$. We have $c_k = a_0b_k + \cdots + a_kb_0$. Thus, $a_0c_k = a_0^2b_k + a_0a_1b_{k-1} + \cdots + a_0a_kb_0 \in I$. Then $a_0^2b_k \in I$. Hence $a_0^2 \in I$ or $a_0b_k \in I$ since I is a 2-absorbing ideal. If $a_0^2 \in I$, then $a_0 \in \sqrt{I}$ absurd. So $a_0b_k \in I$.

Now we prove that $b_k \in (I : a_n) \ \forall k, n \in \mathbb{N}$. We have already shown that $b_k \in (I : a_0) \ \forall k \in \mathbb{N}$. Let $n \in \mathbb{N}^*$. We suppose that $b_k \in (I : a_m) \ \forall 0 \leq m \leq n-1, \ \forall k \in \mathbb{N}$ and we prove that $b_k \in (I : a_n) \ \forall k \in \mathbb{N}$. Indeed, for k = 0, we have $c_n = a_0 b_n + \cdots + a_n b_0 \in I$. Thus $b_0 a_n \in I$. Let $k \geq 1$. Suppose that $b_r \in (I : a_n) \ \forall 1 \leq r \leq k-1$. We show that $b_k \in (I : a_n)$. we do the same proof of a_0 to a_n .

- a. If $a_n \in \sqrt{I}$.
 - i. If $\sqrt{I} = P$, then $a_n b_k \in P^2 \subseteq I$ (as for a_0).
 - ii. If $\sqrt{I} = P \cap Q$, then $a_n b_k \in PQ \subseteq I$.
- b. If $a_n \notin \sqrt{I}$. We have $a_n c_{n+k} = a_n a_0 b_{n+k} + a_n a_1 b_{n+k-1} + \dots + a_n a_{n-1} b_{k+1} + a_n^2 b_k + a_n a_{n+1} b_{k-1} + \dots + a_n a_{n+k} b_0 \in I$. Thus $a_n^2 b_k \in I$. Hence $b_k \in (I : a_n)$ since I is a 2-absorbing ideal and $a_n \notin \sqrt{I}$.

Thus $(I[[X]]:_{R[[X]]} f(X)) = \bigcap_{i \ge 0} (I:a_i)[[X]]$. Now we are ready to show that either $(I[[X]]:_{R[[X]]})$

f(X) = $(I :_R a_t)R[[X]]$ for some $t \ge 0$ or $(I[[X]] :_{R[[X]]} f(X)) = P[[X]] \cap Q[[X]]$, where P and Q are two prime ideals of R.

- (i) If $\sqrt{I} = P$, then the set $\{(I : a_n) / a_n \in R\}$ is totally ordered by Lemma 2.4. Since R is Noetherian we deduce that $\bigcap_{n \ge 0} (I : a_n) = (I : a_t)$ for some $t \in \mathbb{N}$. So $(I[[X]]] :_{R[[X]]}$
 - $f(X)) = (I: a_t)R[[X]]$ for some $t \in \mathbb{N}$.

(ii) If
$$\sqrt{I} = P \cap Q$$
.

a. If there exists $t \in \mathbb{N}$ such that $a_t \notin P \cup Q$, then $\{(I : a_t) / a_t \notin P \cup Q\}$ is totally ordered and $\sqrt{(I : a_t)} = P \cap Q$ by Lemma 2.4. Thus $(I : a_t) \subseteq \sqrt{(I : a_t)} = P \cap Q$ forall $t \in \mathbb{N}$ with $a_t \notin P \cup Q$. If there exists $t \in \mathbb{N}$ with $a_t \in P$ or Q, for example if $a_t \in P$, then $Q \subseteq (I : a_t)$ because $\forall x \in Q, xa_t \in QP \subseteq I$ by [Theorem.2.4, [2]]. By the same way if $a_t \in Q$, then $P \subseteq (I : a_t)$. Hence $\forall t_0 \in \mathbb{N}$ with $a_{t_0} \notin$ $P \cup Q$ we have $(I : a_{t_0}) \subseteq \sqrt{(I : a_{t_0})} = P \cap Q \subseteq Q \subseteq (I : a_t) \forall a_t \in P$ and $(I : a_{t_0}) \subseteq \sqrt{(I : a_{t_0})} = P \cap Q \subseteq P \subseteq (I : a_t) \forall a_t \in Q$. So if there exists $t \in \mathbb{N}$ with $a_t \notin P \cup Q$ we have $\bigcap_{n \ge 0} (I : a_n) = \bigcap_{n \ge 0} (I : a_n)$ where $a_n \notin P \cup Q$. So

$$\bigcap_{n\geq 0} (I:a_n)R[[X]] = (I:a_t)R[[X]] \text{ for some } t \in \mathbb{N} \text{ since these ideals are comparable}$$

by Lemma 2.4 (2) and R is Noetherian.

- b. If $a_t \in P \cup Q \ \forall t \in \mathbb{N}$. Remark that $(I : a_t) = Q$ (resp. $(I : a_t) = P$) for all $t \in \mathbb{N}$ with $a_t \in P \setminus Q$ (resp. $a_t \in Q \setminus P$). Indeed, $xa_t \in PQ \subseteq I \ \forall x \in Q$. So $Q \subseteq (I : a_t)$. On the other hand, if $xa_t \in I \subseteq \sqrt{I} = P \cap Q$, then $xa_t \in Q$. Thus $x \in Q$. The same way for $(I : a_t) = P$. We have $f(X) \notin \sqrt{I}[[X]] = (P \cap Q)[[X]]$. Thus there exists $t \in \mathbb{N}$ such that $a_t \in P \setminus Q$ or $a_t \in Q \setminus P$. So for all $i \in \mathbb{N}$ with $a_i \in P \cap Q = \sqrt{I}$ we have $(I : a_t) = Q \subseteq (I : a_i)$ with $a_t \in P \setminus Q$ and in the same way we have $(I : a_t) = P \subseteq (I : a_i)$ with $a_t \in Q \setminus P$ by [Theorem.2.4, [2]]. Thus $(I[[X]] :_{R[[X]]} f(X)) = \bigcap_{i \geq 0} (I : a_i)[[X]] = \bigcap_{i \geq 0} (I : a_i)[[X]]$ with $a_i \in P \setminus Q$ or
 - $a_i \in Q \setminus P.$
 - i. If there exists $t_1, t_2 \in \mathbb{N}$ such that $a_{t_1} \in P \setminus Q$ and $a_{t_2} \in Q \setminus P$ then $(I[[X]]] :_{R[[X]]} f(X)) = (P \cap Q)R[[X]] = (P \cap Q)[[X]] = P[[X]] \cap Q[[X]].$
 - ii. If for all $t \in \mathbb{N}$ $a_t \in P \setminus Q$ (resp. $Q \setminus P$), then $(I[[X]] :_{R[[X]]} f(X)) = (I : a_t)R[[X]] = QR[[X]] = Q[[X]]$ (resp. PR[[X]] = P[[X]]).

Corollary 2.6. Let I be a proper ideal of a Noetherian ring R. Then, I is a 2-absorbing ideal of R if and only if I[[X]] is a 2-absorbing ideal of R[[X]].

Proof. Suppose that I[[X]] is a 2-absorbing ideal of R[[X]]. Since $I = I[[X]] \cap R$ hence I is a 2-absorbing ideal of R. Conversely, suppose that I is a 2-absorbing ideal of R. We show that I[[X]] is a 2-absorbing ideal of R[[X]].

- (i) If $\sqrt{I} = I$, then $\sqrt{I[[X]]} = \sqrt{I}[[X]] = I[[X]]$ but I is 2-absorbing so $\sqrt{I} = P$ or $\sqrt{I} = P \cap Q$ hence I[[X]] = P[[X]] or $I[[X]] = (P \cap Q)[[X]] = P[[X]] \cap Q[[X]]$ therefore I[[X]] is a 2-absorbing ideal of R[[X]].
- (ii) If $\sqrt{I} \neq I$, then $\sqrt{I[[X]]} \neq I[[X]]$. For all $f(x) \in \sqrt{I[[X]]} \setminus I[[X]]$ we have $(I[[X]] :_{R[[X]]} f(X)) = (I :_R a_t)R[[X]]$ for some $t \ge 0$ is a prime ideal of R[[X]] by Theorem 2.5 (1). Thus, I[[X]] is a 2-absorbing ideal of R[[X]] by [Theorem.2.8, [2]] and [Theorem.2.9, [2]].

References

D. F. Anderson and A. Badawi, On n-absorbing ideals of commutative rings, *Comm. Algebra*, 39, 1646–1672 (2011).

- [2] A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc. 75, 417-429 (2007).
- [3] A. Badawi and A. Y. Darani, On weakly 2-absorbing ideals of commutative rings, *Houston J. Math.* 39, 441–452 (2013).
- [4] A. Badawi, U. Tekir and E.Yetkin, On 2-absorbing primary ideals in commutative rings, Bull. Korean Math. Soc. 51, 1163–1173 (2014).
- [5] A. Benhissi, Séries formelles, *Queen's Papers in Pure and Applied Mathematics* 124 Kingston, Ontario, Canada, (2003).
- [6] A. Y. Darani and E.R Puczylowski, On 2-absorbing commutative semigroups and their applications to rings, *Semigroup Forum* **86**, 83–91 (2013).
- [7] A. Y. Darani and F. Soheilnia, On 2-absorbing and weakly 2-absorbing submodules, *Thai J. Math.* 9, 577–584 (2011).
- [8] S. Galovich, Unique factorization rings with zero divisors, Math. Mag. 51, 276–283 (1978).
- [9] Sh. Payrovi and S. Babaei, On the 2-absorbing ideals, *International mathematical forum* 7, 265–271 (2012).

Author information

Malek Achraf, Hamed Ahmed and Benhissi Ali, Department of Mathematics, Faculty of Sciences, Monastir, Tunisia.

 $E\text{-mail: achraf_malek@yahoo.fr, hamed.ahmed@hotmail.fr, ali_benhissi@yahoo.fr}$

Received: February 11, 2017. Accepted: February 28, 2017.