2-ABSORBING IDEALS IN FORMAL POWER SERIES RINGS

Malek Achraf, Hamed Ahmed and Benhissi Ali
Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 13A15, 13F25; Secondary 13E05.
Keywords and phrases: 2-absorbing ideals, Formal power series ring, Noetherian rings.

Abstract

Let R be a commutative ring with identity. A proper ideal I of R is said to be 2 -absorbing if whenever $x_{1} x_{2} x_{3} \in I$ for $x_{1}, x_{2}, x_{3} \in R$, then there are 2 of the x_{i} 's whose product is in I. In this paper, we prove that if R is a Noetherian ring, then for every proper ideal I of R, I is a 2 -absorbing ideal if and only if $I[[X]]$ is a 2 -absorbing ideal in the formal power series ring $R[[X]]$.

1 Introduction

All rings considered in this paper are commutative and unitary. Let R be a commutative and unitary ring and P a proper ideal of R. We say that P is a prime ideal if for all $a, b \in R$ such that $a b \in P$, we have $a \in P$ or $b \in P$. Prime ideals are very important for the study of commutative rings. Many generalizations of prime ideals were introduced like weakly prime ideals [8], n-absorbing ideals [1] and strongly prime ideals. In [2], Badawi generalized the concept of prime ideals as follows, a proper ideal I of R is a 2 -absorbing ideal if whenever $x_{1} x_{2} x_{3} \in I$, for $x_{1}, x_{2}, x_{3} \in R$, then there are 2 of the x_{i} 's whose product is in I. Additionally, Badawi introduces a generalization of primary ideals in [4]. For more references about 2 -absorbing ideals see [6], [7] and [3]. In [1], D. F. Anderson and A. Badawi asked the question: If I is an n-absorbing ideal of R, is $I[X]$ an n-absorbing ideal of the polynomial ring $R[X]$?. For $n=2$, they showed that I is a 2 -absorbing ideal if and only if $I[X]$ is a 2 -absorbing ideal of $R[X]$, see ([Theorem $4.15,[1]]$ or [Corollary 1.7, [9]]). It is natural to think about these results in the formal power series ring. In this paper, we show that in a Noetherian ring R, I is a 2 -absorbing ideal if and only if $I[[X]]$ is a 2 -absorbing ideal of the formal power series ring $R[[X]]$.

2 2-absorbing ideals

Definition 2.1. A proper ideal I of a ring R is said to be n-absorbing if whenever $x_{1} \cdots x_{n+1} \in I$ for $x_{1}, \cdots, x_{n+1} \in R$, then there are n of the x_{i} 's whose product is in $I, n \in \mathbb{N}^{*}$.

Lemma 2.2. Let I be an ideal of a Noetherian ring R. Then
(i) $I[[X]]=I R[[X]]$.
(ii) $\sqrt{I[[X]]}=\sqrt{I}[[X]]$.

Proof. (i) See [Corollary 2.2.3, [5]].
(ii) " \subseteq " Since for all $P \in \operatorname{spec}(R)$ with $I \subseteq P$, we have $I[[X]] \subseteq P[[X]]$ then, $\sqrt{I[[X]] \subseteq}$ $P[[X]]$. Thus $\sqrt{I[[X]]} \subseteq \bigcap_{I \subseteq P} P[[X]]=\left(\bigcap_{I \subseteq P} P\right)[[X]]=\sqrt{I}[[X]]$.
$" \supseteq "$ We have $I \subseteq I[[X]]$, so $\sqrt{I} \subseteq \sqrt{I[[X]]}$. Thus $\sqrt{I} R[[X]] \subseteq \sqrt{I[[X]] .}$ Since R is Noetherian, so $\sqrt{I} R[[X]]=\sqrt{I}[[X]]$ by (1). Hence the result.

Lemma 2.3. Let I be a 2-absorbing ideal of a Noetherian ring R and $f=\sum_{i \geq 0} a_{i} X^{i} \in \sqrt{I}[[X]]$.
Then,

$$
\bigcap_{n \geq 0}\left(I: a_{n}\right) R[[X]]=\bigcap_{n \geq 0}\left(I: a_{n}\right)[[X]]=\left(I: a_{t}\right)[[X]] \text { for some } t \in \mathbb{N} .
$$

Proof. (i) If $\sqrt{I}=I$, then $f \in \sqrt{I}[[X]]=I[[X]]$. Thus, $\left(I: a_{n}\right)=R \forall n \in \mathbb{N}$. So, $\left(\bigcap_{n \geq 0}\left(I: a_{n}\right)\right) R[[X]]=R[[X]]=\bigcap_{n \geq 0}\left(I: a_{n}\right)[[X]]$.
(ii) If $\sqrt{I} \neq I$, then set $H:=\left\{\left(I: a_{n}\right) / n \in \mathbb{N}\right\}$. If $a_{n} \in I$, then $\left(I: a_{n}\right)=R$. Otherwise, for all $a_{n}, a_{m} \in \sqrt{I} \backslash I$, either $\left(I: a_{n}\right) \subseteq\left(I: a_{m}\right)$ or $\left(I: a_{m}\right) \subseteq\left(I: a_{n}\right) \forall n, m \in \mathbb{N}$ by [Theorem.2.5, [2]] and [Theorem.2.6, [2]]. Thus H is a nonempty totally ordered set of ideals of R. Since R is Noetherian, then H has a minimal element, and since H is totally ordered, this element is the smallest element. Hence $\bigcap_{n \geq 0}\left(I: a_{n}\right)=\left(I: a_{t}\right)$ for some $t \in \mathbb{N}$.

Lemma 2.4. Let I be a 2 -absorbing ideal of R and p, q two prime ideals of R.
(i) If $\sqrt{I}=p$, then $\left(I:_{R} x\right)$ is a 2-absorbing ideal of R for all $x \in R \backslash p$ with $\sqrt{\left(I:_{R} x\right)}=p$ and $S=\left\{\left(I:_{R} x\right) / x \in R\right\}$ is a totally ordered set.
(ii) If $\sqrt{I}=p \cap q$, then $\left(I:_{R} x\right)$ is a 2 -absorbing ideal of R, for all $x \in R \backslash p \cup q$ with $\sqrt{\left(I:_{R} x\right)}=p \cap q$ and $S=\left\{\left(I:_{R} x\right) / x \in R \backslash p \cup q\right\}$ is a totally ordered set.

Proof. See [Theorem.1.4, [9]].
Theorem 2.5. Let I be a 2 -absorbing ideal of a Noetherian ring R and $f(X)=\sum_{i \geq 0} a_{i} X^{i} \in$ $R[[X]]$.
(i) If $f(X) \in \sqrt{I[[X]]} \backslash I[[X]]$, then $\left(I[[X]]:_{R[[X]]} f(X)\right)=\left(I:_{R} a_{t}\right) R[[X]]$ for some $t \geq 0$ and is a prime ideal of $R[[X]]$.
(ii) If $f(X) \notin \sqrt{I[[X]]}$, then either $\left(I[[X]]:_{R[[X]]} f(X)\right)=\left(I:_{R} a_{t}\right) R[[X]]$ for some $t \geq 0$ or $\left(I[[X]]:_{R[[X]]} f(X)\right)=P[[X]] \cap Q[[X]]$, where P and Q are two prime ideals of R.

Proof. (i) Suppose that $f(X) \in \sqrt{I[[X]]} \backslash I[[X]]$. First, we show that $\bigcap_{i \geq 0}\left(I: a_{i}\right)[[X]]=$ $\left(I[[X]]:_{R[[X]]} f(X)\right)$. Let $g(X)=\sum_{j \geq 0} b_{j} X^{j} \in \bigcap_{i \geq 0}\left(I: a_{i}\right)[[X]]$. Then for all $i, j \in \mathbb{N}, b_{j} a_{i} \in$ I. Thus $f(X) g(X)=\sum_{n \geq 0}\left(\sum_{k=0}^{n} a_{k} b_{n-k}\right) X^{n} \in I[[X]]$. So $\bigcap_{i \geq 0}\left(I: a_{i}\right)[[X]] \subseteq\left(I[[X]]:_{R[[X]]}\right.$ $f(X))$. Conversely, let $g(X) \in\left(I[[X]]:_{R[[X]]} f(X)\right)$. We have $g(X) f(X) \in I[[X]]$. So it is clear that $b_{0} \in\left(I: a_{0}\right)$. Let $n \geq 1$ and suppose that $b_{0} \in \bigcap_{k=0}^{n-1}\left(I: a_{k}\right)$. We show that $b_{0} \in \bigcap_{k=0}^{n}\left(I: a_{k}\right)$. We have $c_{n}:=\sum_{k=0}^{n} b_{k} a_{n-k} \in I$. Then $b_{0} c_{n}=b_{0}^{2} a_{n}+b_{0} b_{1} a_{n-1}+\cdots+$ $b_{0} a_{0} b_{n} \in I$. Thus $b_{0}^{2} a_{n} \in I$ and hence $b_{0}^{2} \in\left(I: a_{n}\right)$. We have $f \in \sqrt{I[[X]]}=\sqrt{I}[[X]]$ by Lemma 2.2. So $a_{n} \in \sqrt{I}$. If $a_{n} \in I$, then $\left(I: a_{n}\right)=R$. Otherwise, $a_{n} \in \sqrt{I} \backslash I$ and then ($I: a_{n}$) is prime by [Theorem.2.5, [2]] or [Theorem.2.6, [2]]. Hence $b_{0} \in\left(I: a_{n}\right)$. So $b_{0} \in\left(I: a_{n}\right) \forall n \in \mathbb{N}$. Now, let $k \geq 1$ and suppose that $b_{0}, \ldots, b_{k-1} \in\left(I: a_{n}\right) \forall n \in \mathbb{N}$. We prove that $b_{k} \in\left(I: a_{n}\right) \forall n \in \mathbb{N}$. For $n=0, b_{k} c_{k}=b_{k} b_{0} a_{k}+b_{k} b_{1} a_{k-1}+\cdots+b_{k}^{2} a_{0} \in I$. Thus $b_{k}^{2} a_{0} \in I$. This means that $b_{k}^{2} \in\left(I: a_{0}\right)$, so $b_{k} \in\left(I: a_{0}\right)$ since $\left(I: a_{0}\right)$ prime for $a_{0} \in \sqrt{I} \backslash I$. Let $n \geq 1$. Suppose that $b_{k} \in\left(I: a_{i}\right), \forall i \in\{0, \ldots, n-1\}$. We prove that $b_{k} \in\left(I: a_{n}\right)$. We have $c_{k+n}=a_{0} b_{k+n}+a_{1} b_{k+n-1}+\cdots+a_{n} b_{k}+a_{n+1} b_{k-1}+\cdots+a_{k+n} b_{0}$. So $b_{k} c_{k+n}=b_{k} a_{0} b_{k+n}+b_{k} a_{1} b_{k+n-1}+\cdots+a_{n} b_{k}^{2}+b_{k} a_{n+1} b_{k-1}+\cdots+b_{k} a_{k+n} b_{0}$. Then $a_{n} b_{k}^{2} \in I$
and thus $b_{k}^{2} \in\left(I: a_{n}\right)$. So $b_{k} \in\left(I: a_{n}\right)$ since $\left(I: a_{n}\right)$ is prime for $a_{n} \in \sqrt{I} \backslash I$. Hence $b_{k} \in\left(I: a_{n}\right) \forall k \forall n \in \mathbb{N} \Rightarrow b_{k} \in \bigcap_{n \geq 0}\left(I: a_{n}\right) \forall k \in \mathbb{N}$. Therefore $g(X) \in \bigcap_{n \geq 0}\left(I: a_{n}\right)[[X]]$. Thus,

$$
\left(I[[X]]:_{R[[X]]} f(X)\right)=\bigcap_{n \geq 0}\left(I: a_{n}\right) R[[X]]=\bigcap_{n \geq 0}\left(I: a_{n}\right)[[X]] .
$$

Now we show that $\left(I[[X]]:_{R[[X]]} f(X)\right)=\left(I:_{R} a_{t}\right) R[[X]]$ for some $t \geq 0$ and is a prime ideal of $R[[X]]$. By Lemma 2.3, $\bigcap_{n \geq 0}\left(I: a_{n}\right)=\left(I: a_{t}\right)$ for some $t \in \mathbb{N}$. So $\left(I[[X]]:_{R[[X]]} f(X)\right)=\left(I: a_{t}\right) R[[X]]=\left(I: a_{t}\right)[[X]]$ is prime because $\left(I: a_{t}\right)$ is prime for $a_{t} \in \sqrt{I} \backslash I$ by [Theorem.2.8, [2]] and [Theorem.2.9, [2]].
(ii) Suppose that $f(X) \notin \sqrt{I[[X]]}$. First, we show that $\bigcap_{i \geq 0}\left(I: a_{i}\right)[[X]]=\left(I[[X]]:_{R[[X]]}\right.$ $f(X))$. Let $g(X)=\sum_{j \geq 0} b_{j} X^{j} \in \bigcap_{i \geq 0}\left(I: a_{i}\right)[[X]]$. Then for all $i, j \in \mathbb{N}, b_{j} a_{i} \in I$. Thus $f(X) g(X)=\sum_{n \geq 0}\left(\sum_{k=0}^{n} a_{k} b_{n-k}\right) X^{n} \in I[[X]]$. So $\bigcap_{i \geq 0}\left(I: a_{i}\right)[[X]] \subseteq\left(I[[X]]:_{R[[X]]} f(X)\right)$. Conversely, let $g(X) \in\left(I[[X]]:_{R[[X]]} f(X)\right)$. We have $g(X) f(X) \in I[[X]]$. We show that $b_{k} \in\left(I: a_{0}\right) \forall k \in \mathbb{N}$.
a. If $a_{0} \in \sqrt{I}$.
i. If $\sqrt{I}=P$, then $f(X) g(X) \in I[[X]] \subseteq \sqrt{I}[[X]]=P[[X]]$. Since $f(X) \notin P[[X]]$ then $g(X) \in P[[X]]$. Thus $a_{0} b_{k} \in P^{2} \subseteq I \forall k \in \mathbb{N}$ by [Theorem.2.4, [2]].
ii. If $\sqrt{I}=P \cap Q$, then $f(X) \notin P[[X]]$ or $f(X) \notin Q[[X]]$ since $f(X) \notin \sqrt{I}[[X]]=$ $(P \cap Q)[[X]]=P[[X]] \cap Q[[X]]$. Note first that if $f(X) \notin P[[X]] \cup Q[[X]]$, then $g(X) \in P[[X]] \cap Q[[X]]=(P \cap Q)[[X]]$ since $f(X) g(X) \in P[[X]] \cap Q[[X]]$.
Thus $b_{k} \in P \cap Q=\sqrt{I} \forall k \in \mathbb{N}$. Hence $b_{k} a_{0} \in P Q \subseteq I$ by [Theorem.2.4, [2]]. So $b_{k} \in\left(I: a_{0}\right) \forall k \in \mathbb{N}$. On the other hand, if $f(X) \in P[[X]]$ and $f(X) \notin Q[[X]]$, then $g(X) \in Q[[X]]$ since $f(X) g(X) \in Q[[X]]$. Thus $b_{k} \in\left(I: a_{0}\right) \forall k \in \mathbb{N}$ since $b_{k} a_{0} \in Q P \subseteq I$ by [Theorem.2.4, [2]].
b. If $a_{0} \notin \sqrt{I}$. We have $f(X) g(X) \in I[[X]]$ then $b_{0} a_{0} \in I$. Let $k \geq 1$, suppose that $b_{0}, \ldots, b_{k-1} \in\left(I: a_{0}\right)$. We have $c_{k}=a_{0} b_{k}+\cdots+a_{k} b_{0}$. Thus, $a_{0} c_{k}=a_{0}^{2} b_{k}+$ $a_{0} a_{1} b_{k-1}+\cdots+a_{0} a_{k} b_{0} \in I$. Then $a_{0}^{2} b_{k} \in I$. Hence $a_{0}^{2} \in I$ or $a_{0} b_{k} \in I$ since I is a $2-$ absorbing ideal. If $a_{0}^{2} \in I$, then $a_{0} \in \sqrt{I}$ absurd. So $a_{0} b_{k} \in I$.

Now we prove that $b_{k} \in\left(I: a_{n}\right) \forall k, n \in \mathbb{N}$. We have already shown that $b_{k} \in\left(I: a_{0}\right)$ $\forall k \in \mathbb{N}$. Let $n \in \mathbb{N}^{*}$. We suppose that $b_{k} \in\left(I: a_{m}\right) \forall 0 \leq m \leq n-1, \forall k \in \mathbb{N}$ and we prove that $b_{k} \in\left(I: a_{n}\right) \forall k \in \mathbb{N}$. Indeed, for $k=0$, we have $c_{n}=a_{0} b_{n}+\cdots+a_{n} b_{0} \in I$. Thus $b_{0} a_{n} \in I$. Let $k \geq 1$. Suppose that $b_{r} \in\left(I: a_{n}\right) \forall 1 \leq r \leq k-1$. We show that $b_{k} \in\left(I: a_{n}\right)$. we do the same proof of a_{0} to a_{n}.
a. If $a_{n} \in \sqrt{I}$.
i. If $\sqrt{I}=P$, then $a_{n} b_{k} \in P^{2} \subseteq I$ (as for a_{0}).
ii. If $\sqrt{I}=P \cap Q$, then $a_{n} b_{k} \in P Q \subseteq I$.
b. If $a_{n} \notin \sqrt{I}$. We have $a_{n} c_{n+k}=a_{n} a_{0} b_{n+k}+a_{n} a_{1} b_{n+k-1}+\cdots+a_{n} a_{n-1} b_{k+1}+a_{n}^{2} b_{k}+$ $a_{n} a_{n+1} b_{k-1}+\cdots+a_{n} a_{n+k} b_{0} \in I$. Thus $a_{n}^{2} b_{k} \in I$. Hence $b_{k} \in\left(I: a_{n}\right)$ since I is a 2 -absorbing ideal and $a_{n} \notin \sqrt{I}$.
Thus $\left(I[[X]]:_{R[[X]]} f(X)\right)=\bigcap_{i \geq 0}\left(I: a_{i}\right)[[X]]$. Now we are ready to show that either $\left(I[[X]]:_{R[[X]]}\right.$ $f(X))=\left(I:_{R} a_{t}\right) R[[X]]$ for some $t \geq 0$ or $\left(I[[X]]:_{R[[X]]} f(X)\right)=P[[X]] \cap Q[[X]]$, where P and Q are two prime ideals of R.
(i) If $\sqrt{I}=P$, then the set $\left\{\left(I: a_{n}\right) / a_{n} \in R\right\}$ is totally ordered by Lemma 2.4. Since R is Noetherian we deduce that $\bigcap_{n \geq 0}\left(I: a_{n}\right)=\left(I: a_{t}\right)$ for some $t \in \mathbb{N}$. So $\left(I[[X]]:_{R[[X]]}\right.$ $f(X))=\left(I: a_{t}\right) R[[X]]$ for some $t \in \mathbb{N}$.
(ii) If $\sqrt{I}=P \cap Q$.
a. If there exists $t \in \mathbb{N}$ such that $a_{t} \notin P \cup Q$, then $\left\{\left(I: a_{t}\right) / a_{t} \notin P \cup Q\right\}$ is totally ordered and $\sqrt{\left(I: a_{t}\right)}=P \cap Q$ by Lemma 2.4. Thus $\left(I: a_{t}\right) \subseteq \sqrt{\left(I: a_{t}\right)}=P \cap Q$ forall $t \in \mathbb{N}$ with $a_{t} \notin P \cup Q$. If there exists $t \in \mathbb{N}$ with $a_{t} \in P$ or Q, for example if $a_{t} \in P$, then $Q \subseteq\left(I: a_{t}\right)$ because $\forall x \in Q, x a_{t} \in Q P \subseteq I$ by [Theorem.2.4, [2]]. By the same way if $a_{t} \in Q$, then $P \subseteq\left(I: a_{t}\right)$. Hence $\forall t_{0} \in \mathbb{N}$ with $a_{t_{0}} \notin$ $P \cup Q$ we have $\left(I: a_{t_{0}}\right) \subseteq \sqrt{\left(I: a_{t_{0}}\right)}=P \cap Q \subseteq Q \subseteq\left(I: a_{t}\right) \forall a_{t} \in P$ and $\left(I: a_{t_{0}}\right) \subseteq \sqrt{\left(I: a_{t_{0}}\right)}=P \cap Q \subseteq P \subseteq\left(I: a_{t}\right) \forall a_{t} \in Q$. So if there exists $t \in \mathbb{N}$ with $a_{t} \notin P \cup Q$ we have $\bigcap_{n \geq 0}\left(I: a_{n}\right)=\bigcap_{n \geq 0}\left(I: a_{n}\right)$ where $a_{n} \notin P \cup Q$. So $\bigcap_{n>0}\left(I: a_{n}\right) R[[X]]=\left(I: a_{t}\right) R[[X]]$ for some $t \in \mathbb{N}$ since these ideals are comparable by Lemma 2.4 (2) and R is Noetherian.
b. If $a_{t} \in P \cup Q \forall t \in \mathbb{N}$. Remark that $\left(I: a_{t}\right)=Q$ (resp. $\left.\left(I: a_{t}\right)=P\right)$ for all $t \in \mathbb{N}$ with $a_{t} \in P \backslash Q$ (resp. $a_{t} \in Q \backslash P$. Indeed, $x a_{t} \in P Q \subseteq I \forall x \in Q$. So $Q \subseteq\left(I: a_{t}\right)$. On the other hand, if $x a_{t} \in I \subseteq \sqrt{I}=P \cap Q$, then $x a_{t} \in Q$. Thus $x \in Q$. The same way for $\left(I: a_{t}\right)=P$. We have $f(X) \notin \sqrt{I}[[X]]=(P \cap Q)[[X]]$. Thus there exists $t \in \mathbb{N}$ such that $a_{t} \in P \backslash Q$ or $a_{t} \in Q \backslash P$. So for all $i \in \mathbb{N}$ with $a_{i} \in P \cap Q=\sqrt{I}$ we have $\left(I: a_{t}\right)=Q \subseteq\left(I: a_{i}\right)$ with $a_{t} \in P \backslash Q$ and in the same way we have $\left(I: a_{t}\right)=P \subseteq\left(I: a_{i}\right)$ with $a_{t} \in Q \backslash P$ by [Theorem.2.4, [2]]. Thus $\left(I[[X]]:_{R[[X]]} f(X)\right)=\bigcap_{i \geq 0}\left(I: a_{i}\right)[[X]]=\bigcap_{i \geq 0}\left(I: a_{i}\right)[[X]]$ with $a_{i} \in P \backslash Q$ or $a_{i} \in Q \backslash P$.
i. If there exists $t_{1}, t_{2} \in \mathbb{N}$ such that $a_{t_{1}} \in P \backslash Q$ and $a_{t_{2}} \in Q \backslash P$ then $\left(I[[X]]:_{R[[X]]}\right.$ $f(X))=(P \cap Q) R[[X]]=(P \cap Q)[[X]]=P[[X]] \cap Q[[X]]$.
ii. If for all $t \in \mathbb{N} a_{t} \in P \backslash Q$ (resp. $\left.Q \backslash P\right)$, then $\left(I[[X]]:_{R[[X]]} f(X)\right)=(I$: $\left.a_{t}\right) R[[X]]=Q R[[X]]=Q[[X]]($ resp. $P R[[X]]=P[[X]])$.

Corollary 2.6. Let I be a proper ideal of a Noetherian ring R. Then, I is a 2-absorbing ideal of R if and only if $I[[X]]$ is a 2-absorbing ideal of $R[[X]]$.

Proof. Suppose that $I[[X]]$ is a $2-$ absorbing ideal of $R[[X]]$. Since $I=I[[X]] \cap R$ hence I is a 2 -absorbing ideal of R. Conversely, suppose that I is a 2 -absorbing ideal of R. We show that $I[[X]]$ is a 2 -absorbing ideal of $R[[X]]$.
(i) If $\sqrt{I}=I$, then $\sqrt{I[[X]]}=\sqrt{I}[[X]]=I[[X]]$ but I is $2-$ absorbing so $\sqrt{I}=P$ or $\sqrt{I}=P \cap Q$ hence $I[[X]]=P[[X]]$ or $I[[X]]=(P \cap Q)[[X]]=P[[X]] \cap Q[[X]]$ therefore $I[[X]]$ is a 2 -absorbing ideal of $R[[X]]$.
(ii) If $\sqrt{I} \neq I$, then $\sqrt{I[[X]]} \neq I[[X]]$. For all $f(x) \in \sqrt{I[[X]]} \backslash I[[X]]$ we have $\left(I[[X]]:_{R[[X]]}\right.$ $f(X))=\left(I:_{R} a_{t}\right) R[[X]]$ for some $t \geq 0$ is a prime ideal of $R[[X]]$ by Theorem 2.5 (1). Thus, $I[[X]]$ is a 2 -absorbing ideal of $R[[X]]$ by [Theorem.2.8, [2]] and [Theorem.2.9, [2]].

References

[1] D. F. Anderson and A. Badawi, On n-absorbing ideals of commutative rings, Comm. Algebra, 39, 16461672 (2011).
[2] A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc. 75, 417-429 (2007).
[3] A. Badawi and A. Y. Darani, On weakly 2-absorbing ideals of commutative rings, Houston J. Math. 39, 441-452 (2013).
[4] A. Badawi, U. Tekir and E.Yetkin, On 2-absorbing primary ideals in commutative rings, Bull. Korean Math. Soc. 51, 1163-1173 (2014).
[5] A. Benhissi, Séries formelles, Queen's Papers in Pure and Applied Mathematics 124 Kingston, Ontario, Canada, (2003).
[6] A. Y. Darani and E.R Puczylowski, On 2-absorbing commutative semigroups and their applications to rings, Semigroup Forum 86, 83-91 (2013).
[7] A. Y. Darani and F. Soheilnia, On 2-absorbing and weakly 2-absorbing submodules, Thai J. Math. 9, 577-584 (2011).
[8] S. Galovich, Unique factorization rings with zero divisors, Math. Mag. 51, 276-283 (1978).
[9] Sh. Payrovi and S. Babaei, On the 2-absorbing ideals, International mathematical forum 7, 265-271 (2012).

Author information

Malek Achraf, Hamed Ahmed and Benhissi Ali, Department of Mathematics, Faculty of Sciences, Monastir, Tunisia.
E-mail: achraf_malek@yahoo.fr, hamed.ahmed@hotmail.fr, ali_benhissi@yahoo.fr

Received: February 11, 2017.
Accepted: February 28, 2017.

