ON A DIOPHANTINE EQUATION OF M. J. KARAMA

Melvyn B. Nathanson
Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 11D25, 11D41, 11A99.
Keywords and phrases: Diophantine equations, difference of cubes, biquadrates, differences of powers, Beal's conjecture.

Abstract

For every positive integer n, the infinite family of positive integral solutions of the diophantine equation $x^{n}-y^{n}=z^{n+1}$ is constructed.

1 The equation $x^{n}-y^{n}=z^{n+1}$

In a recent paper, M. J. Karama [1] studied the diophantine equation $x^{2}-y^{2}=z^{3}$, and conjectured that the diophantine equation $x^{3}-y^{3}=z^{4}$ has no solution in positive integers. A standard reference for diophantine equations is the book by Mordell [3], but this very interesting equation is not discussed there.

We shall prove that, for every positive integer n, the diophantine equation $x^{n}-y^{n}=z^{n+1}$ has infinitely many positive integral solutions.

2 Powerful triples

The triple (a, b, c) of positive integers is called n-powerful if $a>b$ and c^{n+1} divides $a^{n}-b^{n}$. Define the function

$$
\begin{equation*}
t_{n}(a, b, c)=\frac{a^{n}-b^{n}}{c^{n+1}} \tag{2.1}
\end{equation*}
$$

The triple (a, b, c) of positive integers is n-powerful if and only if $t_{n}(a, b, c)$ is a positive integer. The triple (a, b, c) is relatively prime if $\operatorname{gcd}(a, b, c)=1$, where gcd is the greatest common divisor.

Theorem 2.1. Let n be a positive integer. If (a, b, c) is an n-powerful triple with $t=t_{n}(a, b, c)$, then the triple of positive integers

$$
\begin{equation*}
(x, y, z)=(a t, b t, c t) \tag{2.2}
\end{equation*}
$$

is a solution of the diophantine equation

$$
\begin{equation*}
x^{n}-y^{n}=z^{n+1} . \tag{2.3}
\end{equation*}
$$

Moreover, there is a one-to-one correspondence between positive integral solutions of (2.3) and relatively prime n-powerful triples.

For example, if a and b are positive integers with $a>b$, then the triple $(a, b, 1)$ is n-powerful with $t=t_{n}(a, b, 1)=a^{n}-b^{n}$, and so

$$
\begin{equation*}
(x, y, z)=(a t, b t, t)=\left(a\left(a^{n}-b^{n}\right), b\left(a^{n}-b^{n}\right), a^{n}-b^{n}\right) \tag{2.4}
\end{equation*}
$$

is a positive integral solution of (2.3). Moreover,

$$
\left(a\left(a^{n}-b^{n}\right), b\left(a^{n}-b^{n}\right), a^{n}-b^{n}\right)=\left(a_{1}\left(a_{1}^{n}-b_{1}^{n}\right), b_{1}\left(a_{1}^{n}-b_{1}^{n}\right), a_{1}^{n}-b_{1}^{n}\right)
$$

if and only if $a=a_{1}$ and $b=b_{1}$. It follows that, for every n, the diophantine equation (2.3) has infinitely many solutions.

Different n-powerful triples (a, b, c) can generate identical solutions to (2.3). For example, for every positive integer n, the triple $(8,4,2)$ is n-powerful with $t=2^{2 n-1}-2^{n-1}$, and produces the solution

$$
(x, y, z)=\left(2^{2 n+2}-2^{n+2}, 2^{2 n+1}-2^{n+1}, 2^{2 n}-2^{n}\right)
$$

of the diophantine equation (2.3). The triple $(4,2,1)$ is also n-powerful with $t=2^{2 n}-2^{n}$, and produces exactly the same solution of (2.3).
Proof. Let (a, b, c) be an n-powerful triple with $t=t_{n}(a, b, c)$. Defining (x, y, z) by (2.2), we obtain

$$
\begin{aligned}
x^{n}-y^{n} & =(a t)^{n}-(b t)^{n} \\
& =a^{n}\left(\frac{a^{n}-b^{n}}{c^{n+1}}\right)^{n}-b^{n}\left(\frac{a^{n}-b^{n}}{c^{n+1}}\right)^{n} \\
& =\left(a^{n}-b^{n}\right)\left(\frac{a^{n}-b^{n}}{c^{n+1}}\right)^{n} \\
& =\left(\frac{a^{n}-b^{n}}{c^{n}}\right)^{n+1} \\
& =\left(c\left(\frac{a^{n}-b^{n}}{c^{n+1}}\right)\right)^{n+1} \\
& =(c t)^{n+1} \\
& =z^{n+1} .
\end{aligned}
$$

Thus, (x, y, z) solves (2.3).
Let (a, b, c) be an n-powerful triple with $t=t_{n}(a, b, c)$, and let d be a common divisor of a, b, and c. The relatively prime triple $(a / d, b / d, c / d)$ is n-powerful because

$$
\begin{aligned}
t^{\prime} & =t_{n}(a / d, b / d, c / d)=\frac{(a / d)^{n}-(b / d)^{n}}{(c / d)^{n+1}} \\
& =d\left(\frac{a^{n}-b^{n}}{c^{n+1}}\right)=d t_{n}(a, b, c) \\
& =d t
\end{aligned}
$$

is a positive integer. The solution of equation (2.3) constructed from $(a / d, b / d, c / d)$ is

$$
(x, y, z)=\left((a / d) t^{\prime},(b / d) t^{\prime},(c / d) t^{\prime}\right)=(a t, b t, c t)
$$

which is also the solution constructed from (a, b, c).
If (x, y, z) is a positive integral solution of the diophantine equation (2.3), then (x, y, z) is an n-powerful triple with $t_{n}(x, y, z)=1$. Let $d=\operatorname{gcd}(x, y, z)$, and define $(a, b, c)=$ $(x / d, y / d, z / d)$. It follows that (a, b, c) is an n-powerful triple with $t_{n}(a, b, c)=d t_{n}(x, y, z)=d$, and that (x, y, z) is the solution of (2.3) produced by (a, b, c). Thus, every positive integral solution of (2.3) can be constructed from a relatively prime n-powerful triple.

Let (x, y, z) be a positive integral solution of (2.3), and let (a, b, c) and $\left(a_{1}, b_{1}, c_{1}\right)$ be relatively prime n-powerful triples that produce (x, y, z). We must prove that $(a, b, c)=\left(a_{1}, b_{1}, c_{1}\right)$.

If $t=t_{n}(a, b, c)$ and $t^{\prime}=t_{n}\left(a_{1}, b_{1}, c_{1}\right)$, then

$$
(x, y, z)=(a t, b t, c t)=\left(a_{1} t^{\prime}, b_{1} t^{\prime}, c_{1} t^{\prime}\right)
$$

If $d=\operatorname{gcd}\left(t, t^{\prime}\right)$, then t / d and t^{\prime} / d are positive integers. The equation $x=a t=a_{1} t^{\prime}$ implies that $a(t / d)=a_{1}\left(t^{\prime} / d\right)$, and so t / d divides $a_{1}\left(t^{\prime} / d\right)$. Because t / d and t^{\prime} / d are relatively prime, it follows that t / d divides a_{1}, and $a_{1}=A(t / d)$ for some positive integer A. Therefore,

$$
a\left(\frac{t}{d}\right)=a_{1}\left(\frac{t^{\prime}}{d}\right)=A\left(\frac{t}{d}\right)\left(\frac{t^{\prime}}{d}\right)
$$

and $a=A\left(t^{\prime} / d\right)$. Similarly, there exist positive integers B and C such that $b=B\left(t^{\prime} / d\right)$, $b_{1}=B(t / d), c=C\left(t^{\prime} / d\right)$, and $c_{1}=C(t / d)$. Because t^{\prime} / d is a common divisor of a, b, and c, and because $\operatorname{gcd}(a, b, c)=1$, it follows that $t^{\prime} / d=1$ and so $a=A, b=B$, and $c=C$. Because $\operatorname{gcd}\left(a_{1}, b_{1}, c_{1}\right)=1$, we also have $a_{1}=A, b_{1}=B$, and $c_{1}=C$. Therefore, $(a, b, c)=(A, B, C)=\left(a_{1}, b_{1}, c_{1}\right)$. This completes the proof.

3 Open problems

A Maple computation produces 39 positive integral solutions of $x^{3}-y^{3}=z^{4}$ with $x \leq 5000$ (see page 527). There are 35 relatively prime 3-powerful triples of the form $(a, b, 1)$, and the following four relatively prime 3-powerful triples (a, b, c) with $c>1$:

$$
\begin{aligned}
t_{3}(71,23,14) & =9 \\
t_{3}(39,16,7) & =23 \\
t_{3}(190,163,21) & =13 \\
t_{3}(103,101,7) & =26 .
\end{aligned}
$$

How often is a difference of cubes divisible by a nontrivial fourth power? More generally, how often is a difference of nth powers divisible by a nontrivial $(n+1)$ st power?

It would also be interesting to know, for positive integers n and $k \geq 2$, the positive integral solutions of the diophantine equation

$$
x^{n}-y^{n}=z^{n+k}
$$

The Beal conjecture [2] states that if k, ℓ, m are integers with $\min (k, \ell, m)>2$ and if x, y, z are positive integers such that

$$
x^{k}-y^{\ell}=z^{m}
$$

then $\operatorname{gcd}(x, y, z)>1$. Does the Beal conjecture hold for the diophantine equation $x^{n}-y^{n}=$ z^{n+1} ?

References

[1] M. J. Karama, Using summation notation to solve some diophantine equations, Palestine Journal of Mathematics 5 (2016), 155-158.
[2] R. D. Mauldin, A generalization of Fermat's Last Theorem: The Beal Conjecture and Prize Problem, Notices Amer. Math. Soc. 44 (1997), 1436-1437.
[3] L. J. Mordell, Diophantine Equations, Academic Press, London, 1969.

Author information

Melvyn B. Nathanson, Department of Mathematics, Lehman College (CUNY), Bronx, NY 10468, U.S.A.
E-mail: melvyn.nathanson@lehman. cuny.edu
Received: December 12, 2017.
Accepted: February 8, 2017.

Table 1. Solutions of $x^{3}-y^{3}=z^{4}$ for $x \leq 5000$ with the associated relatively prime 3-powerful triples (a, b, c) and $t_{3}=t_{3}(a, b, c)$. An asterisk $\left(^{*}\right)$ indicates a solution with $c>1$.

x	y	z	a	b	c	t_{3}
14	7	7	2	1	1	7
57	38	19	3	2	1	19
78	26	26	3	1	1	26
148	111	37	4	3	1	37
224	112	56	4	2	1	56
252	63	63	4	1	1	63
305	244	61	5	4	1	61
490	294	98	5	3	1	98
546	455	91	6	5	1	91
585	234	117	5	2	1	117
620	124	124	5	1	1	124
*639	207	126	71	23	14	9
889	762	127	7	6	1	127
*897	368	161	39	16	7	23
912	608	152	6	4	1	152
1134	567	189	6	3	1	189
1248	416	208	6	2	1	208
1290	215	215	6	1	1	215
1352	1183	169	8	7	1	169
1526	1090	218	7	5	1	218
1953	1116	279	7	4	1	279
1953	1736	217	9	8	1	217
2212	948	316	7	3	1	316
2345	670	335	7	2	1	335
2368	1776	296	8	6	1	296
2394	342	342	7	1	1	342
*2470	2119	273	190	163	21	13
*2678	2626	182	103	101	7	26
2710	2439	271	10	9	1	271
3096	1935	387	8	5	1	387
3474	2702	386	9	7	1	386
3584	1792	448	8	4	1	448
3641	3310	331	11	10	1	331
3880	1455	485	8	3	1	485
. 4032	1008	504	8	2	1	504
4088	511	511	8	1	1	511
4617	3078	513	9	6	1	513
4764	4367	397	12	11	1	397
4880	3904	488	10	8	1	488

