GENERALIZATIONS OF B.BERGGREN AND PRICE MATRICES

Muneer Jebreel Karama
Communicated by Ayman Badawi
MSC 2010 Classifications: Primary 20M99, 13F10; Secondary 13A15, 13M05.
Keywords and phrases: B.Berggren Matrices, Price Matrices, Pythagorean triple, Linear Transformation, Matrix Power

Abstract

The aim of this paper is to generalize B.Berggren Matrices, and Price Matrices through a general formula for matrices power; so B.Berggren Matrices and Price Matrices will become a special case when the power of a matrix is reduced to the power of one.

1 Introduction

It is well known that if a right triangle has legs of length a and b its hypotenuse has length c , then $a^{2}+b^{2}=c^{2}$, when a is odd and b is even, then $(a, b)=1$ and in this case we call $(a, b, c) \mathrm{a}$ primitive Pythagorean triple.

Overmars [1] stated that B.Berggren discovered a structure of a rooted tree, i.e. a ternary tree that generates all primitive Pythagorean triples, Where F.J.M Bariny [2] showed that when any of the tree matrices A, B, and C are:

$$
A=\left[\begin{array}{lll}
1 & -2 & 2 \\
2 & -1 & 2 \\
2 & -2 & 3
\end{array}\right], B=\left[\begin{array}{lll}
1 & 2 & 2 \\
2 & 1 & 2 \\
2 & 2 & 3
\end{array}\right], C=\left[\begin{array}{lll}
-1 & 2 & 2 \\
-2 & 1 & 2 \\
-2 & 2 & 3
\end{array}\right]
$$

multiplied on the right by column a vector which is a Pythagorean triple, then we get a different Pythagorean triple. For example if

$$
A=\left[\begin{array}{lll}
1 & -2 & 2 \\
2 & -1 & 2 \\
2 & -2 & 3
\end{array}\right], v=\left[\begin{array}{l}
3 \\
4 \\
5
\end{array}\right]
$$

so

$$
A v=\left[\begin{array}{lll}
1 & -2 & 2 \\
2 & -1 & 2 \\
2 & -2 & 3
\end{array}\right]\left[\begin{array}{l}
3 \\
4 \\
5
\end{array}\right]=\left[\begin{array}{c}
5 \\
12 \\
13
\end{array}\right]
$$

also if

$$
B=\left[\begin{array}{lll}
1 & 2 & 2 \\
2 & 1 & 2 \\
2 & 2 & 3
\end{array}\right], v=\left[\begin{array}{l}
3 \\
4 \\
5
\end{array}\right]
$$

then

$$
B v=\left[\begin{array}{lll}
1 & 2 & 2 \\
2 & 1 & 2 \\
2 & 2 & 3
\end{array}\right]\left[\begin{array}{l}
3 \\
4 \\
5
\end{array}\right]=\left[\begin{array}{l}
21 \\
20 \\
29
\end{array}\right]
$$

also if

$$
C=\left[\begin{array}{lll}
-1 & 2 & 2 \\
-2 & 1 & 2 \\
-2 & 2 & 3
\end{array}\right], v=\left[\begin{array}{l}
3 \\
4 \\
5
\end{array}\right]
$$

then

$$
C v=\left[\begin{array}{lll}
-1 & 2 & 2 \\
-2 & 1 & 2 \\
-2 & 2 & 3
\end{array}\right]\left[\begin{array}{l}
3 \\
4 \\
5
\end{array}\right]=\left[\begin{array}{c}
15 \\
8 \\
17
\end{array}\right]
$$

and so on. Price [3] used the following different matrices $A^{\prime}, B^{\prime}, C^{\prime}$ as shown below:

$$
A^{\prime}=\left[\begin{array}{ccc}
2 & 1 & -1 \\
-2 & 2 & 2 \\
-2 & 1 & 3
\end{array}\right], B^{\prime}=\left[\begin{array}{ccc}
2 & 1 & 1 \\
2 & -2 & 2 \\
2 & -1 & 3
\end{array}\right], C^{\prime}=\left[\begin{array}{ccc}
2 & -1 & 1 \\
2 & 2 & 2 \\
2 & 1 & 3
\end{array}\right]
$$

In this paper, we will generalize B.Berggren and Price matrices, and show they are just a special case.

To do so, first we find the $k^{t} h$ power of all above matrices. It is suffices to take the matrix A^{\prime} and find $A^{\prime k}$, because all the matrices above can be treated in the same manner. Assume that

$$
A^{\prime}=\left[\begin{array}{ccc}
2 & 1 & -1 \\
-2 & 2 & 2 \\
-2 & 1 & 3
\end{array}\right]
$$

. We need to find eigenvalues and eigenvectors of it. Let $\lambda \in R$ be an eigenvalue of the matrix A^{\prime}. So there exists a non-zero column vector v such that $A^{\prime} v=\lambda v$, i.e. determent $\left(A^{\prime}-\lambda\right) v=0$. Now we have

$$
A^{\prime}=\left[\begin{array}{ccc}
2 & 1 & -1 \\
-2 & 2 & 2 \\
-2 & 1 & 3
\end{array}\right], v=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

So, $\left|A^{\prime}-\lambda\right| v=\left|\begin{array}{ccc}2-\lambda & 1 & -1 \\ -2 & 2-\lambda & 2 \\ -2 & 1 & 3-\lambda\end{array}\right|=0$. We know $\left(A^{\prime}-\lambda\right) v=0$ has non-zero solution, namely $\left(\lambda^{2}-5 \lambda+4\right)(2-\lambda)=0$, so our eigenvalues are $\mathbf{1 , 2 , 4}$. For each eigenvalue $1,2,4$, we have an eigenvector so our diagonal matrix say D,

$$
D=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 4
\end{array}\right]
$$

. Now we continue to find our three eigenvectors as follows.
For $\lambda=1$, we have $A^{\prime}-\lambda I$, where I is the identity matrix, so we have $A^{\prime}-\lambda I=$

$$
\left[\begin{array}{ccc}
1 & 1 & -1 \\
-2 & 1 & 2 \\
-2 & 1 & 2
\end{array}\right]
$$

since $A^{\prime}-\lambda I=0$, so we have a homogeneous system of linear equation, we solve it by Gaussian Elimination, i.e. $\left(\begin{array}{ccc}1 & 1 & -1 \\ -2 & 1 & 2 \\ -2 & 1 & 2\end{array}\right) \quad 00$ finally we got $\left(\begin{array}{ccc}1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$

So we have $x_{1}-x_{3}=0$, and $x_{2}=0$ so our first eigenvector is

$$
\left[\begin{array}{c}
x_{3} \\
0 \\
x_{3}
\end{array}\right]
$$

For $\lambda=2$, we have $A^{\prime}-\lambda I=$

$$
\left[\begin{array}{ccc}
0 & 1 & -1 \\
-2 & 0 & 2 \\
-2 & 1 & 1
\end{array}\right]
$$

which implies $\left(\begin{array}{ccc|c}0 & 1 & -1 & 0 \\ -2 & 0 & 2 & 0 \\ -2 & 1 & 1 & 0\end{array}\right) \quad$ solving by Gaussian Elimination, $\left(\begin{array}{cccc}1 & 1 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$
So we have $x_{1}-x_{3}=0, x_{2}-x_{3}=0$. Hence our second eigenvector is

$$
\left[\begin{array}{l}
x_{3} \\
x_{3} \\
x_{3}
\end{array}\right]
$$

For $\lambda=4$, we have $A^{\prime}-\lambda I=$

$$
\left[\begin{array}{ccc}
-2 & 1 & -1 \\
-2 & -2 & 2 \\
-2 & 1 & -1
\end{array}\right]
$$

which implies $\left(\begin{array}{ccc|c}-2 & 1 & -1 & 0 \\ -2 & -2 & 2 & 0 \\ -2 & 1 & -1 & 0\end{array}\right) \quad$ solving by Gaussian Elimination, $\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$
So we have $x_{1}=0, x_{2}-x_{3}=0$. Thus our third eigenvector is

$$
\left[\begin{array}{c}
0 \\
x_{3} \\
x_{3}
\end{array}\right]
$$

Hence our eigenvector matrix is

$$
\left[\begin{array}{ccc}
x_{3} & x_{3} & 0 \\
0 & x_{3} & x_{3} \\
x_{3} & x_{3} & x_{3}
\end{array}\right]
$$

. Hence we may take

$$
P=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

. Hence

$$
P^{-1}=\left[\begin{array}{ccc}
0 & -1 & 1 \\
1 & 1 & -1 \\
-1 & 0 & 1
\end{array}\right]
$$

Thus

$$
A^{\prime}=P D P^{-1}=\left[\begin{array}{ccc}
2 & 1 & -1 \\
-2 & 2 & 2 \\
-2 & 1 & 3
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 4
\end{array}\right]\left[\begin{array}{ccc}
0 & -1 & 1 \\
1 & 1 & -1 \\
-1 & 0 & 1
\end{array}\right]
$$

Hence we have $A^{\prime k}=\left(P D P^{-1}\right)^{k}$, where $k=1,2,3, \ldots, n$ applying the power to both sides we have

$$
A^{\prime k}=\left[\begin{array}{ccc}
2^{k} & 2^{k}-1 & 1-2^{k} \\
2^{k}-4^{k} & 2^{k} & 4^{k}-2^{k} \\
2^{k}-4^{k} & 2^{k}-1 & 1+4^{k}-2^{k}
\end{array}\right]
$$

. By the a similar method, we can find $A^{k}, B^{k}, C^{k}, B^{\prime k}$, and $C^{\prime k}$.
Theorem 1.1. When any of the tree matrices $A^{k}, B^{k}, C^{k}, A^{\prime k}, B^{\prime k}$, and $C^{\prime k}$ are multiplied on the right by column vector which is a Pythagorean triple, then we get a different Pythagorean triple,

$$
\begin{aligned}
& \text { where: } \\
& A^{k}=\left[\begin{array}{ccc}
1 & -2 k & 2 k \\
2 k & 1-2 k^{2} & 2 k^{2} \\
2 k & -2 k^{2} & 1+2 k^{2}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& C^{k}=\left[\begin{array}{ccc}
1-2 k^{2} & 2 k & 2 k^{2} \\
-2 k & 1 & 2 k \\
-2 k^{2} & 2 k & 1+2 k^{2}
\end{array}\right] \\
& A^{\prime k}=\left[\begin{array}{ccc}
2^{2^{k}} & 2^{k}-1 & 1-2^{k} \\
2^{k}-4^{k} & 2^{k} & 4^{k}-2^{k} \\
2^{k}-4^{k} & 2^{k}-1 & 1+4^{k}-2^{k}
\end{array}\right] \\
& B^{k}=\left[\begin{array}{ccc}
\frac{1}{9} 2^{2+2 k}+\frac{4}{9}+\frac{1}{9}(-1)^{k} 2^{k} & \frac{1}{3}+\frac{1}{3}(-1)^{1+k_{2} k} & \frac{1}{9}(-1)^{k} k^{k}+\frac{1}{9} 2^{2+2 k}-\frac{5}{9} \\
\frac{1}{3}(-1)^{1+k_{2}}{ }^{2}+\frac{1}{3} 4^{k} & (-1)^{k} 2^{k} & \frac{1}{3}(-1)^{1+k_{2} k}+\frac{1}{3} 4^{k} \\
\frac{5}{9} 4^{k}+\frac{1}{9}(-1)^{k+1} 2^{k}-\frac{4}{9} & -\frac{1}{3}+\frac{1}{3}(-1)^{k} 2^{k} & \frac{1}{9}(-1)^{k+1} 2^{k}+\frac{5}{9}+\frac{5}{9} 4^{k}
\end{array}\right] \\
& C^{\prime k}=\left[\begin{array}{ccc}
2^{2} & 1-2^{k} & -1+2^{k} \\
-2^{k}+4^{k} & 2^{2^{k}} & 4^{k}-2^{k} \\
-2^{k}+4^{k} & 2^{k}-1 & 1+4^{k}-2^{k}
\end{array}\right]
\end{aligned}
$$

. We will use induction to prove the case A^{k} (other can be proved similarly). So we need to prove if

$$
A=\left[\begin{array}{lll}
1 & -2 & 2 \\
2 & -1 & 2 \\
2 & -2 & 3
\end{array}\right]
$$

,then it is true for
$\mathrm{A}^{k}=\left[\begin{array}{ccc}1 & -2 \mathrm{k} & 2 \mathrm{k} \\ 2 \mathrm{k} & 1-2 \mathrm{k}^{2} & 2 \mathrm{k}^{2} \\ 2 \mathrm{k} & -2 \mathrm{k}^{2} & 1+2 \mathrm{k}^{2}\end{array}\right]$
$\mathrm{A}^{1}=\left[\begin{array}{ccc}1 & -2(1) & 2(1) \\ 2(1) & 1-2(1)^{2} & 2(1)^{2} \\ 2(1) & -2(1)^{2} & 1+2(1)^{2}\end{array}\right]=$

$$
\left[\begin{array}{lll}
1 & -2 & 2 \\
2 & -1 & 2 \\
2 & -2 & 3
\end{array}\right]
$$

, this is true for $\mathrm{k}=1$.
Assume it is true for $k=n$, i.e. $A^{n}=\left[\begin{array}{ccc}1 & -2 n & 2 n \\ 2 n & 1-2 n^{2} & 2 n^{2} \\ 2 n & -2 n^{2} & 1+2 n^{2}\end{array}\right]$
Consider $\mathrm{k}=\mathrm{n}+1, \mathrm{~A}^{n+1}=\left(\mathrm{A}^{n}\right)\left(\mathrm{A}^{1}\right)=\left[\begin{array}{ccc}1 & -2 \mathrm{n} & 2 \mathrm{n} \\ 2 \mathrm{n} & 1-2 \mathrm{n}^{2} & 2 \mathrm{n}^{2} \\ 2 \mathrm{n} & -2 \mathrm{n}^{2} & 1+2 \mathrm{n}^{2}\end{array}\right]\left[\begin{array}{ccc}1 & -2 & 2 \\ 2 & -1 & 2 \\ 2 & -2 & 3\end{array}\right]=$

$$
\left[\begin{array}{ccc}
1 & -2(\mathrm{n}+1) & 2(\mathrm{n}+1) \\
2(\mathrm{n}+1) & 1-2(\mathrm{n}+1)^{2} & 2(\mathrm{n}+1)^{2} \\
2(\mathrm{n}+1) & -2(\mathrm{n}+1)^{2} & 1+2(\mathrm{n}+1)^{2}
\end{array}\right]=\mathrm{A}^{n+1} \text {, which is true for } \mathrm{k}=\mathrm{n}+1 \text {, if it is true }
$$

for $\mathrm{k}=\mathrm{n}$.
It is important to note that all matrices $\left(A^{k}, B^{k}, C^{k}, A^{\prime k}, B^{\prime k}\right.$, and $\left.C^{\prime k}\right)$ are unimodular because they have only integer entries and their determinants are 1 or -1 , thus all their inverses are
unimodular , i.e. $\left(A^{-k}, B^{-k}, C^{-k}, A^{\prime-k}, B^{\prime-k}\right.$, and $\left.C^{\prime-k}\right)$, which implies if $u, v \in Z^{3}$,

$$
\begin{aligned}
& u=\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right] \\
& v=\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]
\end{aligned}
$$

, such that $u_{1}^{2}+u_{2}^{2}=u_{3}^{2}, v_{1}^{2}+v_{2}^{2}=v_{3}^{2}$, since we have linear transformation say $T: Z^{3} \rightarrow Z^{3}$, such that : $T\left(u^{\rightarrow}\right)=A^{k} v \rightarrow$, which yields to $v^{\rightarrow}=A^{-k} T\left(u^{\rightarrow}\right)$, this is for all $\left(A^{k}, B^{k}, C^{k}, A^{\prime k}\right.$, $B^{\prime k}, C^{\prime k}, A^{-k}, B^{-k}, C^{-k}, A^{\prime-k}, B^{\prime-k}$, and $C^{\prime-k}$.

Finally, if we multiply any of the above matrices together an arbitrary number of times, then we get a matrix, say F. If v is a Pythagorean triple vector, then $F v$ gives a different Pythagorean triples.

References

[1] Overmars, Anthony, and Lorenzo Ntogramatzidis. [A new parameterization of Pythagorean triples in terms of odd and even series]. arXiv preprint, arXiv:1504.03163,2015.
[2] Barning, F. J. M. [Over pythagorese en bijna Âmpythagorese driehoeken en een generatieproces met behulp van unimodulaire matrices (in Dutch)]. Math. Centrum Amsterdam Afd. Zuivere Wisk. ZW, Âm011: 37,1963.
[3] Price, H.Lee. [The Pythagorean Tree: A New Species]. arXiv preprint, arXiv:0809.4324, 2008.

Author information

Muneer Jebreel Karama, Department of Applied Mathematics, Palestine Polytechnic University, PO Box 198, Palestine, West Bank, Hebron, Palestine.
E-mail: muneerk@ppu. edu
Received: April 22, 2016.
Accepted: January 7, 2017.

