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Abstract. The aim of this paper is to generalize B.Berggren Matrices, and Price Matrices

through a general formula for matrices power; so B.Berggren Matrices and Price Matrices will

become a special case when the power of a matrix is reduced to the power of one.

1 Introduction

It is well known that if a right triangle has legs of length a and b its hypotenuse has length c,

then a2 + b2 = c2, when a is odd and b is even, then (a, b) = 1 and in this case we call (a, b, c) a
primitive Pythagorean triple.

Overmars [1] stated that B.Berggren discovered a structure of a rooted tree, i.e. a ternary tree

that generates all primitive Pythagorean triples, Where F.J.M Bariny [2] showed that when any

of the tree matrices A,B, andC are:

A =

1 −2 2

2 −1 2

2 −2 3

 , B =

1 2 2

2 1 2

2 2 3

 , C =

−1 2 2

−2 1 2

−2 2 3


multiplied on the right by column a vector which is a Pythagorean triple, then we get a different

Pythagorean triple. For example if

A =

1 −2 2

2 −1 2

2 −2 3

 , v =

34
5


so

Av =

1 −2 2

2 −1 2

2 −2 3


34
5

 =

 5

12

13


also if

B =

1 2 2

2 1 2

2 2 3

 , v =

34
5


then

Bv =

1 2 2

2 1 2

2 2 3


34
5

 =

2120
29


also if

C =

−1 2 2

−2 1 2

−2 2 3

 , v =

34
5
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then

Cv =

−1 2 2

−2 1 2

−2 2 3


34
5

 =

158
17


and so on. Price [3] used the following different matrices A′, B′, C ′ as shown below:

A′ =

 2 1 −1

−2 2 2

−2 1 3

 , B′ =

2 1 1

2 −2 2

2 −1 3

 , C ′ =

2 −1 1

2 2 2

2 1 3


In this paper, we will generalize B.Berggren and Price matrices, and show they are just a

special case.

To do so, �rst we �nd the kth power of all above matrices. It is suf�ces to take the matrix A′

and �ndA′k, because all the matrices above can be treated in the same manner . Assume that

A′ =

 2 1 −1

−2 2 2

−2 1 3


. We need to �nd eigenvalues and eigenvectors of it. Let λ ∈ R be an eigenvalue of the matrixA′.
So there exists a non-zero column vector v such that A′v = λv , i.e. determent(A′ − λ)v = 0 .

Now we have

A′ =

 2 1 −1

−2 2 2

−2 1 3

 , v =

x1x2
x3



So, |A′ −λ|v =

∣∣∣∣∣∣∣
2− λ 1 −1

−2 2− λ 2

−2 1 3− λ

∣∣∣∣∣∣∣ = 0. We know (A′ −λ)v = 0 has non-zero solution,

namely (λ2 − 5λ + 4)(2 − λ) = 0, so our eigenvalues are 1,2,4. For each eigenvalue1,2,4, we

have an eigenvector so our diagonal matrix say D,

D =

1 0 0

0 2 0

0 0 4


. Now we continue to �nd our three eigenvectors as follows.

For λ = 1, we have A′ − λI , where I is the identity matrix, so we have A′ − λI = 1 1 −1

−2 1 2

−2 1 2


sinceA′−λI = 0 , so we have a homogeneous system of linear equation , we solve it by Gaussian

Elimination , i.e.

1 1 −1 0

−2 1 2 0

−2 1 2 0




�nally we got

1 0 −1 0

0 1 0 0

0 0 0 0




So we have x1 − x3 = 0, and x2 = 0 so our �rst eigenvector isx30

x3
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For λ = 2, we have A′ − λI =  0 1 −1

−2 0 2

−2 1 1



which implies

0 1 −1 0

−2 0 2 0

−2 1 1 0




solving by Gaussian Elimination,

1 1 −1 0

0 1 −1 0

0 0 0 0




So we have x1 − x3 = 0, x2 − x3 = 0 . Hence our second eigenvector isx3x3

x3


For λ = 4, we have A′ − λI = −2 1 −1

−2 −2 2

−2 1 −1



which implies

−2 1 −1 0

−2 −2 2 0

−2 1 −1 0




solving by Gaussian Elimination,

1 0 0 0

0 1 −1 0

0 0 0 0




So we have x1 = 0, x2 − x3 = 0 . Thus our third eigenvector is 0

x3

x3


Hence our eigenvector matrix is x3 x3 0

0 x3 x3

x3 x3 x3


. Hence we may take

P =

1 1 0

0 1 1

1 1 1


. Hence

P−1 =

 0 −1 1

1 1 −1

−1 0 1


Thus

A′ = PDP−1 =

 2 1 −1

−2 2 2

−2 1 3

 =

1 1 0

0 1 1

1 1 1


1 0 0

0 2 0

0 0 4


 0 −1 1

1 1 −1

−1 0 1


Hence we have A′k = (PDP−1)k, where k = 1, 2, 3, ..., n applying the power to both sides we

have

A′k =

 2k 2k − 1 1− 2k

2k − 4k 2k 4k − 2k

2k − 4k 2k − 1 1+ 4k − 2k
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. By the a similar method, we can �nd Ak, Bk, Ck, B′k, andC ′k.

Theorem 1.1. When any of the tree matrices Ak, Bk, Ck, A′k, B′k, and C ′k are multiplied on the

right by column vector which is a Pythagorean triple, then we get a different Pythagorean triple,

where :

Ak =

 1 −2k 2k

2k 1− 2k2 2k2

2k −2k2 1+ 2k2


B
k
=

 1
4
(3−2

√
2)

k
+1

4
(3+2

√
2)

k
+1

2
(−1)k 1

4
(3+2

√
2)

k
+1

4
(3−2

√
2)

k
+1

2
(−1)k+1 1

4

√
2((3+2

√
2)

k
−
(
3−2

√
2
)k

)

1
4
(3+2

√
2)

k
+1

4
(3−2

√
2)

k
+1

2
(−1)k+1 1

4
(3−2

√
2)

k
+1

4
(3+2

√
2)

k
+1

2
(−1)k 1

4

√
2((3+2

√
2)

k
−
(
3−2

√
2
)k

)

1
4

√
2((3+2

√
2)

k
−
(
3−2

√
2
)k

) 1
4

√
2((3+2

√
2)

k
−
(
3−2

√
2
)k

) 1
2
(3+2

√
2)

k
+1

2
(3−2

√
2)

k


C

k
=

[
1 − 2k2

2k 2k2

−2k 1 2k

−2k2
2k 1 + 2k2

]

A
′k

=

[
2
k

2
k − 1 1 − 2

k

2
k − 4

k
2
k

4
k − 2

k

2
k − 4

k
2
k − 1 1 + 4

k − 2
k

]

B'
k
=

 1

9
2
2+2k + 4

9
+ 1

9
(−1)k2

k 1

3
+ 1

3
(−1)1+k

2
k 1

9
(−1)k2

k + 1

9
2
2+2k − 5

9
1

3
(−1)1+k

2
k + 1

3
4
k (−1)k2

k 1

3
(−1)1+k

2
k + 1

3
4
k

5

9
4
k + 1

9
(−1)k+1

2
k − 4

9
− 1

3
+ 1

3
(−1)k2

k 1

9
(−1)k+1

2
k + 5

9
+ 5

9
4
k


C

′k
=

[
2
k

1 − 2
k −1 + 2

k

− 2
k + 4

k
2
k

4
k − 2

k

− 2
k + 4

k
2
k − 1 1 + 4

k − 2
k

]

. We will use induction to prove the case Ak (other can be proved similarly). So we need to

prove if

A =

1 −2 2

2 −1 2

2 −2 3


,then it is true for

Ak=

 1 −2k 2k

2k 1− 2k2 2k2

2k −2k2 1+ 2k2


Assume k = 1.

A1=

 1 −2(1) 2(1)

2(1) 1− 2(1)
2

2(1)
2

2(1) −2(1)
2

1+ 2(1)
2

 =

1 −2 2

2 −1 2

2 −2 3


, this is true for k =1 .

Assume it is true for k=n, i.e.An=

 1 −2n 2n

2n 1− 2n2 2n2

2n −2n2 1+ 2n2


Consider k=n+1,An+1=( An)(A1)=

 1 −2n 2n

2n 1− 2n2 2n2

2n −2n2 1+ 2n2


 1 −2 2

2 −1 2

2 −2 3

 =

 1 −2(n+ 1) 2(n+ 1)

2(n+ 1) 1− 2(n+ 1)
2

2(n+ 1)
2

2(n+ 1) −2(n+ 1)
2

1+ 2(n+ 1)
2

= An+1, which is true for k =n+1, if it is true

for k=n.

It is important to note that all matrices (Ak, Bk, Ck, A′k, B′k, and C ′k) are unimodular be-

cause they have only integer entries and their determinants are 1 or -1, thus all their inverses are
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unimodular , i.e.(A−k, B−k, C−k, A′−k, B′−k, and C ′−k) , which implies if u, v ∈ Z3 ,

u =

u1u2
u3


,

v =

v1v2
v3


, such that u2

1
+ u2

2
= u2

3
, v2

1
+ v2

2 = v3
2, since we have linear transformation say T : Z3 → Z3,

such that : T (u→) = Akv→, which yields to v→ = A−kT (u→), this is for all(Ak, Bk, Ck, A′k,
B′k, C ′k, A−k, B−k, C−k, A′−k, B′−k, and C ′−k.

Finally, if we multiply any of the above matrices together an arbitrary number of times, then

we get a matrix, say F . If v is a Pythagorean triple vector, then Fv gives a different Pythagorean
triples.
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