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Abstract. In this paper, we are studying about non-negative tensor factorization and basic
concept of tensor, which is started from a single scalar to n-way array data. We are also studying
some important challenges for best computation of NTF and two important algorithms for com-
puting NTF problem. The properties and benefits of the algorithms for NTF also investigated.

1 Introduction

Tensors can be viewed as multilinear arrays or generalizations of the notion of matrices. The
concept of tensor can be describe in two way, first presents the notion of a Nth-order tensor as
a collection of numbers organized in a N dimensional array, whose elements require N indices
to be referred to and second present a tensor as a geometrical entity that "can be expressed as
a multi-dimensional array relative to a choice of basis of the particular space on which it is
defined. The intuition underlying the tensor concept is inherently geometrical: as an object in
and of itself, a tensor is independent of any chosen frame of reference". Both ideas clearly state
that a matrix and a vector can be understood as 1st-order and 2ndorder tensors, respectively.
The order of a tensor is then understood as its number of dimensions. Tensor decompositions
have applications in various fields such as psychometrics [1],signal processing [3], [4] numerical
linear algebra and data mining [4] etc. When the data are nonnegative, the NTF better reflects
the underlying structure. With NTF it is possible to extract information from a given data set
and construct lower-dimensional bases that capture the main features of the set and concisely
describe the original data. NMF and its extension known as NTF are emerging techniques that
have been proposed recently [2], [4]. NMF and NTF have attracted much attention and have been
successfully applied to numerous data analysis problems where the components of the data are
necessarily non-negative. The goal of NMF/NTF is to decompose a nonnegative data matrix into
a product of lower-rank nonnegative matrices or tensors [4]. NTF are commonly computed as the
solution of a nonlinear bound-constrained optimization problem. Some inherent difficulties must
be taken into consideration in order to achieve good solutions. NTF problem can describe as,
let a given N dimensional tensor A ∈ RI1×I2×...×IN ,the NTF problem consists in finding a core
tensor C ∈ RJ1×J2×...×JN , and a set of N matrices A(n) ∈ RIn×Jn , n = 1, 2, ...., N ,such thatA ≈
C ×1 A(1) ×2 A(2)....×N A(N), where the N + 1 constitutive factors C,A(1),A(2), ...,A(N) are
required to be component wise nonnegative,i.e.,A(1),A(2), ...,A(N) ≥ 0. We have some examples
of models in which tensors are used to organize data of different aspects of the problem; we use
super-indexes to denote the modalities (i.e., aspects to be measured in the problem) considered
along the tensor modes and sub-indexes to indicate the data type.In [5]tensor decomposition
has been used in web mining Aclickcounts ∈ R(Users×queries×wbepages), in [6] spectroscopy data
spectroscopy data
Astrength ∈ R(Batchnumber×time×spectra), in [7] semantic differential data

Agrade ∈ R(Judges×musicpieces×scales), and in [8] image analysis
Aimageintensity ∈ R(people×views×illuminations×expressions×pixels). MÃÿrup et al. [9] give an
example where nonnegative factorization is used to analyze EEG data.They are aware of the
impact that collapsing several modalities into a single dimension can have in the exploration
performed, and they use both NMF and NTF to fully analyze the dataset and extract different
information about the problem: NTF to perform an overall analysis, and NMF to perform a local
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Figure 1. Visualization of tensors

Figure 2. Fibers for matrix and tensor

one (while NMF can examine subject specific activities and search for time-frequency patterns,
NTF can effectively extract the most similar activities across subjects and/or conditions). Thus,
the use of tensors simplifies the organization of the data and provides an alternate insight into the
problem. This paper is organized as follows; in section 2 we are studying about some knowledge
of tensor like representation, definition etc and in section 3 some important algorithms.

2 Tensor’s Representation, Definition and their operation [4]

In this section we are going to represent tensor by geometrical structure and their important
definitions which are useful for our future development.

2.1 Tensor’s Representation:

Tensors are generalization of vectors and matrixes; we can say that a scalar is a zero order tensor,
a vector is a first order tensor, a matrix is a second order tensor and a cubicle and cuboidicle
shapes data are higher order tensor. In fig.1, a is zero order tensor,a is first order tensor, A is a
second order tensor and A is third order tensor where aijk is a element of A ∈ RI×J×K .

2.2 Subtensors:

Subtensors or sub-arrays are formed when a subset of the indices is fixed. These are the rows
and columns in case of matrix. A colon is used to indicate all elements of a mode in the style
of MATLAB. Thus, the ith column of a matrix A = [a1,a2, ...,aI] is formally denoted by a:,i; a
likewise, the ith row of A is denoted by ai,:.

2.3 Tensor’s Fiber:

A tensor fiber is a one-dimensional fragment of a tensor, obtained by fixing all indices except
for one. A matrix have two types fiber, column of matrix is mode-1 fiber and row of matrix is
mode-2 fiber but a third order tensor A ∈ RI×J×K have three types of fiber; column, row and
tube fibers denoted by a:,j,k, ai,:,k and ai,j,: respectively (see fig. 2).
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2.4 Tensor Slice:

A two dimensional section or fragment of a tensor is called tensor slice, obtained by fixing all
indices except for two indices. A third order tensor A ∈ RI×J×K have three types of slice,
horizontal, lateral and frontal slices denoted by A(i ::),A( : j :) and A( :: k) respectively [4].

2.5 Unfolding or Matricization:

If one want to study about higher order tensor data, it is necessary to represent tensor decompo-
sition in their matrix form. Unfolding, also known as matricization, is a process of reordering
the elements of an N-th order tensor into a matrix. In [4] author have described various ways to
order the fibers of tensors, therefore, the unfolding process is not unique [10].

2.6 Tensor’s definition:

An Nth-order tensor is formally defined as the tensor product of N vector spaces. (a): In [11]
author has defined tensors by following definition. Let a1,a2, ...,aN be N Euclidean vector
spaces with finite dimensions I1, I2, ..., IN. Consider N vectors vn ∈ an,n = 1,2, ...,N.
We denote by (v1ov2o....ovN) the multilinear mapping on a1 × a2 × ...× aN, defined by

(v1ov2o....ovN)(x1,x2, ,xN) =< v1x1 >a1< v1x1 >a1 .... < vNxN >aN

in which< vNxN >aN
denotes the scalar product in an, and xn is an arbitrary vector in (an(1 ≤

n ≤ N). The space generated by all the elements (v1ov2o....ovN) is called the tensor product
space of a1 × a2 × ...× aN. An element of the tensor product space is called an N-th order
tensor (over a1 × a2 × ...× aN). (b): A tensor A ∈ RI1×I2×...×In of order N is an N-way arrays
where element ai1i2...in are indexed by in ∈ 1, 2, ..., In for 1 ≤ n ≤ N and I1, I2, , IN denote
index upper bounds [4].

2.7 Definition of Unfolding:

Let we have a higher order tensor A ∈ RI1×I2×...×IN , the mode-n unfolding is denoted by An
and arranges the mode-n fibers into columns of a matrix. We can say that a tensor element
(i1, i2, ..., in) maps onto a matrix element in, j, where

j = 1 +
∑
p 6=n (ip − 1)JpwhereJp =

(
1, ifp = 1orifp = 2andn = 1

Π
(p−1)
m 6=n Im,

)
Observe that in the mode-n unfolding the mode-n fibers are rearranged to be the columns of the
matrix An. More generally, a subtensor of the tensor A ∈ RI1×I2×...×IN , denoted by A(in=j),
is obtained by fixing the n-th index to some value j. For example, a third-order tensor A ∈
RI1×I2×I3 with entries a(i1,i2,i3) and indices (i1, i2, i3) has a corresponding position (in, j) in the
mode-n unfolded matrix An(n = 1, 2, 3) as follows
•Mode− 1 : j = i2 + (i3 − 1)I2,
•Mode− 2 : j = i1 + (i3 − 1)I1,
•Mode− 1 : j = i1 + (i2 − 1)I1,
note that mode-n unfolding of a tensor A ∈ RI1×I2×...×IN , also represents mode-1 unfolding of
its permuted tensor A ∈ RIn×I1×...×In−1×In+1×...×IN , obtained by permuting its modes to obtain
the mode-1 be In.

2.8 Special forms of Tensors:

Diagonal tensor: A diagonal tensor A ∈ RI1×I2×...×IN , is a tensor that has nonzero elements
a(i1,i2,,iN ) only when i = i1 = i2 = ... = iN , for 1 ≤ i ≤ min(In). With this idea we can define
the identity tensor as the diagonal tensor whose nonzero entries a(i1,i2,,iN ) are all one (see fig 3.).
Rank-one Tensor: A tensorA ∈ RI1×I2×...×IN of order N has rank-one if it can be written as an
outer product of N vectors i.e.,A = a1oa2o.oaN, where an = R(In) and a(i1,i2,,iN ) = a1

i1
a2
i2
aNiN .

The rank of a tensor A is defined as the minimal number of rank-one tensors.
Symmetric and Super-Symmetric Tensors: For the particular case when all the N vectors a(j)



536 Vineet Bhatt and Suraj Singh Chand

Figure 3. Identity Tensor

are equal to a vector v, their outer product is called a super-symmetric rank-one tensor. A super
symmetric tensor has the same dimension in every mode or in general, by analogy to symmetric
matrices a higher-order tensor is called super-symmetric if its entries are invariant under any
permutation of their indices. Tensor can also only be symmetric in two or more modes. For
example, a three-way tensor A ∈ RI×J×K is symmetric in modes one and two if all its frontal
slices are symmetric.

3 Non-negative Tensor Factorization:

Let one have an N-th order tensor A ∈ RI1×I2×...×IN then the NTF problem consists in find-
ing an N-th order core tensor C ∈ RJ1×J2×...×JN , and N matrices A(1) = RI1×J1 , A(2) =
RI2×J2 , .., A(N) = RIN×JN , whose multi-mode product approximates a given tensor A, i.e.,

A ≈ C ×1 A
(1) ×2 A

(2)...×N A(N) (3.1)

A common approach to compute these factors [4] is to solve the nonlinear least-squares problem.

minC,A(1),A(2),...,A(N)F (C, A(1), A(2), ..., A(N)), (3.2)

subject to C, A(1), A(2), ..., A(N) ≥ 0. where

F (C, A(1), A(2), ..., A(N)) =
1
2
‖C ×1 A

(1) ×2 A
(2) ×3 ...×N A(N) −A‖2

F (3.3)

In the CP model that we consider here, we are seeking an Nth-order diagonal tensor C ∈
R(r×...×r) (the core tensor), and matrices that have r columns,i.e.,A(n) ∈ R(In×r), n∈ 1, 2, .., N .
When N=2 in equation (3.2), the problem has reduced to NMF.

minA(1),A(2)
1
2
‖A(1)CA(2)T − V ‖2

F (3.4)

subject to C,A(1), A(2) ≥ 0
Note that C is not needed in this formulation, but we keep it as a factor to maintain the analogy

with equation (3.2). We use this matrix form of the problem to illustrate particular aspects of
the more general NTF problem. In this section we provide a description of the main difficulties
associated with the NTF problem and explain the ideas behind the most popular approaches to
solving the problem.

3.1 Some challenges in NTF problem:

The NTF problem usually appears in applications that involve a large number of variables. Some
important challenges are discussed below;
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Lack of Uniqueness:

The N-mode tensor factorization is never unique [21]. If it is assumed that U,V and W are
nonsingular matrices, then

[C;A(1), A(2), A(3)] = [C ×1 U ×2 V ×3 W ;A(1)U−1, A(2)V −1, A(3)W−1]. (3.5)

Thus, any of the n-mode factors can be modified without affecting the product as long as the
inverse modification is applied to the core tensor. This is known as scaling indeterminacy. This
fact is more easily seen in the matrix case, where we have

WCHT = (WD
(−1)
1 )(D1CD2)(HD

(−T )
2 )

T
. (3.6)

Furthermore, in the case of the CP decomposition where the elements of the diagonal tensor C
are fixed and all equal, i.e., (λ = c1 = c2 = .. = cr), we also have permutation indeterminacy.
We know that in the CP model,

[A(1), A(2), .., A(N)] = [A(1)P,A(2)P, ..., A(N)P ]. (3.7)

for any r× r permutation matrix P . Therefore, we could arrange the rank-1 factors in a different
order, which would mean applying the same permutation P to all the columns of each factor
A(n), n = 1, 2, ...N, and still get the same approximation. Note that if C is also considered a
variable, this indeterminacy is always present, since it is possible to apply the permutation P to
the diagonal elements of C and maintain the product unchanged. These two operations, scaling
and permutation, are known as elementary changes. Two rank-r decompositions of a given
tensorA are equivalent if one can be obtained from the other by elementary changes. Kruskal
defines as unique a decomposition (of a tensor A) that has rank-r and is equivalent to all other
rank-r decompositions of A. However, the lack of uniqueness in the NTF problem is insidious.
In his work, Kruskal also proves that 3rd-order decompositions are not unique (according to
his definition) if their ranks are large enough, although the expression (large enough) does not
have a specific quantification. Despite the absence of a result concerning the maximum rank
that guarantees uniqueness (up to elementary changes), it is observed that the indeterminacy
increases with the size of the tensor. It has been conjectured, for example, that for an array of
dimensions r× r× r, any approximation of order greater than 3r

2 − 1 is not unique [21]. Clearly,
the presence of all these indeterminacies makes the problem ill-posed.

Degeneracy and best rank-R approximation:

A tensor is degenerate if it can be approximated arbitrarily well by a factorization of lower rank
[12],[13]. The property is better understood through the use of an example. Here we outline
the one used in[13], a model carefully constructed to illustrate degeneracy in a 3rd-order tensor.
Consider the rank-3 tensor A ∈ Rn×n×n given by A = [â,b, c] + [a, b̂, c] + [a,b, ĉ], where
a,b, c and â, b̂, ĉ are vectors in R. The tensor given by the product

Aε = [A,B,C] =

[(
1
ε
a+

ε2

2
â | −1

ε
a+

ε2

2
â), (

1
ε
b+

ε2

2
b̂ | −1

ε
b+

ε2

2
b̂), (

1
ε
c+

ε2

2
ĉ | −1

ε
c+

ε2

2
ĉ)] =

(
1
ε
a+

ε2

2
â)o(

1
ε
b+

ε2

2
b̂)o(

1
ε
c+

ε2

2
ĉ) + (−1

ε
a+

ε2

2
â)o(−1

ε
b+

ε2

2
b̂)o(−1

ε
c+

ε2

2
ĉ) =

[â,b, c] + [a, b̂, c] + [a,b, ĉ, ]

(3.8)

is a rank-2 tensor. However, we clearly have ‖Aε − A‖F = ε6

4 ‖[â, b̂, ĉ]‖F,which decreases as
ε → 0. Thus, A is a rank-3 tensor that is arbitrarily well approximated by the rank-2 tensor Aε;
in other words, we have a rank-3 tensor for which there is not a best approximation of rank 2.
Extensive research has been carried out for particular types of tensors (e.g., (I × I × 2) tensors
[14]). In general, it has been proven that for any given size there is always a set of tensors that;
at least for certain values of r, exhibits degeneracy [15]. This result implies that any given NTF
problem may not have a solution.
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Lack of bounds:

Note that the scaling indeterminacy described in 1. (Lack of Uniqueness) makes it possible to
have extremely unbalanced factors, i.e., some factors have arbitrarily large norms, while others
have arbitrarily small norm. For example, for any γ 6= 0.

C ×1 A
(1) ×2 A

(2) ×3 A
(3) = C ×1 (γA

(1))×2 (
1
γ
A(2))×3 A

(3) (3.9)

Furthermore, this unbalanced variation in the elements of the factors can also be caused by
degeneracy. When we try to approximate a degenerate tensorA, we find a "best-fit" solution that
gets arbitrarily closer to A as some (or all) its factors approach infinity. This lack of bounds has
the effect of producing ill-conditioned factors whenever the original tensor is degenerate.

3.2 Algorithms for computing the NTF:

In this section, we are studying some algorithms for computing NTF problem. Almost all NMF
algorithms can be extended or generalized to the various nonnegative tensor factorizations. In
this section we mainly focus on two important algorithms: Multiplicative updating algorithm and
alternative least squares (ALS) algorithm [4]. Multiplicative updating algorithm: This algorithm
was proposed by Lee and Seung [16]. It was first method available for the NMF problem. It was
extended to the NTF problem by Welling and Weber [17]. Algorithm I outlines a basic version
of the multiplicative updating algorithm for the NTF problem.

Algorithm-I: Multiplicative update rule for NMF
Input: A : N-Way tensor A ∈ RI1×I2×....×IN

N initial mode-factors Ai ≥ 0, i=1,2,..,N
while the residual norm is greater than a tolerance do

for i =1,2,...,N do
From Vi = V(i);

Compute K = A
(i)⊙;

Update Ai using the rule.
A(i) ← A(i) ∗ ViK

A(i)KTK

Scale the factors to keep them bounded
end

Compute the residual
end

Properties of Multiplicative update rule:
1. First, note that the algorithm involves only the computation of the matrices A(1), ...A(N) and
assumes that C is the identity tensor, i.e., this update rule is designed only for CP-factorizations.
2. Because each update is obtained using only multiplications, if the initial guess consists of
nonnegative factors, the subsequent iterates will also be nonnegative. The algorithm thus pro-
duces nonnegative factors, as required.
3. It is guaranteed that the algorithm converges to a stationary point. This has been proved in
[18].
Alternating least squares: A way of dealing with optimization problems where the objective
function and constraint functions have a partially separable structure with respect to the prob-
lem’s variables consists of breaking down the problem into smaller ones that can be solved
one-at-a-time in sequence. The ALS approach fixes all the factors except one, and optimizes
the problem with respect to the free factor. In this way, the nonlinear least-squares problem is
decomposed into a sequence of smaller, linear problems. Consider the matrix case and recall
that we want to solve the problem

minW,G,H≥0
1
2
‖ V −WGHT ‖2

F , (3.10)

where V ∈ R(m×n),W ∈ R(m×r), G ∈ R(r×r)andH ∈ R(n×r). We have explicitly written the
factor C (equation (3.4)) but for now, C=I. If we follow the ALS approach, the problem given by
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equation (3.10) can be decomposed into two least squares problems,

minW≥0
1
2
‖ V −WHT ‖2

F , andminH≥0
1
2
‖ V −WHT ‖ (3.11)

Note that each of these least squares problems is a collection of linear-squares problem. For
example, the first problem in eq. (11) can be solved by the sequence of problems

minhj≥0
1
2
‖ vj −WhTj ‖

2
2, j = 1, 2, ..., n. (3.12)

Where vj and hj are columns vectors of H and V respectively. In the tensor case, the general
nonlinear least squares problem is partitioned into the sub-problems

NTFA(n)minA(n)1/2‖ [C;A(1), ..., A(n), ..A(N)]−A ‖
2
F (3.13)

subject to A(n) ≥ 0forn = 1, 2, .., N. and

NTFCminC
1
2
‖ [C;A(1), ..., A(n), ..A(N)]−A ‖

2
F (3.14)

subjecttoC ≥ 0. When solving the sub-problem associated with each matrix A(n), we have the
option of matricizing the problem

minA(n)

1
2
‖ A(n)⊗ CT(n)A

(n)T − V (T )
(n) ‖

T

F
(3.15)

subject to A(n) ≥ 0. by computing one row of A(n) at a time. In this way we can take advantage
of the standard linear least-squares algorithms to solve each sub-problem. Another possibility is
to vectorize the problem to solve for all the rows of A(n) simultaneously. To do this, recall, from
matrix calculus, that for any three matrices A, X, and B of suitable size, we have

vec(A×B) = (BT ⊗A)vec(X) (3.16)

Thus

vec(A
(n)⊗ CT(n)A

(n)T ) = vec((A
(n)⊗ CT(n))A

(n)IIn) = (I(In) ⊗A
(n)
⊗ CT(n))vec(A

(n)T ), (3.17)

and equation (3.15) becomes

min
(n)
A 1/2 ‖ (I(In) ⊗ (A

(n)
⊗ CT(n)))vec(A

(n)T )− vec(V T(n)) ‖
2
2 (3.18)

subject to An ≥ 0. To solve the sub-problem associated with the core tensor ??, we need to
isolate C(n) in any of the sub-problems given by equation (3.15). We can use equation (3.16)
again to get

vec(A(n)C(n)A
(n)T
⊗ ) = (A

(n)
⊗ ⊗A(n))vec(C(n)) (3.19)

which by choosing n=1, becomes

vec(A(1)C(1)A
(n)T
⊗ ) = A⊗vec(C(1)), (3.20)

and leads to the optimization sub-problem

minC
1
2
‖ A⊗vec(C(1))− vec(V(1)) ‖2

2 (3.21)

subject C ≥ 0. The ALS approach was first used in the tensor case by Bro and De Jong [19]in
1997. Some later modifications include the work of Friedlander and Hatz [20], who incorporated
a regularization function and a strategy to keep the variables bounded using the l1-norm. They
also use the vectorized version of the problem and solve simultaneously for all the rows of
each matrix factor, increasing the computations’ efficiency. Depending on the implementation,
ALS algorithms can be effective and the drawbacks faced by these algorithms are those that are
inherent in the NTF problem: no guarantee of convergence to a local minimum (it could be a
saddle point), great sensitivity to the initial point, and a considerable increase on the work when
additional constraints are imposed.
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4 Conclusion

Non-negative tensor decomposition is a fascinating emerging field of research, with many appli-
cations. In this review/study paper, we have briefly discussed tensor representation, sub-tensor,
tensor fiber etc. NTF problem consists in finding an Nth order core tensor and N matrices but it
is lack of uniqueness and lack of bounds. A tensor is degenerate if it can be approximated arbi-
trarily well by a factorization of lower rank. Multiplicative update algorithm is a best algorithm
for computing NTF problem because it involves only the computation of matrices and assumes
that core tensor is identity tensor and each update is obtained using only multiplications, if the
initial guess consists of positive factor, the subsequent iterates will also be positive. Finally ALS
algorithm for computing NTF fixes all the factors except one, and optimizes the problem with
respect to the free factor and nonlinear least-squares problem is decomposed into a sequence of
smaller, linear problems.
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S. No. Notation used Notation’s meaning
1. ◦ Outer product of two vector/matrix/tensor
2. ⊗ Kronecker product
3. A,D, C,P Higher order Tensor
4. A,B,C, ...,M Matrices
5. a, b, .....;α, β, ...; a1, a2.. Scalars (i.e. t is used for transpose of matrix and vector)
6. a,b, c.... Vectors
7. I1, I2....; I, J,K.... Indices
8. ∗, · Product
9. ×n n-mode product of tensor by matrix
10. R Real vector space
11. ALS Alternative least Square
12. � Khatri-Rao Product
13. NMF Non-negative matrix factorization
14. A(n), C(n)... Matricization of tensorA, C...

—————————————————————-
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