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Abstract. LetR be a commutative ring. If P is a maximal ideal ofR with a �nitely generated

power then we prove that P is �nitely generated if R is either locally coherent or arithmetical

or a polynomial ring over a ring of global dimension ≤ 2. And, if P is a prime ideal of R with

a �nitely generated power then we show that P is �nitely generated if R is either a reduced

coherent ring or a polynomial ring over a reduced arithmetical ring. These results extend a

theorem of Roitman, published in 2001, on prime ideals of coherent integral domains.

1 Introduction

All rings are commutative and unitary. In this paper the following question is studied:

question A: Suppose that some power Pn of the prime ideal P of a ring R is �nitely gener-

ated. Does it follow that P is �nitely generated?

When P is maximal it is the question 0.1 of [7], a paper by Gilmer, Heinzer and Roitman. The

�rst author posed this question in [6, p.74]. In [7] some positive answers are given to the question

0.1 (see [7, for instance, Theorem 1.24]), but also some negative answers (see [7, Example 3.2]).

The authors proved a very interesting result ( [7, Theorem 1.17]): a reduced ringR is Noetherian

if each of its prime ideals has a �nitely generated power. This question 0.1 was recently studied

in [12] by Mahdou and Zennayi, where some examples of rings with positive answers are given,

but also some examples with negative responses. In [13] Roitman investigated the question A. In

particular, he proved that P is �nitely generated ifR is a coherent integral domain ([13, Theorem

1.8]).

We �rst study question 0.1 in Section 2. It is proven that P is �nitely generated if R is

either locally coherent or arithmetical. In Section 3 we investigate question A and extend the

Roitman's result. We get a positive answer when R is a reduced ring which is either coherent

or arithmetical. If R is not reduced, we obtain a positive answer for all prime ideals P , except

if P is minimal and not maximal. In Section 4, by using Greenberg and Vasconcelos's results,

we deduce that question A has also a positive response if R is a polynomial ring over either a

reduced arithmetical ring or a ring of global dimension ≤ 2. In Section 5, we consider rings of

constant functions de�ned over a totally disconnected compact space X with values in a ring O
for which a quotient space of SpecO has a unique point, and we examine when these rings give a

positive answer to our questions. This allows us to provide some examples and counterexamples.

We denote respectively Spec R, Max R and MinR, the space of prime ideals, maximal ideals

and minimal prime ideals of R, with the Zariski topology. If A is a subset of R, then we denote

(0 : A) its annihilator and

V (A) = {P ∈ Spec R | A ⊆ P} and D(A) = Spec R \ V (A).

2 Powers of maximal ideals

Recall that a ring R is coherent if each �nitely generated ideal is �nitely presented. It is well

known that R is coherent if and only if (0 : r) and A ∩ B are �nitely generated for each r ∈ R
and any two �nitely generated ideals A and B.



Finitely generated powers of prime ideals 373

Theorem 2.1. LetR be a coherent ring. If P is a maximal ideal such that Pn is �nitely generated

for some integer n > 0 then P is �nitely generated too.

Proof. First, suppose there exists an integer n > 0 such that Pn = 0. So, R is local of maximal

ideal P . We can choose n minimal. If n = 1 then P is clearly �nitely generated. Suppose

n > 1. It follows that Pn−1 ̸= 0. So, P = (0 : r) for each 0 ̸= r ∈ Pn−1. Since R is coherent,

P is �nitely generated. Now, suppose that Pn is �nitely generated for some integer n ≥ 1. If

R′ = R/Pn and P ′ = P/Pn then R′ is coherent and P ′n = 0. From above we deduce that P ′ is
�nitely generated. Hence P is �nitely generated too.

The following theorem can be proven by using [7, Lemma 1.8].

Theorem 2.2. Let R be a ring. Suppose that RL is coherent for each maximal ideal L. If P
is a maximal ideal such that Pn is �nitely generated for some integer n > 0 then P is �nitely

generated too.

Proof. Suppose that Pn is generated by {x1, . . . , xk}. Let L ̸= P be a maximal ideal. Let

s ∈ P \ L. Then sn ∈ Pn \ L. It follows that snRL = PnRL = PRL = RL. So, there exists

i, 1 ≤ i ≤ k such that PRL = xiRL. Since RP is coherent, PRP is �nitely generated by

Theorem 2.1. So, there exist y1, . . . , ym in P such that PRP = y1RP + · · ·+ ymRP . Let Q be

the ideal generated by {x1, . . . , xk} ∪ {y1, . . . , ym}. Then Q ⊆ P and it is easy to check that

QRL = PRL for each maximal ideal L. Hence P = Q and P is �nitely generated.

A ring R is a chain ring if its lattice of ideals is totally ordered by inclusion, and R is

arithmetical if RP is a chain ring for each maximal ideal P .

Theorem 2.3. Let R be an arithmetical ring. If P is a maximal ideal such that Pn is �nitely

generated for some integer n > 0 then P is �nitely generated too.

Proof. First, assume that R is local. Let P be its maximal ideal. Suppose that P is not �nitely

generated and let r ∈ P . Since P ̸= Rr there exists a ∈ P \Rr. So, r = abwith b ∈ P . It follows

that P 2 = P and Pn = P for each integer n > 0. So, Pn is not �nitely generated for each integer

n > 0. Now, we do as in the proof of Theorem 2.2 to complete the demonstration.

Remark 2.4. There exist arithmetical rings which are not coherent. In [12] several other exam-

ples of non-coherent rings which satisfy the conclusion of the previous theorem are given.

Let R be a ring. For a polynomial f ∈ R[X], denote by c(f) (the content of f ) the ideal of
R generated by the coef�cients of f . We say that R is Gaussian if c(fg) = c(f)c(g) for any
two polynomials f and g in R[X] (see [14]). A ring R is said to be a fqp-ring if each �nitely

generated ideal I is projective over R/(0 : I) (see [1, De�nition 2.1 and Lemma 2.2]).

By [1, Theorem 2.3] each arithmetical ring is a fqp-ring and each fqp-ring is Gaussian, but

the converses do not hold. The following examples show that Theorem 2.3 cannot be extented

to the class of fqp-rings and the one of Gaussian rings.

Example 2.5. Let R be a local ring and P its maximal ideal. Assume that P 2 = 0. Then it is

easy to see that R is a fqp-ring. But P is possibly not �nitely generated.

Example 2.6. Let A be a valuation domain (a chain domain), M its maximal ideal generated by

m and E a vector space over A/M . Let R = {(a e
0 a) | a ∈ A, e ∈ E} be the trivial ring extension

of A by E. By [5, Corollary 2.2 and Theorem 4.2] R is a local Gaussian ring which is not a

fqp-ring. Let P be its maximal ideal. Then P 2 is generated by (m
2
0

0 m2). But, if E is of in�nite

dimension over A/M then P is not �nitely generated over R (see also [12, Theorem 2.3(iv)a)]).

3 Powers of prime ideals

By [13, Theorem 1.8], if R is a coherent integral domain then each prime ideal with a �nitely

generated power is �nitely generated too. The following example shows that this result does not

extend to any coherent ring.
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Example 3.1. Let D be a valuation domain. Suppose there exists a non-zero prime ideal L′

which is not maximal. Moreover assume that L′ ̸= L′2 and let d ∈ L′ \ L′2. If R = D/Dd and

L = L′/Dd, then R is a coherent ring, L is not �nitely generated and L2 = 0.

Remark 3.2. Let R be an arithmetical ring. In the previous example we use the fact that each

non-zero prime ideal L which is not maximal is not �nitely generated. In Theorem 3.9 we shall

prove that Ln is not �nitely generated for each integer n > 0 if L is not minimal.

In the sequel let F = Max R ∪ (Spec R \Min R) for any ring R.
The proof of the following theorem is similar to that of [13, Theorem 1.8].

Theorem 3.3. Let R be a coherent ring. Then, for any P ∈ F, P is �nitely generated if Pn is

�nitely generated for some integer n > 0.

Proof. Let P ∈ F such that P k is �nitely generated for some integer k > 0. By Theorem 2.1 we

may assume that P is not maximal. So, there exists a minimal prime ideal P ′ such that P ′ ⊂ P .

It follows that Pn ̸= 0 for each integer n > 0. By [13, Lemma 1.7] there exist an integer n > 1

such that Pn is �nitely generated and a ∈ Pn−1 \P (n) where P (n) is the inverse image of PnRP

by the natural map R → RP . This implies that aP = aR ∩ Pn. We may assume that a /∈ P ′,

else, we replace a with a+ b where b ∈ Pn \ P ′. Since R is coherent, aP and (0 : a) are �nitely
generated. From a /∈ P ′ we deduce (0 : a) ⊆ P ′ ⊂ P , whence P ∩ (0 : a) = (0 : a). Hence P is

�nitely generated.

Corollary 3.4. Let R be a reduced coherent ring. Then, for any prime ideal P , P is �nitely

generated if Pn is �nitely generated for some integer n > 0.

Proof. Let P be a prime ideal of R such that Pn is �nitely generated for some integer n > 1. We

may assume that P ̸= 0 and by Theorem 3.3 that P is minimal. So, Pn ̸= 0. It is easy to check

that (0 : P ) = (0 : Pn) because R is reduced. Since R is coherent, it follows that (0 : P ) is
�nitely generated. On the other hand, since Pn is �nitely generated, there exists t ∈ (0 : Pn)\P .

This implies that P = (0 : (0 : P )). We conclude that P is �nitely generated.

An exact sequence of R-modules 0 → F → E → G → 0 is pure if it remains exact when

tensoring it with any R-module. Then, we say that F is a pure submodule of E. The following

proposition is well known.

Proposition 3.5. [4, Proposition 2.4] Let A be an ideal of a ring R. The following conditions

are equivalent:

(i) A is a pure ideal of R;

(ii) for each �nite family (ai)1≤i≤n of elements ofA there exists t ∈ A such that ai = ait, ∀i, 1 ≤
i ≤ n;

(iii) for all a ∈ A there exists b ∈ A such that a = ab (so, A = A2);

(iv) R/A is a �at R-module.

Moreover:

• if A is �nitely generated, then A is pure if and only if it is generated by an idempotent;

• if A is pure, then R/A = S−1R where S = 1+A.

If R is a ring, we consider on Spec R the equivalence relation R de�ned by LRL′ if there
exists a �nite sequence of prime ideals (Lk)1≤k≤n such that L = L1, L

′ = Ln and ∀k, 1 ≤ k ≤
(n − 1), either Lk ⊆ Lk+1 or Lk ⊇ Lk+1. We denote by pSpec R the quotient space of Spec R
modulo R and by λ : Spec R → pSpec R the natural map. The quasi-compactness of Spec R
implies the one of pSpec R, but generally pSpec R is not T1: see [10, Propositions 6.2 and 6.3].

Lemma 3.6. [4, Lemma 2.5]. Let R be a ring and let C a closed subset of Spec R. Then C is

the inverse image of a closed subset of pSpec R by λ if and only if C = V (A) where A is a pure

ideal. Moreover, in this case, A = ∩P∈C ker(R → RP ).
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In the sequel, for each x ∈ pSpec R we denote by A(x) the unique pure ideal which veri�es

{x} = λ(V (A(x))), where {x} is the closure of {x} in pSpec R.

Theorem 3.7. Let R be a ring. Assume that R/A(x) is coherent for each x ∈ pSpec R. Then,

for any P ∈ F, P is �nitely generated if Pn is �nitely generated for some integer n > 0.

Proof. Let P ∈ F and I = A(λ(P )). Suppose that Pn is generated by {x1, . . . , xk}. Let L be

a maximal ideal such that I * L. As in the proof of Theorem 2.2 we show that PRL = xiRL

for some integer i, 1 ≤ i ≤ k. By Theorem 3.3 P/I is �nitely generated over R/I . So, there
exist y1, . . . , ym in P such that (y1 + I, . . . , ym + I) generate P/I . Let Q be the ideal generated

by {x1, . . . , xk} ∪ {y1, . . . , ym}. Then Q ⊆ P and it is easy to check that QRL = PRL for each

maximal ideal L. Hence P = Q and P is �nitely generated.

From Corollary 3.4 and Theorem 3.7 we deduce the following.

Corollary 3.8. Let R be a reduced ring. Assume that R/A(x) is coherent for each x ∈ pSpec R.

Then, for any prime ideal P , P is �nitely generated if Pn is �nitely generated for some integer

n > 0.

Theorem 3.9. Let R be an arithmetical ring. Then, for any P ∈ F, P is �nitely generated if Pn

is �nitely generated for some integer n > 0.

Proof. Let P be a prime ideal. By Theorem 2.3 we may assume that P is not maximal. Let M
be a maximal ideal containing P . If P is not minimal then PnRM contains strictly the minimal

prime ideal of RM for each integer n > 0. So, PnRM ̸= 0 for each integer n > 0. On the

other hand, since RM is a chain ring it is easy to check that PRM = MPRM . It follows that

PnRM = MPnRM for each integer n > 0. By Nakayama Lemma we deduce that PnRM is not

�nitely generated over RM . Hence, Pn is not �nitely generated for each integer n > 0.

Remark 3.10. Example 3.1 shows that the assumption "P ∈ F" cannot be omitted in some

previous results. However, if each minimal prime ideal which is not maximal is idempotent then

the conclusions hold for each prime ideal P .

Proposition 3.11. Let R be a ring. Let P be a minimal prime ideal such that Pn is �nitely

generated for some integer n > 0. Then P is an isolated point of Min R.

Proof. Let N be the nilradical of R. For any �nitely generated ideal I we easily check that

V (I) ∩Min R = D((N : I)) ∩Min R. Hence it is a clopen (closed and open) subset of Min R.
Since V (Pn) ∩Min R = {P}, P is an isolated point of Min R if Pn is �nitely generated.

From Theorems 3.7 and 3.9 and Proposition 3.11 we deduce the following corollary.

Corollary 3.12. Let R be a ring. Assume that Min R contains no isolated point and R satis�es

one of the following conditions:

• R/A(x) is coherent for each x ∈ pSpec R;

• R is arithmetical.

Then, each prime ideal with a �nitely generated power is �nitely generated too.

Proposition 3.13. Let R be a ring for which each prime ideal contains only one minimal prime

ideal. Let P be a minimal prime ideal such that Pn is �nitely generated for some integer n > 0.

Then λ(P ) is an isolated point of pSpec R.

Proof. Let P be a minimal prime ideal and A = A(λ(P )). Clearly λ(P ) = V (P ) = V (A). We

have A2 = A. From A ⊆ P we deduce that A ⊆ P 2. It follows that A ⊆ Pn for each integer

n > 0. Suppose that Pn is �nitely generated for some integer n > 0. Since P/A is the nilradical

of R/A, Pm = A for some integer m ≥ n. We deduce that Pm = Re for some idempotent e of
R by Proposition 3.5. It follows that λ(P ) = V (Pm) = D(1 − e). Hence λ(P ) is an isolated

point of pSpec R.
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4 pf-rings

Now, we consider the rings R for which each prime ideal contains a unique minimal prime ideal.

So, the restriction λ′ of λ to Min R is bijective. In this case, for each minimal prime ideal L we

putA(L) = A(λ(L)). By [3, Proposition IV.1] pSpecR is Hausdorff and λ′ is a homeomorphism

if and only if Min R is compact. We deduce the following from Lemma 3.6.

Proposition 4.1. LetR be a ring. Assume that each prime ideal contains a unique minimal prime

ideal. Then, for each minimal prime ideal L, V (L) = V (A(L)). Moreover, if R is reduced then

A(L) = L.

Proof. If R is reduced, then, for each P ∈ V (L), LRP = 0, whence L = ker(R → RP ).

As in [15, p.14] we say that a ring R is a pf-ring if one of the following equivalent conditions

holds:

(i) RP is an integral domain for each maximal ideal P ;

(ii) each principal ideal of R is �at;

(iii) each cyclic submodule of a �at R-module is �at.

Moreover, if R is a pf-ring then each prime ideal P contains a unique minimal prime ideal P ′

and A(P ′) = P ′ by Proposition 4.1.

So, from the previous section and the fact that each minimal prime ideal of a pf-ring is

idempotent, we deduce the following three results. Let us observe that each prime ideal of an

arithmetical ring R contains a unique minimal prime ideal because RP is a chain ring for each

maximal ideal P .

Corollary 4.2. Let R be a coherent pf-ring. Then each prime ideal with a �nitely generated

power is �nitely generated too.

Corollary 4.3. Let R be a pf-ring. Assume that R/L is coherent for each minimal prime ideal L.
Then each prime ideal with a �nitely generated power is �nitely generated too.

Corollary 4.4. Let R be a reduced arithmetical ring. Then each prime ideal with a �nitely

generated power is �nitely generated too.

The following three corollaries allows us to give some examples of pf-ring satisfying the

conclusion of Corollary 4.3. Let n be an integer ≥ 0 and G a module over a ring R. We say that

pd G ≤ n if Extn+1

R (G,H) = 0 for each R-module H .

Corollary 4.5. Let R be a coherent ring. Assume that each �nitely generated ideal I satis�es

pd I < ∞. Then each prime ideal with a �nitely generated power is �nitely generated too.

Proof. By, either [2, Théorème A] or [8, Corollary 6.2.4], RP is an integral domain for each

maximal ideal P . So, R is a pf-ring.

Corollary 4.6. Let A be a ring and X = {Xλ}λ∈L a set of indeterminates. Consider the poly-

nomial ring R = A[X]. Assume that A is reduced and arithmetical. Then each prime ideal of R
with a �nitely generated power is �nitely generated too.

Proof. Let P be a maximal ideal of R and P ′ = P ∩ A. Thus RP is a localization of AP ′ [X].
Since AP ′ is a valuation domain, RP is an integral domain. So, R is a pf-ring. Now, let P be

a minimal prime ideal of R and L be a minimal prime ideal of A contained in P ∩ A. We put

A′ = A/L and R′ = A′[X]. So, A′ is an arithmetical domain (a Prüfer domain). By [9, 3.(b)]

R′ is coherent. Since R/P is �at over R and R′, R/P is a localization of R′. Hence R/P is

coherent. We conclude by Corollary 4.3.

Let n be an integer ≥ 0. We say that a ring R is of global dimension ≤ n if pd G ≤ n for

each R-module G.
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Corollary 4.7. Let A be a ring and X = {Xλ}λ∈L a set of indeterminates. Consider the poly-

nomial ring R = A[X]. Assume that A is of global dimension ≤ 2. Then each prime ideal of R
with a �nitely generated power is �nitely generated too.

Proof. Let P be a maximal ideal of R and P ′ = P ∩ A. Thus RP is a localization of AP ′ [X].
Since AP ′ is an integral domain by [11, Lemme 2], RP is an integral domain. So, A and R
are pf-rings. By [11, Proposition 2] A/L is coherent for each minimal prime ideal L. Now, we
conclude as in the proof of the previous corollary, by using [9, (4.4) Corollary ].

5 Rings of locally constant functions

A topological space is called totally disconnected if each of its connected components contains

only one point. Every Hausdorff topological space X with a base of clopen (closed and open)

neighbourhoods is totally disconnected and the converse holds ifX is compact (see [16, Lemma

29.6]).

Proposition 5.1. Let X be a totally disconnected compact space, let O be a ring with a unique

point in pSpec O. Let R be the ring of all locally constant maps from X into O. Then, pSpec R
is homeomorphic to X and R/A(z) ∼= O for each z ∈ pSpec R.

Proof. If U is a clopen subset of X then there exists an idempotent eU de�ned by eU (x) = 1 if

x ∈ U and eU (x) = 0 else. Let x ∈ X and ϕx : R → O be the map de�ned by ϕx(r) = r(x)
for every r ∈ R. Clearly ϕx is a ring homomorphism, and since R contains all the constant

maps, ϕx is surjective. Let x ∈ X, r ∈ ker(ϕx) and U = {y ∈ X | r(y) ̸= 0}. Then U is a

clopen subset. It is easy to check that eU ∈ ker(ϕx) and r = reU . Since ker(ϕx) is generated
by idempotents, R/ ker(ϕx) is �at over R. For each x ∈ X, let P(x) be the image of Spec O
by λ ◦ ϕa

x where ϕa
x : Spec O → Spec R is the continuous map induced by ϕx. We shall prove

that P : X → pSpec R is a homeomorphism. Clearly, V (ker(ϕx)) ⊆ P(x). Conversely, let

P ∈ P(x). Then there exists L ∈ V (ker(ϕx)) such that PRL. We may assume that L ⊆ P or

P ⊆ L. The �rst case is obvious. For the second case let e an idempotent of ker(ϕx). Then,

e ∈ L, (1 − e) /∈ L, (1 − e) /∈ P and e ∈ P . We conclude that V (ker(ϕx)) = P(x) because
ker(ϕx) is generated by its idempotents. Let x, y ∈ X, x ̸= y. By using the fact there exists a

clopen subset U of X such that x ∈ U and y /∈ U then eU ∈ ker(ϕy) and (1 − eU ) ∈ ker(ϕx).
So, ker(ϕx) + ker(ϕy) = R, whence P is injective. By way of contradiction suppose there

exists a prime ideal P of R such that ker(ϕx) * P for each x ∈ X . There exists an idempotent

e′x ∈ ker(ϕx) \ P whence ex = (1 − e′x) ∈ P \ ker(ϕx). Let Vx be the clopen subset associated

with ex. Clearly X = ∪x∈XVx. Since X is compact, a �nite subfamily (Vxi)1≤i≤n covers X.

We put U1 = W1 = Vx1
, and for k = 2, . . . , n, Wk = ∪k

i=1
Vxi and Uk = Wk \ Wk−1. Then

Uk is clopen for each k = 1, . . . , n. For i = 1, . . . , n let ϵi ∈ R be the idempotent associated

with Ui. Since Ui ⊆ Vxi , we have ϵi = exiϵi. So, ϵi ∈ P for i = 1, . . . , n. It is easy to see that

1 = S
n
i=1

ϵi. We get 1 ∈ P . This is false. Hence P is bijective. We easily check that x ∈ U ,

where U is a clopen subset of X , if and only if P(x) ⊆ D(eU ). Since A(P(x)) = ker(ϕx) is
generated by its idempotents, pSpec R has a base of clopen neighbourhoods. We conclude that

P is a homeomorphism.

From Corollary 3.8 we deduce the following proposition.

Proposition 5.2. Let R be the ring de�ned in Proposition 5.1. Assume that O is a reduced

coherent ring. Then, for any prime ideal P , P is �nitely generated if Pn is �nitely generated for

some integer n > 0.

Proposition 5.3. Let R be the ring de�ned in Proposition 5.1. Assume that O has a unique

minimal prime ideal M . Then, every prime ideal of R contains only one minimal prime ideal

and Min R is compact. If M = 0 then R is a pp-ring, i.e. each principal ideal is projective.

Proof. If P is a prime ideal of R then there exists a unique x ∈ X such that P ∈ P(x). So,

ϕa
x(M) is the only minimal prime ideal contained in P .

Assume that M = 0. Let r ∈ R, e = eU where U is the clopen subset of X de�ned by

U = {x ∈ X | r(x) ̸= 0}. We easily check that the map Re → Rr induced by the multiplication

by r is an isomorphism. This proves that R is a pp-ring.
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Let R′ be the ring obtained like R by replacing O with O/M . It is easy to see that R′ ∼= R/N
where N is the nilradical of R. So, Min R and Min R′ are homeomorphic. Since R′ is a pp-ring,

Min R is compact by [15, Proposition 1.13].

From Theorems 3.7 and 3.9 and Propositions 3.13 and 5.3 we deduce the following corollary.

Corollary 5.4. LetR be the ring de�ned in Proposition 5.1. Suppose thatO has a unique minimal

prime ideal M . Assume that O is either coherent or arithmetical and that one of the following

conditions holds:

(i) M is either idempotent or �nitely generated;

(ii) X contains no isolated point.

Then, for any prime ideal P , P is �nitely generated if Pn is �nitely generated for some integer

n > 0.

Example 5.5. Let R be the ring de�ned in Proposition 5.1. Assume that:

• O is either coherent or arithmetical, with a unique minimal prime ideal M ;

• M is not �nitely generated and Mk = 0 for some integer k > 1 (for example, O is the ring

R de�ned in Example 3.1);

• X contains no isolated points (for example the Cantor set, see [16, Section 30]).

Then the property "for each prime ideal P , Pn is �nitely generated for some integer n > 0

implies P is �nitely generated" is satis�ed by R, but not by R/A(L) for each minimal prime

ideal L.

From Theorems 2.2 and 2.3 and Proposition 3.13 we deduce the following corollary.

Corollary 5.6. LetR be the ring de�ned in Proposition 5.1. Assume thatO is local with maximal

ideal M . Then each prime ideal of R is contained in a unique maximal ideal, and for each

maximal ideal P , RP
∼= O. Moreover, if one of the following conditions holds:

(i) O is coherent;

(ii) O is a chain ring;

(iii) X contains no isolated point and M is the sole prime ideal of O.

then, for each maximal ideal P , Pn �nitely generated for some integer n > 0 implies P is �nitely

generated.

Example 5.7. Let R be the ring de�ned in Proposition 5.1. Assume that M is the sole prime

ideal of O, M is not �nitely generated, Mk = 0 for some integer k > 1 and X contains no

isolated points. Then the property "for each maximal ideal P , Pn is �nitely generated for some

integer n > 0 implies P is �nitely generated" is satis�ed by R, but not by RL for each maximal

ideal L.
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