Palestine Journal of Mathematics

Vol. 6(Special Issue: I) (2017) , 11-36 © Palestine Polytechnic University-PPU 2017

Flow of starshaped Euclidean hypersurfaces by Weingarten
curvatures

Ali Fardoun and Rachid Regbaoui
Communicated by Ali Wehbe

MSC 2010 Classifications: 14Jxx, 13Fxx.

Keywords and phrases: Starshaped hypersurfaces, The curvature function, Global existence, Convergence.

Abstract We consider the evolution of starshaped hypersurfaces in the Euclidean space by
general curvature functions. Under appropriate conditions on the curvature function, we prove
the global existence and convergence of the flow to a hypersurface of prescribed curvature.

1 Introduction and statement of the results

Let M, be a smooth closed compact hypersurface in R"*! (n > 2). We suppose that Mj is
starshaped with respect to a point, which we assume to be the origin of R"*! for simplicity, and
in the rest of the paper all starshaped hypersurfaces are with respect to the origin of R"*!. This
means that for every point P € My, we have P ¢ Tp My, where T'p M is the tangent space of
My at P. If we let w : My — S™ to be the projection on S™ defined by

r
m(P) = R P e My,
then one can prove that M, is starshaped if and only if 7 is a diffeomorphism. It follows that the
inverse diffeomorphism Xy := 7~ : S® — M can be used as a parametrization of M. The
function pg : S — R defined by po(x) = | Xo(z)| is called the radial function of My. Thus we
have
Xo(z) = po(x)x, = e S" (1.1)

From now on, we say that a smooth embedding X : S® — R™*! is a smooth starshaped
embedding if M := X (S") is a starshaped hypersurface in R"*!, so by composing by a smooth
diffeomorphism of S™ if necessary, we may suppose that X is of the form (1.1).

We consider the evolution problem

{@X(t,x) - (K o k(X)(t,x) — fo X(t,x))u(t,x) 12)

X(0,2) = Xo(x)

where X (t,.) : S — R"*! is a smooth starshaped embedding, v is the outer unit normal
vector field of the hypersurface M; := X(¢,S"), K is a suitable function of the principal
curvatures vector k(X) = (k1(X), ..., kn (X)) of M, referred as the curvature function, and
f R\ {0} — Risagiven smooth function referred as the prescribed function. We suppose
that the function K is expressed as an inverse function of the principal curvatures, that is

1 1
T Fonr(X) Fo(ri(X), (X))’

Ko r(X)

where F € C*(T') N C° (T) is a positive, symmetric function on an open, convex symmetric
cone I' C R™ with vertex at the origin, which contains the positive cone

I ={ (M, A) ER" N >0 Vi€ [L,.,n] }.
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This implies in particular that

rc{(An,. A \)eR": M +--+X,>0}.

The function F(A) = F (A1, .., \,) is assumed to satisfy the following structure conditions

F
o, > 0onT Vie(l,..,n] (1.3)
F is homogeneous of degree k > O onI" and F =0 on ol (1.4)
log F' is concave onT". (1.5)
By scaling, we may suppose
F(1,.,1)=1. (1.6)

The above conditions on F' are usually assumed in the study of fully nonlinear partial dif-
ferential equations. Condition (1.3) ensures that the system (1.2) is parabolic, which is of great
importance in proving short time existence of solutions. The other conditions will be used to con-
trol the C'! and C*-norms of solutions. Some examples of suitable curvature functions satisfying
(1.3)-(1.6) are

AN AN
F(A, oy An) = <n> Sk(Al,...,)\n):(n> )P R

1<iy<-<ip<n

the k-th elementary symmetric functions normalised so that F'(1,..,1) = 1. In this case we take
I" to be the component of the set where S}, is positive which contains the positive cone. Thus we
obtain the mean curvature when k£ = 1 and the Gauss curvature when k& = n. Other examples
of curvature functions are

F(M, o A\n) = (7’2) (Sk()\l‘l, A;l))fl .

In this case, we take I' = I'". A particular case of interest in the previous example is the
harmonic mean curvature when k = 1.

Finally, we notice that if a function F satisfies conditions (1.3)-(1.6) above, then for any
a > 0, the function F'* satisfies the same conditions where % is replaced by ak. This invariance
property is due to the fact that the convexity condition (1.5) concerns log F' but not F'.

When the prescribed function f = 0, problem (1.2) has been studied by J. Urbas [10]
assuming that the curvature function F satisfies (1.3)-(1.6) with £k = 1 and that F' is concave
instead of log F' concave. He showed the existence of a global solution on [0, +occ), and for the
convergence at infinity, he proved that if 17, is the hypersurface parametrized by X(t,.) =
e tX(t,.), then M, converges to a sphere in the C* topology as ¢ — +oo. There is an
extensive literature on curvature evolution equation like (1.2) and similar evolution curvature
problems corresponding to other settings. We refer the reader to [1], [3], [6], [9], [11] and the
references therein.

In this paper, we study the global existence and convergence for equation (1.2) assuming that

F satisfies the structure conditions (1.3)-(1.6), and the prescribed function f : R**1\ {0} — R*
is a smooth function satisfying
0

5, (P I(X)) >0, X eRM\ (0} (1.7)

where p = |X|. We will also assume that there exist two positive real numbers r; < r; such that

F(X) <ob if | X] =
{ﬂX) > ok if |X] = (1.8)
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These assumptions were made by L. Caffarelli, L. Nirenberg and J. Spruck [4] for the existence
by elliptic methods of starshaped embedding X whose %—curvature is equal to f, i.e, satisfying

the equation :
1
(X)) = f(X). (1.9)

See also a related work of P. Delanoe [5] concerning the Gauss curvature.

Our main result in this paper is that conditions (1.7)-(1.8) on the prescribed function f are
also sufficient to study the evolution problem (1.2). Moreover the solution of such flow converges
to a smooth starshaped embedding satisfying (1.9). Our first result concerns the case where the
homogeneity degree k of F' satisfies 0 < £ < 1. We have

Theorem 1.1.Let F € C>(T') N C°(T) be a positive symmetric function satisfying con-
ditions (1.3)-(1.6) such that the homogeneity degree k of F satisfies 0 < k& < 1, and let
f € ¢ (R™"1\ {0}) be a positive function satisfying (1.7)-(1.8). Let My a closed compact
starshaped hypersurface in R"*!, parametrized by a smooth embedding X : S — R™*! of the
form (1.1) such that

#(Xo) €T and — — f(X0) >0. (1.10)

o
(r(Xo0))

Then the evolution problem (1.2) admits a unique smooth solution X (¢,.) defined on [0, +00)
such that, for every t € [0,+0c0), X(¢,.) : S* — R"*! is a mooth starshaped embedding
satisfying (X (¢,.)) € I'. Moreover, X (¢, .) converges in C*(S™, R"*1) to a smooth starshaped
embedding X, : S” — R"*! ast — +oo, satisfying

= f(Xoo ;
) )
and for any m € N, ¢ € [0, +00), we have
HX(t7 ) — Xool cm(Sn, Rntl) < Cme_A”Lt7 (111)

where C,,, and \,,, are positive constants depending only on m, f, F,r1,r and Xj.

Remark 1.1. There are many smooth starshaped embeddings X, : S* — R™*! satisfying con-
dition (1.10) in Theorem 1.1. Indeed, it suffices to take Xo(z) = rx,x € S", where r is any
positive constant such that 0 < r < ry, with r; as in (1.8). Using conditions (1.7)-(1.8), it is easy
to see that (1.10) is satisfyed.

As a consequence of Theorem 1.1, we recover the existence result for Weingarten hyper-
surfaces of L.Caffarelli, L.Nirenberg, and J.Spruck [4] stated above. Moreover, we prove the
uniqueness of starshaped solutions of (1.9). Namely we have :

Corollary 1.1. Let F' € C*>°(I')NC? (T) be a positive symmetric function satisfying (1.3)-(1.6),
and let f € C°° (R"*1\ {0}) be a positive function satisfying (1.7)-(1.8). Then there exists a
smooth starshaped embedding X : S® — R"*! such that x(X) € T, and satisfying

— = [(X). (1.12)
Moreover, X is the unique starshaped solution of (1.12) with x(X) € I'.

When the homogeneity degree k of the curvature function F' satisfies £ > 1, we need addi-
tional conditions on the initial embedding Xy. More precisely, we have
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Theorem 1.2.Let F € C>(T') N C°(T) be a positive symmetric function satisfying con-
ditions (1.3)-(1.6) such that the homogeneity degree k of F satisfies &k > 1, and let f €
¢ (R™*1\ {0}) be a positive function satisfying (1.7)-(1.8). Let M, be a closed compact
starshaped hypersurface in R"*!, paramatrized by a smooth embedding Xg : S” — R"*! of the
form (1.1) such that

1 IV Xo| kR, .
K(Xo) €T and 0 < — (W - f(Xo)) ol S Grr D i, S (113)

where

R; = min <r1, miSn |Xo(9c)|> , Ry = max <r2, m%x |X0(x)|)
zESn zesn

and 1,7, are as in (1.8). Then the evolution problem (1.2) admits a unique smooth solution
X (t,.) defined on [0, +00) such that, for every t € [0, +00), X(¢,.) : S® — R™! is a smooth
starshaped embedding satisfying x(X (¢,.)) € I'. Moreover, X (¢,.) converges in C>(S", R"*1)
to a smooth starshaped embedding X, : S* — R"*! as t — +o0, satisfying

1
= f(X
and for any m € N, ¢ € [0, +00), we have
HX(L‘, ) — XOOHC'm(Sn’ Rn+) < Cm(ii)\mt, (114)

where C,,, and \,,, are positive constants depending only on m, f, F, r1,r; and Xj.

Remark 1.2. There are many smooth starshaped embeddings X, : S* — R™*! satisfying con-
dition (1.13) in Theorem 1.2. Indeed, by applying Corollary 1.1 to the functions F'/%, f1/k
instead of F, f (as it can easily be seen, conditions (1.3)-(1.6) and (1.7)-(1.8) are still satisfied
with a new homgeneif;ity degree k = 1 for F'/*), then we get a smooth starshaped embedding
X : S* — R satisfying :

1

Py X

If we take X, = X , where r is any positive constant such that r € [1, 1 + ¢), with ¢ > 0 small
enough, then it is not difficult to see, by using condition (1.7)-(1.8), that X satisfies condition
(1.13) in Theorem 1.2.

2 Preliminaries

In this section, we recall some expressions for the relevant geometric quantities of smooth closed
compact starshaped hypersurfaces M C R"*!. As we saw in the previous section, there is a
smooth embedding X : S® — R"*! parametrizing M, which is of the form

X(z) = p(z)x, z € S".

For any local orthonormal frame {ey, ..., e,,} on S™ (endowed with its standard metric), covariant
differentiation with respect to e¢; will be denoted by V;, V;;, Vi, ..., and we let V be the gradient
on S™. Then in terms of the radial function p, the metric g = [g;;] induced by X and its inverse
g~ = [¢g"] are given by

i _ VipV;p
gij = VZX7VX :p26l+v2pvp7 ng:p 2<5i’_j)7 2.1
J < J > J J J p2 + ‘vp|2 ( )
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where (, ) is the standard metric on R"*!, and §;; are Kronecker symbols. The unit outer
normal to M is

pr—Vp

> > (2.2)
Ver+ [Vl
and the the second fundamental form of M is given by

hij = =(Vi; X,v) = (P2 + |VP|2)_7 (p%0i5 +2V:ipVp — pViip), (2.3)

The principal curvatures of M are the eigenvalues of the second fundamental form with respect
to the induced metric g. Thus, A is a principal curvature if

det[hij — )\gij] = 07
or equivalently

det[aij — )\51]] = 0,
where the symmetric matrix [a,;] is given by

2o 1

lasj] = 1) [his)lg )2

(2.4)
and where [g%/]? is the positive square root of [g*/] which is given by
il _ VipV;
[97]7 = p~" |61 — > > PYsP > = | - (2.5)
V2 +HIVoPo+ V0 +1VoP)

Let us now make some remarks about the curvature function F. Since F' is symmetric, it is
well known that F' can be seen as a smooth function on the set of real symmetric n x n matrices
[a;j]. More precisely, we have

F e C™(M(T))nC°(M(T))

where M (T') is the convex cone of real symmetric n X n matrices with eigenvalue vector in the
cone I'. One can also prove that conditions (1.3)-(1.6) are equivalent to the following conditions
when F is seen as function on M (T') :

[F;;] is positive definite on M(T") , (2.6)
where Fj; = 2.
F is homogeneous of degree k > 0 on M(I') and F =0on oM(I) (2.7)
log F is concave on M(T'). (2.3)
F(6;;) = L. (2.9)
We note here that a smooth function G on M (T') is concave if
n n

Z Z Gijrt mignee <0 on M(T)
ij=1k,1=1

for all real symetric n x n matrices (7;;), where

0°G
Gij’kl o 8ak18aij '

Now, we will show that equation (1.2) is equivalent to an evolution equation depending on
the radial function p. We proceed as in [10], first suppose that X (¢, .) is a solution of (1.2) such
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that for each ¢ € [0, 4+00), X (¢, .) is an embedding of a smooth closed compact hypersurface M,
in R™*1, which is starshaped with respect to the origin and such that the vector of its principal
curvatures K = (K1, ..., Ky, ) lies in the cone I'. If we choose a family of suitable diffeomorphisms
o(t,.) : S™ — S™ then

X(t> $) - p(t, <p(t, :L‘))(p(t, SU),

where p(t,.) : S* — R™ is the radial function of M,. We have
X = ((Vp,0p) + Orp) o + pOrp
and the unit outer normal is given by

pe —Vp

Using the fact that 0, is tangential to S™ at ¢, it follows that

1

(0:X,v) = (0> + |Vp[*) 2 pdep
hence p satisfies the initial value problem
p(0,z) = po(z), z € S™

where the nonlinear operator F is defined on smooth functions p : S — (0, +0o0), such that the
matrix [a;;] given in (2.4) lies in M (I"), by

! VP (z) + [Vp(a)P
Flolta) = ( - 1ol ) . (2.11)
F(aij(z)) p(x)
From now on, what we mean by admissible function is a smooth function p : [0,7] x S" —
(0,400) such that the matrix [a,;] defined by (2.4) lies in the cone M (I") defined above. Con-
versely, suppose that p : [0,7] x S* — (0,400) is an admissible solution of (2.10) . If we
set
X(t,x) = p(t,p(t,x))p(t,x), (t,x) €[0,T] x S",
where ¢(¢,.) : S — S™ is a smooth diffeomorphism satisfying the ODE

Brp(t, ) = Z(t, p(t, ))
{@(07:5) =z, xS (2.12)

with

_ 1 B Vo(t,y) . gn
Z(t,y) = (F(aij(t,y)) f(p(t,y)y)) N OEETE , (ty) €10,7] (S ; |
2.13

then it is not difficult to see that X is a smooth starshaped embedding which is a solution of (1.2)
with Xo(z) = po(z)z.

The condition (2.6) implies that (2.10) is parabolic on admissible functions p. The classi-
cal theory of parabolic equations yields the existence and uniqueness of a smooth admissible
solution p defined on a small intervall [0, T']. From the classical theory of ordinary differential
equations, there exists a family of diffeomorphisms ¢(¢,.) defined on a small interval [0, 7] and
satisfying (2.12). Thus by taking X (¢,z) = p(¢, (¢, x))gp(tm) we obtain a solution of (1.2)
defined on [0, 7.

Usually in order to get high order estimates it is useful to represent the hypersurface locally
as graph over an open set Q C R"™. Locally, after rotating the coordinates axes , we may suppose
that M is the graph of a smooth function u : Q — R. Hence the metric of M, the outer normal
vector and the second fundamental form can be written respectively
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DiU,DjU

gi; = 0;; + DyuDju , gij =0;; — m (2.14)
v (Du-1), (2.15)
1 + |Dul?
Dy
hij = = (2.16)

V14 |Dul?

where Dy, D;; are the usual first and second order derivatives in R”, and Du = (D, ..., Dyu).
The principal curvatures of M are the eigenvalues of the symmetric matrix [a;;] given by

[aij] = [9"]% [his][9"]? (2.17)

where [¢%]2 is the positive square root of [¢/]. On ca compute

DiuDluDﬂu B DjUDlUDilU DiUDjU’DkUDZUDMu> (2 18)

1
== Dyu—
i =3 ( i (1l +v) (1l +v) v (1 4+ v)?

with v = \/1 + |Dul*.

In this case equation (1.2) takes the form

8tu:—(F(Cllij)—f(a:,u)> \/ 14 |Dul?. (2.19)

In what follows, what we mean by an admissible solution of (2.19) is a smooth function « :
[0,T] x Q — R such that the matrix [a;;] defined by (2.18) lies in the cone M (I") defined above,
and satisfying (2.19).

3 C'-estimates and exponential decay

In this section we prove C'-estimates on solutions p of (2.10) and exponential decay of its
derivatives 0, p. First we prove C%-estimates.

Proposition 3.1. Suppose that F’ satisfies conditions (1.3)-(1.6) and that f satisfies conditions
(1.7)-(1.8). Let p : [0,T] x S™ — (0,400) be an admissible solution of (2.10). Then we have,
forall (¢t,z) € [0,T] x S™,

R < p(t,m) <R (31)

where

Rq = min (rl, miSn po(x)) and R, = max <r2, m%x po(x)>
zesn zesn

and where r1, r, are as in (1.8).

Proof. Let p : [0,T] x S — (0,400) be an admissible solution of (2.10). Let (tp,z9) €
[0,T] x S™ such that

t = t,x). 32
plio.0) = | max  plt.x) (32)

We want to prove
p(tmxo) < R,. (3.3)

If tg = 0, then
p(to, z0) = po(zo) < Ro,
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so (3.3) is proved in this case. Suppose now that ¢y > 0. Then we have

8tp(t0, (Eo) >0 (3.4)
Vp(t(), .’L‘o) =0 (35)

and the matrix
[Vi;p(to, zo)] is negative semi-definite. (3.6)

It follows from (3.5) and (3.6) that the matrix [a;;] defined by (2.4) satisfies in the sense of
operators
ai;(to, z0) > p~ ' (to, x0)di;. (3.7)

Since by (1.3) F is monotone, then by using (3.7) we have at (¢, 7o)
F(ay) > F(p~'65) = p™"F(655) = p, (3.8)

where we have used the fact that F' is homogenous of degree k and F(d;;) = 1. Using equation
(2.10) and (3.8), we obtain

dip(to, wo) < p*(to, o) — f(p(to, o)wo). (3.9)
Combining (3.4) and (3.9) gives

Fp(to, mo)mo) < p*(to, o). (3.10)

But from (1.7) and (1.8) we have that if X € R™"! satisfies | X| > 7, then f(X) > |X|*. So it
follows from (3.10) that p(to, z¢) < r». This proves (3.3) since 7, < Ry.

It remains now to prove that p(t,z) > Ry. As before, if we let (tg, z¢) € [0, 7] x S™ such that

to, To) = min t,x),
p( 0 O) (t,z)€[0,T]x S p( )
then in the same way as before, we prove that p(tg,z9) > R;. This achieves the proof of
Proposition 3.1.
O

‘We prove now the exponential decay of 0;p.

Proposition 3.2. Assume that F satisfies conditions (1.3)-(1.6) and that f satisfies conditions
(1.7)-(1.8). Let p : [0,T] x S™ — (0, +00) be an admissible solution of (2.10). We suppose that
Flpo] = 0if k < 1 and F|po] < 0if k > 1, where the operator F is given by (2.11), and k is the
homogeneity degree of F'. Then we have, for any (¢,z) € [0,T] x S™,

Op(t,z) >0 if k<1

and
Op(t,z) <0 if k> 1.

Moreover, there exists a positive constant A depending only on f, r1, 7, and pg such that, for any
t € [0,T], we have

R
max |9,p(t, z)| < R% max | Fpo] (z)|e ™, (3.11)

zesn 1 zeSn
where

Ry = min (rl, min po(:c)) and R, = max (7‘2, max po(x)>
zesn zeSn

and where r1, r, are as in (1.8).

The proof of the above proposition is based on the following lemma which asserts that the
function p~10;p satisfies a second order parabolic equation.
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Lemma 3.1. Suppose that F satisfies conditions (1.3)-(1.6). Let p : [0, 7] x S™ — (0, 400) be
an admissible solution of (2.10) and set G = p~'9;p. Then we have for some smooth functions
Al =1,...,n ( depending on p and its derivatives ) ,

01G = ijzn_l 495G + lz?wlc - \/Pz;w (oor 14216
where N
Aij = ﬁ lﬂ;l’YilFlm'ij (3.12)
and VioVso
Vij = 0ij — (3.13)

VP +|Vpl? (p + P+ IV/J\Z) '

Proof. We recall that by (2.10), p satifies

p = Flp (3.14)

where

_(_1 V241Vl
Flol= (s ~ flom) ) Y (.15
and where a;; is given by (2.4).

In view of the definition of G and (3.15) it will be usefull to work with the function r = logp
instead of p. Equation (3.14) becomes then

1

Opr = (F(a”) — f(erx)) e "1+ |Vrf? (3.16)

where a;; takes the form

by
14+ |Vr?
with
bij = ’Yil(CSlm + VirVpr — vlmr)’}/’rnj
Virvjr (318)

Yij = 0ij —

VIFIVIP (14 VTHIVIE)

Now, we have

1
= -1 = = — T -r 1 2 1
G=p Op=0r <F(aij) fle x)) e "\ 1+ |Vrf, (3.19)
" Fy :
0:G = —e "1+ |Vr|? E 7; Orai; — )1+ V720, f(e"x)0pr

i,j=1

1 o)) e [ - e (VOyr,Vr)
+(F(aij) f( )> < \/ 1+ |Vr|20; +ﬁ+|w|2>. (3.20)

Using (3.17) and (3.18), one can check that for some smooth functions Bll-j(t, )l =1,..,n),
we have

SO

-
8taij - —aijc?tr -

- Z Vit Ymj VimOyr + Z ijvlam (3.21)

V1+|[Vrf Lm=1 =1
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and since 0;r = G, it follows from (3.20) and (3.21) that

G = Z A,JVUG+ZAlle Opfle"z)\/1 +|Vr2G — G?
i,j=1
1+ | Vrf? Z a;;G (3.22)

1,j=1

where
—2r

n
e
Ay = N2l Z Vit Ymj Fim

l,m=1

and A;(t,z) (1 =1,...,n) are smooth functions. Since F is homogeneous of degree k, then

ZFZ ij = ’

i,5=1

so it follows from (3.22) by using (3.19) that

9,G = Z Ay VG + ZAN;G — 1+ |Vr2e (aapf —~ 1@) G- G?
i,7=1
VP +|Vpl? k—1
pp20| (papf —f- F) G.

=) AVG+ Y AVG -
i,j=1 =1

This achieves the proof Lemma 3.1.

We need also the following lemma which is a well known version of the maximum principle
for parabolic equations.

Lemma 3.2. Let G : [0, 7] x S — R be a smooth function satisfying

OG> Y AV G+ AVIG+ AG (3.23)
i,j=1 =1

for some smooth functions A, 4;, A4;;, (I,4,7 = 1,...,n), such that the matrix [A;,] is positive
semi-definite. Suppose

min G(0,z) > 0,

zeSn
then

min  G(t,z) > 0.
(t,x)€[0,T] xS

Proof. Let A € R such that
A< —  max  |A(t )], (3.24)
(t,z)€l0,T]xSm
and consider the function G defined by G(t, z) = e*G(t, z). To prove the lemma it is equivalent
to prove that

i G(t > 0. 3.25
(t,x)elf(l)l,ITl]xSn (t,2) > (3.25)

By using (3.23), G satisfies

8G > Z A VG + ZAszé + (A 4 A)G. (3.26)

ij=1 1=1
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Let (g, z9) € [0,T] x S™ such that

G(to, x0) = in  G(t,z).
(to, zo) B (t, )

We want to prove

G(to, 20) > 0 (3.27)

If tg = 0, then

G(to,l‘o) = G(07$0) = G(O, a?()) >0
and (3.27) is proved in this case. If top > 0O, then

8tG(t0,£L'0) <0 (3.28)
VG(ty, z0) = 0 (3.29)

and the matrix B
{VijG(to, wo)] is positive semi-definite. (3.30)

It follows from (3.26), (3.28), (3.29) and (3.30) that
(/\ + A(to, xo))é(fo, J:o) <0

which implies that C:‘(to, xg) > 0 since A + A(tg, z9) < 0 by (3.24). Thus (3.27) is proved and
the lemma follows.

|
Proof of Proposition 3.2. Let G = p~10;p. Then by Lemma 3.1 we have
G => Ai;Vi;G+> AVG
i 1=1
2+ [Vl k—1
CVPINR (g e (331)

By (1.3) (or equivalently (2.6)) the matrix [F};] is positive definite. So it follows from (3.12) that
[A;;] is positive semi-definite. We distinguish two cases :

First case: 0 < k < 1. Since G satisfies (3.31) and G(0, ) = py * (x)9;p(0, ) = py ' (x)F[po] (z) >
0 by hypothesis, then by Lemma 3.2 we have for any ¢ € [0, T,

min G(t,z) > 0. (3.32)

reS™

In particular, (3.32) implies that 0;p > O since J;p = pG. Now we have, since p satisfies (2.10),

/2 2
G=plop= (F((ll) - f(ﬂx)) ,0—:2Vp| )
ij

so it follows from (3.32) that
1
F(ai;)
which implies that the last term in (3.31) is bounded from below as

2 2 _ 2 2
o~ Il (papf o 1) > VELINAE o p k). (33)

> f(px)

Since f satisfies (1.7), then p0, f — kf > 0, and since R, < p(t,z) < R, by Proposition 3.1, we
deduce that
pO,f —kf > do (3.34)
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for some constant dy > 0 depending only on f, R; and R;. It follows from (3.33) and (3.34) by
using Proposition 3.1 that

Vr+ |Vl k—1 6
Pp2|/’ <papf_f_F> Zﬁoz' (3.35)

By setting A = % and G(t,z) = eMG(t, z), it follows from (3.31) that G satisfies

8A§:: zg: /thQjé§+’§£:/hY7K§
i,j=1 1=1
VP FIVoP E-1\ g G
S papffffT G+ \G
which gives by using (3.35) and the fact that G >0,

8,G < Y AyVi,;G+ Y AVG. (3.36)
i,j=1 =1

It follows from (3.36) by applying Lemma 3.2 to the function —G + max G(0, z) that

zeSn

—G + max G(0,z) >0
reSn

which implies
max G(t, z) < e M max G/(0, 7). (3.37)
zesn zesn

But from the definition of G we have
Op = pG, (3.38)

so it follows from (3.37) and (3.38) since d;p > 0 and R; < p < R, by Proposition 3.1, that
F R
|0;p| < Rye ™ max G(0,z) = Rye ' max Flpol(x) < ZZe M max Flpo) ().
zeSn zeSn pO(ﬁ) 1 zeS™
This proves Proposition 3.2 in the case 0 < k£ < 1.

Second case: k > 1. Since G satisfies (3.31) and G(0,z) = py ' (2)0:p(0,2) = py ' (z)F[po)(x) <
0 by hypothesis, then by Lemma 3.2 we have for any ¢ € [0, T,

max G(t,z) <O0. (3.39)

zesSn

In particular, (3.39) implies that 9;p < 0 since d;p = pG. Now we have, since p satisfies (2.10),

/2 2
G=plop= <F(clzlj) —f(P$)> p-fi)—sz|’

so it follows from (3.39) that
1

F(aij)

which implies that the last term in (3.31) is bounded from below as

2 p E—1 2 2
R (g -1 =550 ) 2 R g -y o)

< f(px)

Since f satisfies (1.7), then pd, f — kf > 0, and since R; < p(t,z) < R, by Proposition 3.1, we
deduce that
pO,f — kf > 6 (3.41)
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for some constant dy > 0 depending only on f, R; and R;. It follows from (3.40) and (3.41) by
using Proposition 3.1 that

VP + | Vpl? k—1 5
pp2|p <PapffF> > R*Ol- (3.42)

By setting A = %0] and G(t,z) = eMG(t, x), it follows from (3.31) that

2,G = zn: AyVi;G + iANlé

i,j=1 =1

VPP
P2
which gives by using (3.42) and the fact that G < 0,

(p(‘)pf—f—k;l)é+/\é

até > Z Ay (t, -%')Vijé + Z At x)Vl@ (3.43)
ij=1 =1
It follows from (3.43) by applying Lemma 3.2 to the function G — miSn G(0, z) that
zeSn
G — min G(0,z) >0
CEGS"
which implies
i > e M mi . 44
min G(t,z) > e min G(0,z) (3.44)
But from the definition of G we have
Op = pG, (3.45)

so it follows from (3.44) and (3.45) since 9;p < 0 and p < R, by Proposition 3.1, that

F
|0,p| < —Rpe~ min G(0,z) = Rye ™ max |G(0, )| = Roe~** max M
zesn zesn zesSn po(x)

R2 —\

<

The proof of Proposition 3.2 is then complete.

Now we are in position to prove C'!-estimates on the function p.

Proposition 3.3. Supoose that F' satisfies conditions (1.3)-(1.6) and that f satisfies conditions
(1.7)-(1.8). Let p : [0,7] x S — R* be an admissible solution of (2.10). We suppose that
Flpo] > 0if k < 1 and F|po] < 0if k > 1, where the operator F is given by (2.11), and k is the
homogeneity degree of F. Then there exists a positive constant C' depending only on f,ry, 7
and pg such that

LS

where r1 and r, are as in (1.8).

Proof. As in the proof of Lemma 3.1, we introduce the function » = log p. We have then

Oyr = (F(;]) — f(erx)) e "/ 14 |Vrf? (3.46)

where we recall that a;; takes the form
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ajj = _ by (3.47)

JTHVP

bij = Vit (Otm + VirVr — Vim)Ym,

with

Vi (348)

Ve (1+VI+VrE)

Yij =

Set H = 1|Vr|?, and let (to, zo) € [0, T] x S™ such that

H(t = H(t, x).
(o,xo) (m)g[}%]xgn (,x)

Let {ey, ..., e, } be an orthonormal frame in a neighborhood of z( such that V;(e;) = 0 at o, for
,j=1,...n

If tg = 0, then

H(to,x0) = H(0,z9) = max H(0,z). (3.49)
zesn

If tg > 0, then
8tH(t0, (L’o) Z 0 (350)
VZ‘H(to,l‘o) =0,i=1,...,n (351)

and the matrix
[Vi;H (to,z0)] is negative semi-definite. (3.52)

In what follows, to simplify the notation we shall write F' instead of F'(a;;), and f instead
f(e"z). We have at (o, zo), by using (3.51),

O:H = <Vat’l“, VT> = <V ((;‘ _ f) e—rW) ,VT>
\/m Z Va”,Vr> \/mapr

1]1

U [V f, v —2 (]17 - f) e /14 |VrPH . (3.53)

Using (3.47) and (3.48), one can check that for some smooth functions Bf-j(t, z) (1 =1,..,n),
we have, for any a = 1, ..., n, at (¢, o),

n

Z %l%n]vozlmr‘f'zB Vair — a;;Var.

(&4
Vl+|vr|2lm1 =1

It follows that, at (to, xo),

Vaaij = —

Va”,Vr ZV ai;Var

= —67 Z %mmjvalmrvar — Zain. (3.54)

V14 |Vr? ot

The formula for commuting the order of covariant differentiation gives at (o, xo)

Vaim® = VimaT + 0amVir — 0imVar. (355)
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Combining (3.54) and (3.55) we get at (o, xo)

o= n
<vaij7vr> = - Z ’yil’ijvlmaTva{r

VI+|Vr?

e " -
- Z ’Yil’}/mjvlrvmr

V14 |Vr|? Myl

e " "
+2—— avi H — 2aq,H. 3.56
1 T |Vr|2 lz:;’)/zl’)/l] ij ( )
But we have at (g, zo)
1 2 n n
VinH = 5Vin (|vrP) = Z;l VimarVar + Z:l Via"Vial (3.57)

Hence it follows from (3.50), (3.53), (3.56) and (3.57) that, at (¢, zo),

0 < 6_27‘ Z AUVUH - 6_27‘ Z Almvlarvmar

i,5=1 a,l,m=1

+ 267\ 14 V2 ) F; aij H+ e > " AijVirVr — 2e* Trace [A;;] H

i,5=1 i,j=1

—2\/14 |Vr20,fH — /1 + |Vr|2(Vf,Vr) — 2 (; - f) e "\/1+ |Vr2H,  (3.58)

where

n

F
Aij = Z FZL’Yil’ij-

I,m=1

Since [F;;| is positive definite, then [A,;;] is positive semi-definite. So we have at (to, o), by
using (3.52),

> AyViH <0, (3.59)
ij=1
Z Almvlarvmar Z 0 (360)
a,l,m=1
and
> AijVirVjr — 2 Trace [A;;] H < 0. (3.61)

i,j=1

Since F' is homogenous of degree k, we have also

" F,; k
> whai = 5 (3.62)
i,j=1

Thus we get from (3.58), (3.59), (3.60), (3.61), (3.61) and (3.62), at (¢o, z0)

0< 2e7"y/1+ |Vr|2—1]f_,H —2y/1+1|Vr|?0,fH
1
_2( - _ -r 20 _ 2
2(F f)e 1+ [VrPH = /14 V(Y 1, V1), (3.63)
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But by Proposition 3.2 we have 0;p > 0if £ < 1, and d;p < O if £ > 1. This implies, since p

1 1
satifies (2.10), that —— — f(pz) > 0ifk < 1,and —— — f(pz) < 0if k > 1. That s,
F(ai;) F(ai;)

E L 1) ()

F(aij)

Hence it follows from (3.63) that at (¢, o)

2(e"0,f —kf)H < " (Vf,Vr). (3.64)

By (1.7) we have pd, f (px) — kf(px) > 0, which implies that

5o = , 5 -, N
0= B g (P00 (P2) = B S (p))

where R; and R; are defined in Proposition 3.1. Since R; < p(t,z) < R, by Proposition 3.1,
then "0, f — kf > &. Thus it follows from (3.64) at (¢, zo)

200H < " (Vf,Vr) < Ro|Vf||Vr| = Ra|VfIV2VH

that is -
CiR
H(tg,m9) < 032, (3.66)
20
where
Co= sup [Vf(y)|
Ri<[|y|<R;
It follows from (3.49) and (3.66) that
C3R?
H(t < H(0 02 ).
(t0.10) < max max 7(0.1), B2
This ends the proof of Proposition 3.3.
O

4 C’-estimates and proof of the main results

To get C?-estimates we need to controll the principal curvatures.

Proposition 4.1. Suppose that F' satisfies conditions (1.3)-(1.6) and that f satisfies conditions
(1.7)-(1.8). Let p : [0,T] x S™ — (0, 400) be an admissible solution of (2.10). We suppose that

Flpol >0 if k<1
4.1

0<— < P
< ~Flpo] < (k+ )Ry ri<lY <R,

FY)if k> 1,

where the operator F is given by (2.11), k is the homogeneity degree of F', and

Ry = min (7"1, min po(x)) , R, = max (rz, max po(m)>
zeSn zesn

with r1, 7, as in (1.8). Then there exists a positive constant C' depending only on f, 1,72 and pg
sucht that
max max |r;(¢,z)| < C,
(t,z)€[0,T)xS" 1<i<n
where k1, ..., K, are the principal curvatures of the hypersurface M; parametrized by X (¢,z) =
p(t, ).
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Proof. Define the function h : [0,7] x S™ — R by

lréliagxn i (t, Qf)

h(t,x) = log (X(t,2),v(t,2))

(4.2)
where k1, ..., K, are the principal curvatures of the hypersurface M; parametrized by X (¢,z) =
p(t,x)z, and v(t, .) is its outer normal vector. First we shall give an upper bound on the function
h. Let (to, z) € [0,T] x S™ the point where h achieves its maximum on [0, 7] x S", that is,
max r(t,7)
h(to, z0) = h(t,z) = log —=="
0= i ") 8o TR )
We want to prove that
h(to,xo) < Cy, (43)

where the constant Cyy depends only on f,r1,r, and pg. If tg = 0, then h(tg, zg) = h(0, ), and
(4.3) is trivially satisfied in this case. From now on, we suppose that t; > 0. Without loss of
generality, we may suppose that x is the south pole of S™. Let X the tangent hyperplane to M, at
the point Zy = X (t, xo). Then near (to, Zy), the family of hypersurfaces M; can be represented
as the graph of a smooth function u defined on a neighborhood of (¢, Zy) in [0, T] x Z. Since p
is an admissible solution of (2.10), then v is an admissible solution of (2.19).

By choosing a new coordinate system in the hyperplane X, with origin at the point Zy, then
in the coordinate parallel to the new ones with centre at the original origin, denoted by 1, ..., x,,
we have

Zy = (a1, ...,an, —a) , for some constants a, ...,an,a, witha >0,

and
X(t,z) = (a1, ..y an, —a) + (z,u(t, z)) with u(ty,0) = 0.

By formula (2.16) of section 2, we have

1
v=—(Du,—1) (4.4)
v
and
1 n
X, V)=~ — D 4.5
< >V> ’U(a u_._;(xk—i_ak) ku) ; ( )
where
v=(1+|Dul*)"/2. (4.6)
By our choice of coordinates we have
u(t,0) = 0 (4.7)
and
Du(ty,0) = (0, ...,0). (4.3)
By rotating the new z1, ..., x,, coordinates, we may suppose that 121;2( ki (to, o) occurs in the
x1-direction. We have then by using formula (2.17) and (4.8) o
D1iu(tg, 0
max k;(to, zo) = K1(to, x0) = ulto, 0) 5
Lsisn v(to, 0)(1 + (Dru(to, 0)))

= Duu(to,O).
On a neighborhood of (g, 0) define the function H by

1 =g (v (B )
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where
1 n
=(X - )D
o =(X,v)= v( kgfk‘i‘ak ku>
Thus we have
I{(t()7 0) = h(to, .Z‘o) = max h(t, :I:) (49)

(t,z)€[0,T]xS™

We will give an upper bound on H (ty, 0). By our choice of coordinates we have
Diqu(to,0) =0 for o > 1, (4.10)

so by rotating the x5, ..., z,, coordinates, we may suppose that the matrix D?u(tg,0) is diagonal
and that Dnu(to, 0) > 0.
We have, since H attains a local maximum at (g, 0), that

DH (ty,0) =0 (4.11)

and
0:H (t0,0) >0 (4.12)

since ty > 0. On the other hand, we have

Dijqu Dov  2DjuDigu Dayp

Do H = _Dav _
Diu v 1 4 (Dyu)? ©

and

" (ar + 2)Dopu wDyv
wp =3 @t ze) Doy pDov.

v v
k=1

But by using (4.8) and (4.10) we have at (¢, 0)

n
DyuD o
Dov="Y :MZQ’
v
k=1

SO

DozSD - a(xD(xozU

and

DaH _ Dllau . aaDaau

Dyu ®
which together with (4.11) give at (¢, 0),

Dottt Doatt _ (4.13)

Dnu ®
Differentiating once again, we get at (o, 0)
2
Dyov = (Do)

and

D 1 " Dyou)?
D, ( ag@) = ” (Dcmu + ZakD(mku> — M — (Daau)’.

k=1
So

DooH =

Diraau (Dllau

2
—2(Diqu)’
D11u D11u> ( ! u) +

1 n
_; (Daau + Z akDaaku>

k=1
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at (¢o,0). And using (4.13) we obtain then

D aa
DaaH: 1laal

1 n
-2 (Dlau)z _ g (Docau + Z akDaaku> (414)

Diiu
11 Py

at (to,0) for a« = 1, ..., n, where we have used the fact that a = (%o, 0).
Now if we differentiate equation (2.19) in the x; direction, we get

1

— = — DyuDyiu
1+|Du|z( f)zk .
\/l—i— Dul?

YLDl ZF”DM + \/1+|Du? (D1f + Dys1fDru).

i,5=1

Dlatu = —

Differentiating once again in the z; direction and using (4.7), (4.8) and (4.10) we get at (o, 0)

2
1 , 1 2 [ &
D10 = — (F - f) (Duiu)” + a3 -21 FijDuaij — 45 -21 FijDya;j
1,]= )=
Z FijreDiaijDiars + Dt f + Dypy1 fDru. (4.15)

J:g,ms=1

But since log F' is concave, we have

n n
1
Z FileClij + ﬁ Z Fij,rleailears < 07

i,5=1 3:3,ms=1

so it follows from (4.15) that at (¢, 0)

1
Di10u < — (F - f) (Dyyu)? F2 Zl i;D1ag; + D f + Dyy1 fDiu (4.16)
]

Now from the definition of the matrix [a;;] in (2.17), we have at (¢y,0) by using (4.7) and (4.8),
Diaij = Diiju — (Dyyu)*Dyiju — 2Dy;uDyjuDyyu,
and since D?u is diagonal at (tp,0), then we have at this point
Dijair = Diinu — 3(Diju)? (4.17)

and
Di1aaa = Ditaath — Daau(Dllu)z (418)

for @ = 2,...,n. Combining (4.16), (4.17) and (4.18) we obtain, since [F};] is diagonal at (¢, 0),

1 1
Dllatu S - <F - f) (DHU) <Z FaaDllaau - Dllu ZFaaDaau>

a=2

Fy

3 (Dllu) + Di1f + D11 fDryu. (4.19)

But from (4.14) we have

D n
Dllaau - DHUDaaH + 2D11u (Dlau)2 + 1 (Daau + E akDaozku> 5
a
k=1
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which gives by replacing in (4.19)

1 2 Duu (Dnu)
Dllatu S - (F - f) (D11u> + F2 ;FaaDaaH - F2 azz:lFaaDaau
D11u D11u
ZFaaDaau+ Z F aakDaaku+D11f+Dn+1fDllu (420)
a,k=1
and since F' is homogenous of degree k we have at (¢, 0)
> FaaDaott = kF.
a=1
So it follows from (4.20) that at (g, 0)
kE+1 D u  Dnu
DllatUS_(F_f)( ) +k 1 1 z:lFaaDaaH
D n
U S" FuatkDaaku+ Diif + Dyt fDpyu. (4.21)
a,k=1

Since H achieves a local maximum at (¢, 0), then the matrix [D;; H| is negative semi-definite at
(t0,0), and since [F};] is positive semi-definite and diagonal at (to, 0), then we have at (¢, 0)

z": FoaDooH <0.

a=1

Then using the fact that Dyju(to,0) > 0, we get from (4.21) at (¢, 0),

k+1 Diu D U
Di10u < — ( - f) (D11u)* +k 1} & Z FooarDoaru+Dii f+Dpi1 fDrgu.
a,k=1
(4.22)
Let us prove that the first term in the right side of (4.22) is negative,that is
E+1
—— —f>0. 4.23
i (4.23)
If 0 < k < 1, then by Proposition 3.2, we have a
L yso0 (4.24)
Iz > .

since F —f= \/ﬁatp > 0. It is clear that (4.24) implies (4.23) since F' > 0. Now if
k > 1, then by Proposition 3.2 we have

R
Oup < |0rp| < == maX\f pol(2)] ,

(XN e
0= (F f) VP + [V

1

that is,

Ry
>f— = max|}' po) (). (4.25)
1 x€Sn

Now it is easy to see that (4.23) is a consequence of (4.25) and the second part of condition 4.1
in Proposition 4.1. Thus it follows from (4.22) and (4.23) that at (¢, 0),

D11u + Dnu

2 > Faa@iDaakti + D1t f + Dyyt f Dy (4.26)

a,k=1

OtD1ju < k




Flow of starshaped Euclidean hypersurfaces by Weingarten curvatures 31

On the other hand, since at (¢y,0) we have
Dyai; = Djjiu,

then by differentiating equation (2.19) we get at (g, 0)

1 & 1 &
Didyu = 4 > F;Dijgu+ Dif = = > FaaDaokt+ Dif (4.27)
i,5=1 a=1
since [F};] is diagonal at (9, 0).

Now differentiating H with respect to ¢, we see that at (¢, 0)

Diiu ©® Diiu a

0,D dp 9D ! Iy
=G G Guv L g — - E ai Dy Oru
a
k=1

and using equation (2.18) and (4.27) we obtain then at (¢, 0)

n

8tD11u B 1

1 1 1 —
OH = - = - - — FoaarpDooru — — Dy f. 428
t Dnu a (F f) aF? QEI otk T kZ;:ak wf ( )

Thus we obtain from (4.26) and (4.28) at (¢, 0)

k—1 Duf
O H < ——
= aF +D11u

1 1
+ Dnyaf - p Zakaf + af (4.29)
k=1

Since by (4.12) we have 9; H (t9,0) > 0, then it follows from (4.29) that

kE—1 Duf
0<
- aF +D11u

1 « 1
+ Dnsrf — - > arDyf + pel (4.30)
k=1

L7l+ ; ( ) E a ( ) Fé J ( )
al?"?a7l7 a Pt kLk?J a’l?"7a’7l7 a P al?"7a7b7 a I

then (4.30) becomes

k-1 Dnf 1 1

< S - 4.31
0= alF’ JrDnu apapf+af ( 3 )

But by Proposition 3.2 we have d;p > 0if £k < 1, and 9;p < 0if £ > 1. This implies that

1
— f(pz) > 0ifk < 1,and —— — f(pz) < 0if k > 1. That s,
F(aiz)

F(aij)
k—1
F(aij)

< (k= 1)f(pa). (4.32)

It follows from (4.31) and (4.32) that at (¢, 0)

oo, k)< 2 (433)

~ Dyu
Since f satisfies (1.7), then pd, f — kf > 0, which implies

8o = , 5 » o
0= yetmin o (p0pf(pr) — kf (pr))

and since Ry < p(t,z) < R, by Proposition 3.1, then pd, f — kf > d. Thus we get from (4.33)
at (to, 0)
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b _Duf _ C ’
a — Diyiu — Djju

(4.34)
where
C = fllco(an, n): With Ap, r, ={X € R™ Ry < |X|< R}

We recall that by definition of H, we have Dyju = aefl at (t,0). It follows from (4.34) that

M (t0,0) < (50—10
or equivalently

H(to,0) < 1og59 . (4.35)
0

Thus the estimate (4.3) is proved by taking

Cp = max (log(? , max h(0, x)) :
0

zesSn
(4.3) implies then, for any (¢,z) € [0,T] x S™,
h(t,x) < Cp. (4.36)

We have by (4.2)

max r; = (X, v)el
1<i<n

and since by Proposition 3.1 we have

2

(X,v) = <p<

Tarop Srs
Vr*+ Vol

then we get from (4.36) the upper bound

max r; < Rpe®. (4.37)
1<i<n

Now, to get a lower bound on the principal curvatures, it suffices to observe that K1+ - -+x, > 0
since Kk = (k1,...,k,) € I, and then use the upper bound (4.37). Indeed, we have for all
i=1,...,n,

0< kit +kn <K+ (n—1)Rpe®

SO
ki > —(n— I)Rzeco.

The proof of Proposition 4.1 is complete.

The previous proposition allows us to get higher order estimates on our solutions.

Proposition 4.2. Let p : [0, 7] x S™ — (0, +00) be an admissible solution of (2.10) as in Propo-
sition 4.1. Then for any m € N, there exist two positive constants C,,, and \,, depending only
onm, f, F,ry,r; and py such that

Iollcm (o, 1)xsm) < Crm (4.38)
and for all ¢ € [0, 77,
18ep(t, Yl cm(@n) < Crme™ A", (4.39)

Moreover, there exists a compact set K C M (I') depending only on f, F, 71, and py, sucht that
for any (¢,z) € [0,T] x S™,
[ai;(t,2)] € K, (4.40)

where the cone M (I") is defined in section 2, and the matrix [a;;] is given by (2.4) in section 2.
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Proof. The principal curvatures «; of the hypersurface M, parametrized by X (¢,z) = p(t, )z,
are the eigenvalues of the matrix [a;;] (see section 2) defined by

1L i1d
[ai;] = [97]7 [hijl[9”]? (4.41)
where [¢%]2 is the positive square root of [¢”/] which is given by

" _ VZ \V#
7] = p~ |6;; — pPViP (4.42)

V2RIVl (p+ vV + [Vpl?)

and [h;;] is the matrix representing the second fondamental form of M, given by

_1
hij = (0° + [Vpl?) 2 (0765 +2VipV ip — pVijp). (4.43)

It is clear from Proposition 4.1, Proposition 3.1 and Proposition 3.3 by using (4.41), (4.42) and
(4.43) that
sup |p(t, )llc2sny < G, (4.44)
t€[0,T]
where C' depends only on f, r1,r, and py. In order to get higher order estimates, let us first prove
(4.40). By Proposition 3.2 we have

|0,p| < Ce™ ™ < C, (4.45)

where the constant C' depends only on f, 71,7, and pg. Since p satisfies (2.10), then it follows
from (4.45)

1 1 2 2
5= 00) < |y = 20| IS oy <

Flag;) F(ai;)
that is,
1
< f(pz) +C < Cy
Flag;)
or equivalently
1
Flaj) > —, 4.46
() > & (446)

where
Co=C X)) .
0=0C+  max |f(X)]
Since F' = 0 on OM (T'), it follows from (4.46) that there exists a constant §y > 0 depending only
on f, F, Ry, R, and pg such that

dist([aij],aM(F)) > b, (4.47)

where M (I') is the boundary of the cone M (I') and dist([a;;], 0M(T')) is the distance of [a;;]
to M (T). It is clear from (4.47) that there exists a compact set K C M (T") depending only on
f,F,r1,m and pg such that [a;;] € K. Thus (4.40) is proved.

Let us now prove the estimates (4.38) and (4.39). Since F satisfies (1.3)(or equivalently
(2.6)), it follows from (4.40) and the estimate (4.44) that equation (2.10) is uniformly parabolic.
Since by hypothesis the function log F' is concave, then we can apply a result of B. Andrews
[2] (Theorem 6, p.3 ), which is a generalisation of the result of N. Krylov [7] on fully nonlinear
parabolic equations, to obtain the estimate

0¢pllce o, r)xsm) + IVijpllceqo,rxsmy < C, (4.48)

where C*(]0, T'| x S™) is the parabolic Holder’s space, and where the constants C' > 0, « € (0,1)
depend only on f, F,r1,r and pg. The higher order estimates (4.38) follows from (4.48) and
the standard theory of linear parabolic equations (see [8]). In order to prove (4.39) we use
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the following well known interpolation inequality, which is valid on any compact Riemannian
manifold M,
IVullZe ary < 4llull Lo (an) V20l oo (ar), w € O (M), (4.49)

where Vu and V2u denote respectively the gradient and the hessian of u. It suffices to apply
(4.49) first to u = J;p and iterate it on the spatial higher order derivatives of 0;p and using (4.38)
and (3.11) to get (4.39). This achieves the proof of Proposition 4.2.

|

Now we are in position to prove our main result.

Proof of Theorem 1.1 and Theorem 1.2 . Let Xo(z) = po(x)x satisfies conditions (1.10) in The-
orem 1.1 or conditions (1.13) in Theorem 1.2. Let X : [0,7] x S® — R"*! a local solution of
(1.2). As we saw in section 2, X is given by

X(t,x) = plt, o(t,2))p(t x), (t,7) € [0,T] x S" (4.50)

where p satisfies (2.10) and (¢, .) : S — S" is a diffeomorphism satisfying the ODE

{&go t (E t @(tvm)) (4 51)
e .
" 20.0) =~ (i — 0l — A
’ F(ai; (ty)) ’ pVIVo(t )+ P (L y)
9p(t,y)Vp(t,y) (t,y) € [0,T] x S". (4.52)

Vet )P+ oA (ty)

Since X satisfies condition (1.10) in Theorem 1.1 or condition (1.13) in Theorem 1.2, then
it is easy to check that the hypothesis of Proposition 4.1(and then Proposition 4.2) concerning pg
are satisfied. We can then apply Proposition 4.2 to the function p given above. If we differentiate
equation (4.51) and use the estimates (4.38)-(4.39) in Proposition 4.2, then it is not difficult to
see that for any m € N, we have

el em o,r1xsm, s7) < Crm (4.53)

and for any ¢ € [0, 7],
1850 (t, )l oom s, i1y < Cre ™, (4.54)

where C,, and J\,, are positive constants depending only on m, f, F,r1,r, and Xy. It follows
from (4.50) by using the estimates (4.38)-(4.39) in Proposition 4.2 and (4.53)-(4.54) that, for
any m € N,

X1

cm(jo,T)xs, Rri1) < Chy (4.55)

and for all ¢ € [0, T,
06X (t, Y om(gn, Rre1) < Cme™ ", (4.56)

with new constants C,, and )\, depending only on m, f, F,r1,7, and Xy. Also by Proposition
4.2 there exists a compact set K C M (") depending only on m, f, F,r1,r, and X such that for
any (t,z) € [0,T] x S™, we have

[ai; (t,2)] € K ¢ M(T'), (4.57)

where the matrix [a;;] is given by (2.4). Since the constant C),, in (4.55) and the compact set K
in (4.57) are independant of T, then X can be extended to [0, +00) as a solution of (1.2). The
estimates (4.55), (4.56) and (4.57) become then

[ Xl om (10, +00) xsm, Rty < O (4.58)
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||3tX(t, .)Hcm(gn7 Rnt) < C’me_)‘mt forallt € [0, +OO) (459)

nd
’ [a;j(t,z)] € K C M(T') forallt € [0,400). (4.60)

Now it is clear from (4.58) and (4.59) that there exists a map X, € C°°(S", R"*1) such that
X(t,.) = Xoo as t — +oo in C™(S™, R**1) for all m € N, and satisfying

(1X(¢,.)— XOQHC”m(Sn’ Rn+1) S C’mei)‘mt forall ¢ € [0, +00).

Since X (¢, .) is a smooth starshaped embedding, then it is easy to see that X, is also a smooth
starshaped embedding, and from (4.60) we deduce that the principal curvatures of X, liein T".
By passing to the limit in equation (1.2) and using (4.59), we see that X, satisfies

1

Fin(xoy) /=0

This achieves the proofs of Theorem 1.1 and Theorem 1.2.
]

Proof of Corollary 1.1. As in Remark 1.1, if we take Xo(x) = rz, where 0 < r < r; with
r1 as in (1.8), then by using (1.7) and (1.8) one easily checks that condition (1.10) in Theorem
1.1 is satisfied by Xj. Thus the evolution problem (1.2) admits a global solution X (¢, .) which
converges as t — 400, to a solution X, of

m :f(Xoo) (4~61)

which is smooth starshaped embedding satisfying (X, ) € I'. It remains then to prove that X,
is the unique starshaped solution of (4.61) such that x(X ) € T. Let X; and X, two starshaped
solutions of (4.61) such that x(X;) € ', I = 1,2. We have then

R FX), 1=1,2. (4.62)

Let p; (I = 1,2) be the radial function of X;, and set u;(x) = log p;(z). Then we have by
using formula (2.4) of section 2,

o
F(aij(u))

where the matrix [a;;(w;)] is given by

= f(e"z),1=1,2, (4.63)

e M

[aij(w)] = NETE (i3] big] [vis]

(4.64)
with
bij = 51’]‘ + Viulvjul — Vijul

ey (4.65)
Vij = 0ij — ViuV,u ,1l=1,2.

VIFIVul (14 T+ Vul)

We shall prove that for any = € S™, we have
uw(z) > up(z). (4.66)

It is clear that (4.66) would imply that u; = wup, and then p; = p,. To prove (4.66) define a
function v : S — R by u(z) = ui1(x) — uz(x), and let zp € S™ a point where u achieves its
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minimum. Then we have at z that Vu = 0 and the matrix V>« is positive semi-definite, that is,
Vu; = Vuy and V2u; > V2u, (in the sense of operators) at 2. This implies by using (4.64)
and (4.65) that at xq,

e"aij(u1)] < e*[az;(u2)] (4.67)

in the sense of operators. Since the function F' is monotone (by (1.3) or equivalently (2.6)) and
homogenous of degree k, it follows from (4.63) and (4.67) that

6*ku1(wo)f(eu1(xo)xo) > efkuz(wo)f(euz(xo)xo)

which implies by using (1.7) that uq (zo) > ua(z0) or equivalently u(zg) > 0. This proves (4.66)
and the proof of Corollary 1.1 is complete.
o
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