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Abstract We consider the evolution of starshaped hypersurfaces in the Euclidean space by

general curvature functions. Under appropriate conditions on the curvature function, we prove

the global existence and convergence of the �ow to a hypersurface of prescribed curvature.

1 Introduction and statement of the results

Let M0 be a smooth closed compact hypersurface in Rn+1 (n ≥ 2). We suppose that M0 is

starshaped with respect to a point, which we assume to be the origin of Rn+1 for simplicity, and

in the rest of the paper all starshaped hypersurfaces are with respect to the origin of Rn+1. This

means that for every point P ∈ M0, we have P ̸∈ TPM0, where TPM0 is the tangent space of

M0 at P . If we let π : M0 → Sn to be the projection on Sn de�ned by

π(P ) =
P

|P |
, P ∈ M0,

then one can prove thatM0 is starshaped if and only if π is a diffeomorphism. It follows that the

inverse diffeomorphism X0 := π−1 : Sn → M0 can be used as a parametrization of M0. The

function ρ0 : Sn → R+ de�ned by ρ0(x) = |X0(x)| is called the radial function ofM0. Thus we

have

X0(x) = ρ0(x)x, x ∈ Sn. (1.1)

From now on, we say that a smooth embedding X : Sn → Rn+1 is a smooth starshaped

embedding if M := X(Sn) is a starshaped hypersurface in Rn+1, so by composing by a smooth

diffeomorphism of Sn if necessary, we may suppose that X is of the form (1.1).

We consider the evolution problem{
∂tX(t, x) =

(
K ◦ κ(X)(t, x)− f ◦X(t, x)

)
ν(t, x)

X(0, x) = X0(x)
(1.2)

where X(t, .) : Sn → Rn+1 is a smooth starshaped embedding, ν is the outer unit normal

vector �eld of the hypersurface Mt := X(t,Sn), K is a suitable function of the principal

curvatures vector κ(X) = (κ1(X), ..., κn(X)) of Mt, referred as the curvature function, and

f : Rn+1 \{ 0 } → R is a given smooth function referred as the prescribed function. We suppose

that the function K is expressed as an inverse function of the principal curvatures, that is

K ◦ κ(X) =
1

F ◦ κ(X)
=

1

F ◦ (κ1(X), .., κn(X))
,

where F ∈ C∞(G) ∩ C0
(
G
)
is a positive, symmetric function on an open, convex symmetric

cone G ⊂ Rn with vertex at the origin, which contains the positive cone

G
+ = { (λ1, .., λn) ∈ Rn : λi > 0 ∀i ∈ [1, .., n] } .
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This implies in particular that

G ⊂ { (λ1, .., λn) ∈ Rn : λ1 + · · ·+ λn > 0 } .

The function F (λ) = F (λ1, .., λn) is assumed to satisfy the following structure conditions

∂F

∂λi
> 0 on G ∀i ∈ [1, .., n] (1.3)

F is homogeneous of degree k > 0 on G and F ≡ 0 on ∂G (1.4)

logF is concave on G. (1.5)

By scaling, we may suppose

F (1, .., 1) = 1. (1.6)

The above conditions on F are usually assumed in the study of fully nonlinear partial dif-

ferential equations. Condition (1.3) ensures that the system (1.2) is parabolic, which is of great

importance in proving short time existence of solutions. The other conditions will be used to con-

trol the C1 and C2-norms of solutions. Some examples of suitable curvature functions satisfying

(1.3)-(1.6) are

F (λ1, .., λn) =

(
k

n

)−1

Sk(λ1, ..., λn) =

(
k

n

)−1 ∑
1≤i1<···<ik≤n

λi1 · · ·λik

the k-th elementary symmetric functions normalised so that F (1, .., 1) = 1. In this case we take

G to be the component of the set where Sk is positive which contains the positive cone. Thus we

obtain the mean curvature when k = 1 and the Gauss curvature when k = n. Other examples

of curvature functions are

F (λ1, .., λn) =

(
k

n

)(
Sk(λ

−1

1
, ..., λ−1

n )
)−1

.

In this case, we take G = G
+. A particular case of interest in the previous example is the

harmonic mean curvature when k = 1.

Finally, we notice that if a function F satis�es conditions (1.3)-(1.6) above, then for any

α > 0, the function Fα satis�es the same conditions where k is replaced by αk. This invariance
property is due to the fact that the convexity condition (1.5) concerns logF but not F .

When the prescribed function f ≡ 0, problem (1.2) has been studied by J. Urbas [10]

assuming that the curvature function F satis�es (1.3)-(1.6) with k = 1 and that F is concave

instead of logF concave. He showed the existence of a global solution on [0,+∞), and for the

convergence at in�nity, he proved that if �Mt is the hypersurface parametrized by �X(t, .) =
e−tX(t, .), then �Mt converges to a sphere in the C∞ topology as t → +∞. There is an

extensive literature on curvature evolution equation like (1.2) and similar evolution curvature

problems corresponding to other settings. We refer the reader to [1], [3], [6], [9], [11] and the

references therein.

In this paper, we study the global existence and convergence for equation (1.2) assuming that

F satis�es the structure conditions (1.3)-(1.6), and the prescribed function f : Rn+1\{ 0 } → R+

is a smooth function satisfying

∂

∂ρ

(
ρ−kf(X)

)
> 0, X ∈ Rn+1 \ { 0 } (1.7)

where ρ = |X|. We will also assume that there exist two positive real numbers r1 ≤ r2 such that{
f(X) ≤ rk

1
if |X| = r1

f(X) ≥ rk
2
if |X| = r2.

(1.8)
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These assumptions were made by L. Caffarelli, L. Nirenberg and J. Spruck [4] for the existence

by elliptic methods of starshaped embedding X whose 1

F -curvature is equal to f , i.e, satisfying
the equation :

1

F (κ(X))
= f(X). (1.9)

See also a related work of P. Delanoe [5] concerning the Gauss curvature.

Our main result in this paper is that conditions (1.7)-(1.8) on the prescribed function f are

also suf�cient to study the evolution problem (1.2). Moreover the solution of such �ow converges

to a smooth starshaped embedding satisfying (1.9). Our �rst result concerns the case where the

homogeneity degree k of F satis�es 0 < k ≤ 1. We have

Theorem 1.1. Let F ∈ C∞(G) ∩ C0
(
G
)
be a positive symmetric function satisfying con-

ditions (1.3)-(1.6) such that the homogeneity degree k of F satis�es 0 < k ≤ 1, and let

f ∈ C∞ (Rn+1 \ {0}
)
be a positive function satisfying (1.7)-(1.8). Let M0 a closed compact

starshaped hypersurface in Rn+1, parametrized by a smooth embedding X0 : Sn → Rn+1 of the

form (1.1) such that

κ(X0) ∈ G and
1

F (κ(X0))
− f(X0) ≥ 0 . (1.10)

Then the evolution problem (1.2) admits a unique smooth solution X(t, .) de�ned on [0,+∞)
such that, for every t ∈ [0,+∞), X(t, .) : Sn → Rn+1 is a mooth starshaped embedding

satisfying κ(X(t, .)) ∈ G. Moreover,X(t, .) converges in C∞(Sn,Rn+1) to a smooth starshaped

embedding X∞ : Sn → Rn+1 as t → +∞, satisfying

1

F (κ(X∞))
= f(X∞),

and for any m ∈ N, t ∈ [0,+∞), we have

∥X(t, .)−X∞∥Cm(Sn, Rn+1) ≤ Cme−λmt, (1.11)

where Cm and λm are positive constants depending only on m, f, F, r1, r2 and X0.

Remark 1.1. There are many smooth starshaped embeddings X0 : Sn → Rn+1 satisfying con-

dition (1.10) in Theorem 1.1. Indeed, it suf�ces to take X0(x) = rx, x ∈ Sn, where r is any

positive constant such that 0 < r ≤ r1, with r1 as in (1.8). Using conditions (1.7)-(1.8), it is easy
to see that (1.10) is satisfyed.

As a consequence of Theorem 1.1, we recover the existence result for Weingarten hyper-

surfaces of L.Caffarelli, L.Nirenberg, and J.Spruck [4] stated above. Moreover, we prove the

uniqueness of starshaped solutions of (1.9). Namely we have :

Corollary 1.1. Let F ∈ C∞(G)∩C0
(
G
)
be a positive symmetric function satisfying (1.3)-(1.6),

and let f ∈ C∞ (Rn+1 \ {0}
)
be a positive function satisfying (1.7)-(1.8). Then there exists a

smooth starshaped embedding X : Sn → Rn+1 such that κ(X) ∈ G, and satisfying

1

F (κ(X))
= f(X) . (1.12)

Moreover, X is the unique starshaped solution of (1.12) with κ(X) ∈ G.

When the homogeneity degree k of the curvature function F satis�es k > 1, we need addi-

tional conditions on the initial embedding X0. More precisely, we have
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Theorem 1.2. Let F ∈ C∞(G) ∩ C0
(
G
)
be a positive symmetric function satisfying con-

ditions (1.3)-(1.6) such that the homogeneity degree k of F satis�es k > 1, and let f ∈
C∞ (Rn+1 \ {0}

)
be a positive function satisfying (1.7)-(1.8). Let M0 be a closed compact

starshaped hypersurface in Rn+1, paramatrized by a smooth embedding X0 : Sn → Rn+1 of the

form (1.1) such that

κ(X0) ∈ G and 0 ≤ −
(

1

F (κ(X0))
− f(X0)

)
|∇X0|
|X0|

≤ kR1

(k + 1)R2

min
R1≤|Y |≤R2

f(Y ) , (1.13)

where

R1 = min

(
r1, min

x∈Sn
|X0(x)|

)
, R2 = max

(
r2,max

x∈Sn
|X0(x)|

)
and r1, r2 are as in (1.8). Then the evolution problem (1.2) admits a unique smooth solution

X(t, .) de�ned on [0,+∞) such that, for every t ∈ [0,+∞), X(t, .) : Sn → Rn+1 is a smooth

starshaped embedding satisfying κ(X(t, .)) ∈ G. Moreover, X(t, .) converges in C∞(Sn,Rn+1)
to a smooth starshaped embedding X∞ : Sn → Rn+1 as t → +∞, satisfying

1

F (κ(X∞))
= f(X∞),

and for any m ∈ N, t ∈ [0,+∞), we have

∥X(t, .)−X∞∥Cm(Sn, Rn+1) ≤ Cme−λmt, (1.14)

where Cm and λm are positive constants depending only on m, f, F, r1, r2 and X0.

Remark 1.2. There are many smooth starshaped embeddings X0 : Sn → Rn+1 satisfying con-

dition (1.13) in Theorem 1.2. Indeed, by applying Corollary 1.1 to the functions F 1/k, f1/k

instead of F, f (as it can easily be seen, conditions (1.3)-(1.6) and (1.7)-(1.8) are still satis�ed

with a new homgeneï£¡ity degree k = 1 for F 1/k), then we get a smooth starshaped embedding

X : Sn → Rn+1 satisfying :
1

F (κ(X))
= f(X).

If we take X0 = rX , where r is any positive constant such that r ∈ [1, 1+ ε), with ε > 0 small

enough, then it is not dif�cult to see, by using condition (1.7)-(1.8), that X0 satis�es condition

(1.13) in Theorem 1.2.

2 Preliminaries

In this section, we recall some expressions for the relevant geometric quantities of smooth closed

compact starshaped hypersurfaces M ⊂ Rn+1. As we saw in the previous section, there is a

smooth embedding X : Sn → Rn+1 parametrizing M , which is of the form

X(x) = ρ(x)x, x ∈ Sn.

For any local orthonormal frame {e1, ..., en} on Sn (endowed with its standard metric), covariant

differentiation with respect to ei will be denoted by∇i,∇ij ,∇ijk, ..., and we let∇ be the gradient

on Sn. Then in terms of the radial function ρ, the metric g = [gij ] induced by X and its inverse

g−1 = [gij ] are given by

gij = ⟨∇iX,∇jX⟩ = ρ2δij +∇iρ∇jρ, gij = ρ−2

(
δij −

∇iρ∇jρ

ρ2 + |∇ρ|2

)
, (2.1)
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where ⟨ , ⟩ is the standard metric on Rn+1, and δij are Kronecker symbols. The unit outer

normal to M is

ν =
ρx−∇ρ√
ρ2 + |∇ρ|2

(2.2)

and the the second fundamental form of M is given by

hij = −⟨∇ijX, ν⟩ =
(
ρ2 + |∇ρ|2

)− 1

2 (ρ2δij + 2∇iρ∇jρ− ρ∇ijρ), (2.3)

The principal curvatures of M are the eigenvalues of the second fundamental form with respect

to the induced metric g. Thus, λ is a principal curvature if

det[hij − λgij ] = 0,

or equivalently

det[aij − λδij ] = 0,

where the symmetric matrix [aij ] is given by

[aij ] = [gij ]
1

2 [hij ][g
ij ]

1

2 (2.4)

and where [gij ]
1

2 is the positive square root of [gij ] which is given by

[gij ]
1

2 = ρ−1

[
δij −

∇iρ∇jρ√
ρ2 + |∇ρ|2(ρ+

√
ρ2 + |∇ρ|2)

]
. (2.5)

Let us now make some remarks about the curvature function F . Since F is symmetric, it is

well known that F can be seen as a smooth function on the set of real symmetric n× n matrices

[aij ]. More precisely, we have

F ∈ C∞(M(G)) ∩ C0(M(G))

where M(G) is the convex cone of real symmetric n × n matrices with eigenvalue vector in the

cone G. One can also prove that conditions (1.3)-(1.6) are equivalent to the following conditions

when F is seen as function on M(G) :

[Fij ] is positive de�nite on M(G) , (2.6)

where Fij =
∂F
∂aij

.

F is homogeneous of degree k > 0 on M(G) and F ≡ 0 on ∂M(G) (2.7)

logF is concave on M(G). (2.8)

F (δij) = 1. (2.9)

We note here that a smooth function G on M(G) is concave if

n∑
i,j=1

n∑
k,l=1

Gij,kl ηijηkl ≤ 0 on M(G)

for all real symetric n× n matrices (ηij), where

Gij,kl =
∂2G

∂akl∂aij
.

Now, we will show that equation (1.2) is equivalent to an evolution equation depending on

the radial function ρ. We proceed as in [10], �rst suppose that X(t, .) is a solution of (1.2) such
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that for each t ∈ [0,+∞),X(t, .) is an embedding of a smooth closed compact hypersurface Mt

in Rn+1, which is starshaped with respect to the origin and such that the vector of its principal

curvatures κ = (κ1, ..., κn) lies in the cone G. If we choose a family of suitable diffeomorphisms

φ(t, .) : Sn → Sn then

X(t, x) = ρ(t, φ(t, x))φ(t, x),

where ρ(t, .) : Sn → R+ is the radial function of Mt. We have

∂tX = (⟨∇ρ, ∂tφ⟩+ ∂tρ)φ+ ρ∂tφ

and the unit outer normal is given by

ν =
ρφ−∇ρ√
|∇ρ|2 + ρ2

.

Using the fact that ∂tφ is tangential to Sn at φ, it follows that

⟨∂tX, ν⟩ =
(
ρ2 + |∇ρ|2

)− 1

2 ρ∂tρ

hence ρ satis�es the initial value problem{
∂tρ = F [ρ(t, .)]

ρ(0, x) = ρ0(x), x ∈ Sn
(2.10)

where the nonlinear operator F is de�ned on smooth functions ρ : Sn → (0,+∞), such that the

matrix [aij ] given in (2.4) lies in M(G), by

F [ρ](x) =

(
1

F (aij(x))
− f(ρ(x)x)

) √
ρ2(x) + |∇ρ(x)|2

ρ(x)
. (2.11)

From now on, what we mean by admissible function is a smooth function ρ : [0, T ] × Sn →
(0,+∞) such that the matrix [aij ] de�ned by (2.4) lies in the cone M(G) de�ned above. Con-

versely, suppose that ρ : [0, T ] × Sn → (0,+∞) is an admissible solution of (2.10) . If we

set

X(t, x) = ρ(t, φ(t, x))φ(t, x) , (t, x) ∈ [0, T ]× Sn,

where φ(t, .) : Sn → Sn is a smooth diffeomorphism satisfying the ODE{
∂tφ(t, x) = Z(t, φ(t, x))

φ(0, x) = x, x ∈ Sn
(2.12)

with

Z(t, y) = −
(

1

F (aij(t, y))
− f(ρ(t, y)y)

)
∇ρ(t, y)

ρ
√

|∇ρ(t, y)|2 + ρ2(t, y)
, (t, y) ∈ [0, T ]× Sn,

(2.13)

then it is not dif�cult to see thatX is a smooth starshaped embedding which is a solution of (1.2)

with X0(x) = ρ0(x)x.

The condition (2.6) implies that (2.10) is parabolic on admissible functions ρ. The classi-

cal theory of parabolic equations yields the existence and uniqueness of a smooth admissible

solution ρ de�ned on a small intervall [0, T ]. From the classical theory of ordinary differential

equations, there exists a family of diffeomorphisms φ(t, .) de�ned on a small interval [0, T ] and
satisfying (2.12). Thus by taking X(t, x) = ρ(t, φ(t, x))φ(t, x) we obtain a solution of (1.2)

de�ned on [0, T ].

Usually in order to get high order estimates it is useful to represent the hypersurface locally

as graph over an open setW ⊂ Rn. Locally, after rotating the coordinates axes , we may suppose

that M is the graph of a smooth function u : W → R. Hence the metric of M , the outer normal

vector and the second fundamental form can be written respectively
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gij = δij +DiuDju , gij = δij −
DiuDju

1+ |Du|2
(2.14)

ν =
1√

1+ |Du|2
(Du,−1) , (2.15)

hij =
Diju√

1+ |Du|2
(2.16)

where Dk, Dij are the usual �rst and second order derivatives in Rn, and Du = (D1u, ...,Dnu).
The principal curvatures of M are the eigenvalues of the symmetric matrix [aij ] given by

[aij ] = [gij ]
1

2 [hij ][g
ij ]

1

2 (2.17)

where [gij ]
1

2 is the positive square root of [gij ]. On ca compute

aij =
1

v

(
Diju− DiuDluDjlu

v(1+ v)
− DjuDluDilu

v(1+ v)
+

DiuDjuDkuDluDklu

v2(1+ v)2

)
(2.18)

with v =
√
1+ |Du|2.

In this case equation (1.2) takes the form

∂tu = −
(

1

F (aij)
− f(x, u)

)√
1+ |Du|2 . (2.19)

In what follows, what we mean by an admissible solution of (2.19) is a smooth function u :

[0, T ]×W→ R such that the matrix [aij ] de�ned by (2.18) lies in the coneM(G) de�ned above,
and satisfying (2.19).

3 C1-estimates and exponential decay

In this section we prove C1-estimates on solutions ρ of (2.10) and exponential decay of its

derivatives ∂tρ. First we prove C
0-estimates.

Proposition 3.1. Suppose that F satis�es conditions (1.3)-(1.6) and that f satis�es conditions

(1.7)-(1.8). Let ρ : [0, T ] × Sn → (0,+∞) be an admissible solution of (2.10). Then we have,

for all (t, x) ∈ [0, T ]× Sn,

R1 ≤ ρ(t, x) ≤ R2 (3.1)

where

R1 = min

(
r1, min

x∈Sn
ρ0(x)

)
and R2 = max

(
r2,max

x∈Sn
ρ0(x)

)
and where r1, r2 are as in (1.8).

Proof. Let ρ : [0, T ] × Sn → (0,+∞) be an admissible solution of (2.10). Let (t0, x0) ∈
[0, T ]× Sn such that

ρ(t0, x0) = max
(t,x)∈[0,T ]×∈Sn

ρ(t, x). (3.2)

We want to prove

ρ(t0, x0) ≤ R2. (3.3)

If t0 = 0, then

ρ(t0, x0) = ρ0(x0) ≤ R2,
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so (3.3) is proved in this case. Suppose now that t0 > 0. Then we have

∂tρ(t0, x0) ≥ 0 (3.4)

∇ρ(t0, x0) = 0 (3.5)

and the matrix

[∇ijρ(t0, x0)] is negative semi-de�nite. (3.6)

It follows from (3.5) and (3.6) that the matrix [aij ] de�ned by (2.4) satis�es in the sense of

operators

aij(t0, x0) ≥ ρ−1(t0, x0)δij . (3.7)

Since by (1.3) F is monotone, then by using (3.7) we have at (t0, x0)

F (aij) ≥ F (ρ−1δij) = ρ−kF (δij) = ρ−k, (3.8)

where we have used the fact that F is homogenous of degree k and F (δij) = 1. Using equation

(2.10) and (3.8), we obtain

∂tρ(t0, x0) ≤ ρk(t0, x0)− f(ρ(t0, x0)x0). (3.9)

Combining (3.4) and (3.9) gives

f(ρ(t0, x0)x0) ≤ ρk(t0, x0). (3.10)

But from (1.7) and (1.8) we have that if X ∈ Rn+1 satis�es |X| > r2, then f(X) > |X|k. So it

follows from (3.10) that ρ(t0, x0) ≤ r2. This proves (3.3) since r2 ≤ R2.

It remains now to prove that ρ(t, x) ≥ R1. As before, if we let (t0, x0) ∈ [0, T ]×Sn such that

ρ(t0, x0) = min
(t,x)∈[0,T ]×∈Sn

ρ(t, x),

then in the same way as before, we prove that ρ(t0, x0) ≥ R1. This achieves the proof of

Proposition 3.1.

We prove now the exponential decay of ∂tρ.

Proposition 3.2. Assume that F satis�es conditions (1.3)-(1.6) and that f satis�es conditions

(1.7)-(1.8). Let ρ : [0, T ]×Sn → (0,+∞) be an admissible solution of (2.10). We suppose that

F [ρ0] ≥ 0 if k ≤ 1 and F [ρ0] ≤ 0 if k > 1, where the operator F is given by (2.11), and k is the

homogeneity degree of F . Then we have, for any (t, x) ∈ [0, T ]× Sn,

∂tρ(t, x) ≥ 0 if k ≤ 1

and

∂tρ(t, x) ≤ 0 if k > 1.

Moreover, there exists a positive constant λ depending only on f, r1, r2 and ρ0 such that, for any
t ∈ [0, T ], we have

max
x∈Sn

|∂tρ(t, x)| ≤
R2

R1

max
x∈Sn

∣∣F [ρ0](x)
∣∣e−λt , (3.11)

where

R1 = min

(
r1, min

x∈Sn
ρ0(x)

)
and R2 = max

(
r2,max

x∈Sn
ρ0(x)

)
and where r1, r2 are as in (1.8).

The proof of the above proposition is based on the following lemma which asserts that the

function ρ−1∂tρ satis�es a second order parabolic equation.
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Lemma 3.1. Suppose that F satis�es conditions (1.3)-(1.6). Let ρ : [0, T ] × Sn → (0,+∞) be
an admissible solution of (2.10) and set G = ρ−1∂tρ. Then we have for some smooth functions

Al, l = 1, ..., n ( depending on ρ and its derivatives ) ,

∂tG =
n∑

i,j=1

Aij∇ijG+
n∑
l=1

Al∇lG−
√

ρ2 + |∇ρ|2
ρ2

(
ρ∂ρf − f − k − 1

F

)
G

where

Aij =
1

ρ2F 2

n∑
l,m=1

γilFlmγmj (3.12)

and

γij = δij −
∇iρ∇jρ√

ρ2 + |∇ρ|2
(
ρ+

√
ρ2 + |∇ρ|2

) . (3.13)

Proof. We recall that by (2.10), ρ sati�es

∂tρ = F [ρ] (3.14)

where

F [ρ] =

(
1

F (aij)
− f(ρx)

) √
ρ2 + |∇ρ|2

ρ
(3.15)

and where aij is given by (2.4).

In view of the de�nition of G and (3.15) it will be usefull to work with the function r = log ρ
instead of ρ. Equation (3.14) becomes then

∂tr =

(
1

F (aij)
− f(erx)

)
e−r
√
1+ |∇r|2 (3.16)

where aij takes the form

aij =
e−rbij√
1+ |∇r|2

(3.17)

with 
bij = γil(δlm +∇lr∇mr −∇lmr)γmj

γij = δij −
∇ir∇jr√

1+ |∇r|2
(
1+

√
1+ |∇r|2

) . (3.18)

Now, we have

G = ρ−1∂tρ = ∂tr =

(
1

F (aij)
− f(erx)

)
e−r
√
1+ |∇r|2, (3.19)

so

∂tG = −e−r
√
1+ |∇r|2

n∑
i,j=1

Fij

F 2
∂taij −

√
1+ |∇r|2∂ρf(erx)∂tr

+

(
1

F (aij)
− f(erx)

)
e−r

(
−
√
1+ |∇r|2∂tr +

⟨∇∂tr,∇r⟩√
1+ |∇r|2

)
. (3.20)

Using (3.17) and (3.18), one can check that for some smooth functions Bl
ij(t, x) (l = 1, ..., n),

we have

∂taij = −aij∂tr −
e−r√

1+ |∇r|2

n∑
l,m=1

γilγmj∇lm∂tr +
n∑
l=1

Bl
ij∇l∂tr, (3.21)
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and since ∂tr = G, it follows from (3.20) and (3.21) that

∂tG =
n∑

i,j=1

Aij∇ijG+
n∑
l=1

Al∇lG− ∂ρf(e
rx)
√
1+ |∇r|2G−G2

+ e−r
√
1+ |∇r|2

n∑
i,j=1

Fij

F 2
aijG, (3.22)

where

Aij =
e−2r

F 2

n∑
l,m=1

γilγmjFlm

and Al(t, x) ( l = 1, ..., n) are smooth functions. Since F is homogeneous of degree k, then

n∑
i,j=1

Fij

F 2
aij =

k

F
,

so it follows from (3.22) by using (3.19) that

∂tG =
n∑

i,j=1

Aij∇ijG+
n∑
l=1

Al∇lG−
√
1+ |∇r|2e−r

(
er∂ρf − k

F

)
G−G2

=
n∑

i,j=1

Aij∇ijG+
n∑
l=1

Al∇lG−
√
ρ2 + |∇ρ|2

ρ2

(
ρ∂ρf − f − k − 1

F

)
G.

This achieves the proof Lemma 3.1.

We need also the following lemma which is a well known version of the maximum principle

for parabolic equations.

Lemma 3.2. Let G : [0, T ]× Sn → R be a smooth function satisfying

∂tG ≥
n∑

i,j=1

Aij∇ijG+
n∑
l=1

Al∇lG+AG (3.23)

for some smooth functions A,Al, Aij , (l, i, j = 1, ..., n), such that the matrix [Aij ] is positive
semi-de�nite. Suppose

min
x∈Sn

G(0, x) ≥ 0,

then

min
(t,x)∈[0,T ]×Sn

G(t, x) ≥ 0.

Proof. Let λ ∈ R such that

λ < − max
(t,x)∈[0,T ]×Sn

|A(t, x)| , (3.24)

and consider the function G̃ de�ned by G̃(t, x) = eλtG(t, x). To prove the lemma it is equivalent

to prove that

min
(t,x)∈[0,T ]×Sn

G̃(t, x) ≥ 0. (3.25)

By using (3.23), G̃ satis�es

∂tG̃ ≥
n∑

i,j=1

Aij∇ijG̃+
n∑
l=1

Al∇lG̃+ (λ+A)G̃. (3.26)
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Let (t0, x0) ∈ [0, T ]× Sn such that

G̃(t0, x0) = min
(t,x)∈[0,T ]×Sn

G̃(t, x).

We want to prove

G̃(t0, x0) ≥ 0. (3.27)

If t0 = 0, then

G̃(t0, x0) = G̃(0, x0) = G(0, x0) ≥ 0

and (3.27) is proved in this case. If t0 > 0, then

∂tG̃(t0, x0) ≤ 0 (3.28)

∇G̃(t0, x0) = 0 (3.29)

and the matrix [
∇ijG̃(t0, x0)

]
is positive semi-de�nite. (3.30)

It follows from (3.26), (3.28), (3.29) and (3.30) that

(λ+A(t0, x0))G̃(t0, x0) ≤ 0

which implies that G̃(t0, x0) ≥ 0 since λ + A(t0, x0) < 0 by (3.24). Thus (3.27) is proved and

the lemma follows.

Proof of Proposition 3.2. Let G = ρ−1∂tρ. Then by Lemma 3.1 we have

∂tG =
∑
i,j

Aij∇ijG+
n∑
l=1

Al∇lG

−
√

ρ2 + |∇ρ|2
ρ2

(
ρ∂ρf − f − k − 1

F

)
G. (3.31)

By (1.3) (or equivalently (2.6)) the matrix [Fij ] is positive de�nite. So it follows from (3.12) that

[Aij ] is positive semi-de�nite. We distinguish two cases :

First case : 0 < k ≤ 1 . SinceG satis�es (3.31) andG(0, x) = ρ−1

0
(x)∂tρ(0, x) = ρ−1

0
(x)F [ρ0](x) ≥

0 by hypothesis, then by Lemma 3.2 we have for any t ∈ [0, T ],

min
x∈Sn

G(t, x) ≥ 0. (3.32)

In particular, (3.32) implies that ∂tρ ≥ 0 since ∂tρ = ρG. Now we have, since ρ satis�es (2.10),

G = ρ−1∂tρ =

(
1

F (aij)
− f(ρx)

) √
ρ2 + |∇ρ|2

ρ2
,

so it follows from (3.32) that
1

F (aij)
≥ f(ρx)

which implies that the last term in (3.31) is bounded from below as√
ρ2 + |∇ρ|2

ρ2

(
ρ∂ρf − f − k − 1

F

)
≥
√
ρ2 + |∇ρ|2

ρ2
(ρ∂ρf − kf) . (3.33)

Since f satis�es (1.7), then ρ∂ρf − kf > 0, and since R1 ≤ ρ(t, x) ≤ R2 by Proposition 3.1, we

deduce that

ρ∂ρf − kf ≥ δ0 (3.34)
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for some constant δ0 > 0 depending only on f,R1 and R2. It follows from (3.33) and (3.34) by

using Proposition 3.1 that√
ρ2 + |∇ρ|2

ρ2

(
ρ∂ρf − f − k − 1

F

)
≥ δ0

R2

. (3.35)

By setting λ = δ0
R2

and G̃(t, x) = eλtG(t, x), it follows from (3.31) that G̃ satis�es

∂tG̃ =
n∑

i,j=1

Aij∇ijG̃+
n∑
l=1

Al∇lG̃

−
√

ρ2 + |∇ρ|2
ρ2

(
ρ∂ρf − f − k − 1

F

)
G̃+ λG̃

which gives by using (3.35) and the fact that G̃ ≥ 0,

∂tG̃ ≤
n∑

i,j=1

Aij∇ijG̃+
n∑
l=1

Al∇lG̃. (3.36)

It follows from (3.36) by applying Lemma 3.2 to the function −G̃+ max
x∈Sn

G̃(0, x) that

−G̃+ max
x∈Sn

G̃(0, x) ≥ 0

which implies

max
x∈Sn

G(t, x) ≤ e−λt max
x∈Sn

G(0, x). (3.37)

But from the de�nition of G we have

∂tρ = ρG, (3.38)

so it follows from (3.37) and (3.38) since ∂tρ ≥ 0 and R1 ≤ ρ ≤ R2 by Proposition 3.1, that

|∂tρ| ≤ R2e
−λt max

x∈Sn
G(0, x) = R2e

−λt max
x∈Sn

(
F [ρ0](x)

ρ0(x)

)
≤ R2

R1

e−λt max
x∈Sn

F [ρ0](x).

This proves Proposition 3.2 in the case 0 < k ≤ 1.

Second case : k > 1. SinceG satis�es (3.31) andG(0, x) = ρ−1

0
(x)∂tρ(0, x) = ρ−1

0
(x)F [ρ0](x) ≤

0 by hypothesis, then by Lemma 3.2 we have for any t ∈ [0, T ],

max
x∈Sn

G(t, x) ≤ 0. (3.39)

In particular, (3.39) implies that ∂tρ ≤ 0 since ∂tρ = ρG. Now we have, since ρ satis�es (2.10),

G = ρ−1∂tρ =

(
1

F (aij)
− f(ρx)

) √
ρ2 + |∇ρ|2

ρ2
,

so it follows from (3.39) that
1

F (aij)
≤ f(ρx)

which implies that the last term in (3.31) is bounded from below as√
ρ2 + |∇ρ|2

ρ2

(
ρ∂ρf − f − k − 1

F

)
≥
√
ρ2 + |∇ρ|2

ρ2
(ρ∂ρf − kf) . (3.40)

Since f satis�es (1.7), then ρ∂ρf − kf > 0, and since R1 ≤ ρ(t, x) ≤ R2 by Proposition 3.1, we

deduce that

ρ∂ρf − kf ≥ δ0 (3.41)
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for some constant δ0 > 0 depending only on f,R1 and R2. It follows from (3.40) and (3.41) by

using Proposition 3.1 that√
ρ2 + |∇ρ|2

ρ2

(
ρ∂ρf − f − k − 1

F

)
≥ δ0

R1

. (3.42)

By setting λ = δ0
R1

and G̃(t, x) = eλtG(t, x), it follows from (3.31) that

∂tG̃ =
n∑

i,j=1

Aij∇ijG̃+
n∑
l=1

Al∇lG̃

−
√

ρ2 + |∇ρ|2
ρ2

(
ρ∂ρf − f − k − 1

F

)
G̃+ λG̃

which gives by using (3.42) and the fact that �G ≤ 0,

∂tG̃ ≥
n∑

i,j=1

Aij(t, x)∇ijG̃+
n∑
l=1

Al(t, x)∇lG̃. (3.43)

It follows from (3.43) by applying Lemma 3.2 to the function G̃− min
x∈Sn

G̃(0, x) that

G̃− min
x∈Sn

G̃(0, x) ≥ 0

which implies

min
x∈Sn

G(t, x) ≥ e−λt min
x∈Sn

G(0, x). (3.44)

But from the de�nition of G we have

∂tρ = ρG, (3.45)

so it follows from (3.44) and (3.45) since ∂tρ ≤ 0 and ρ ≤ R2 by Proposition 3.1, that

|∂tρ| ≤ −R2e
−λt min

x∈Sn
G(0, x) = R2e

−λt max
x∈Sn

|G(0, x)| = R2e
−λt max

x∈Sn

(∣∣F [ρ0](x)
∣∣

ρ0(x)

)

≤ R2

R1

e−λt max
x∈Sn

∣∣F [ρ0](x)
∣∣.

The proof of Proposition 3.2 is then complete.

Now we are in position to prove C1-estimates on the function ρ.

Proposition 3.3. Supoose that F satis�es conditions (1.3)-(1.6) and that f satis�es conditions

(1.7)-(1.8). Let ρ : [0, T ] × Sn → R+ be an admissible solution of (2.10). We suppose that

F [ρ0] ≥ 0 if k ≤ 1 and F [ρ0] ≤ 0 if k > 1, where the operator F is given by (2.11), and k is the

homogeneity degree of F . Then there exists a positive constant C depending only on f, r1, r2
and ρ0 such that

max
(t,x)∈[0,T ]×Sn

|∇ρ(t, x)| ≤ C,

where r1 and r2 are as in (1.8).

Proof. As in the proof of Lemma 3.1, we introduce the function r = log ρ. We have then

∂tr =

(
1

F (aij)
− f(erx)

)
e−r
√
1+ |∇r|2 (3.46)

where we recall that aij takes the form
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aij =
e−rbij√
1+ |∇r|2

(3.47)

with 
bij = γil(δlm +∇lr∇mr −∇lmr)γmj

γij = δij −
∇ir∇jr√

1+ |∇r|2
(
1+

√
1+ |∇r|2

) . (3.48)

Set H = 1

2
|∇r|2, and let (t0, x0) ∈ [0, T ]× Sn such that

H(t0, x0) = max
(t,x)∈[0,T ]×Sn

H(t, x).

Let {e1, ..., en} be an orthonormal frame in a neighborhood of x0 such that∇i(ej) = 0 at x0, for
i, j = 1, ..., n.

If t0 = 0, then

H(t0, x0) = H(0, x0) = max
x∈Sn

H(0, x). (3.49)

If t0 > 0, then

∂tH(t0, x0) ≥ 0 (3.50)

∇iH(t0, x0) = 0, i = 1, ..., n (3.51)

and the matrix

[∇ijH(t0, x0)] is negative semi-de�nite. (3.52)

In what follows, to simplify the notation we shall write F instead of F (aij), and f instead

f(erx). We have at (t0, x0), by using (3.51),

∂tH = ⟨∇∂tr,∇r⟩ =
⟨
∇
((

1

F
− f

)
e−r
√
1+ |∇r|2

)
,∇r

⟩

= −e−r
√
1+ |∇r|2

n∑
i,j=1

Fij

F 2
⟨∇aij ,∇r⟩ − 2

√
1+ |∇r|2∂ρfH

−
√
1+ |∇r|2⟨∇f,∇r⟩ − 2

(
1

F
− f

)
e−r
√
1+ |∇r|2H . (3.53)

Using (3.47) and (3.48), one can check that for some smooth functions Bl
ij(t, x) (l = 1, ..., n),

we have, for any α = 1, ..., n, at (t0, x0),

∇αaij = − e−r√
1+ |∇r|2

n∑
l,m=1

γilγmj∇αlmr +
n∑
l=1

Bl
ij∇αlr − aij∇αr.

It follows that, at (t0, x0),

⟨∇aij ,∇r⟩ =
n∑

α=1

∇αaij∇αr

= − e−r√
1+ |∇r|2

n∑
α,l,m=1

γilγmj∇αlmr∇αr − 2aijH. (3.54)

The formula for commuting the order of covariant differentiation gives at (t0, x0)

∇αlmr = ∇lmαr + δαm∇lr − δlm∇αr. (3.55)
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Combining (3.54) and (3.55) we get at (t0, x0)

⟨∇aij ,∇r⟩ = − e−r√
1+ |∇r|2

n∑
α,l,m=1

γilγmj∇lmαr∇αr

− e−r√
1+ |∇r|2

n∑
l,m=1

γilγmj∇lr∇mr

+ 2
e−r√

1+ |∇r|2

n∑
l=1

γilγljH − 2aijH. (3.56)

But we have at (t0, x0)

∇lmH =
1

2
∇lm

(
|∇r|2

)
=

n∑
α=1

∇lmαr∇αr +
n∑

α=1

∇lαr∇mαr. (3.57)

Hence it follows from (3.50), (3.53), (3.56) and (3.57) that, at (t0, x0),

0 ≤ e−2r
n∑

i,j=1

Aij∇ijH − e−2r
n∑

α,l,m=1

Alm∇lαr∇mαr

+ 2e−r
√
1+ |∇r|2

n∑
i,j=1

Fij

F 2
aijH + e−2r

n∑
i,j=1

Aij∇ir∇jr − 2e−2rTrace [Aij ]H

−2

√
1+ |∇r|2∂ρfH −

√
1+ |∇r|2⟨∇f,∇r⟩ − 2

(
1

F
− f

)
e−r
√
1+ |∇r|2H, (3.58)

where

Aij =
n∑

l,m=1

Flm

F 2
γilγmj .

Since [Fij ] is positive de�nite, then [Aij ] is positive semi-de�nite. So we have at (t0, x0), by
using (3.52),

n∑
i,j=1

Aij∇ijH ≤ 0, (3.59)

n∑
α,l,m=1

Alm∇lαr∇mαr ≥ 0 (3.60)

and
n∑

i,j=1

Aij∇ir∇jr − 2 Trace [Aij ]H ≤ 0. (3.61)

Since F is homogenous of degree k, we have also

n∑
i,j=1

Fij

F 2
aij =

k

F
. (3.62)

Thus we get from (3.58), (3.59), (3.60), (3.61), (3.61) and (3.62), at (t0, x0)

0 ≤ 2e−r
√
1+ |∇r|2 k

F
H − 2

√
1+ |∇r|2∂ρfH

− 2

(
1

F
− f

)
e−r
√
1+ |∇r|2H −

√
1+ |∇r|2⟨∇f,∇r⟩. (3.63)
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But by Proposition 3.2 we have ∂tρ ≥ 0 if k ≤ 1, and ∂tρ ≤ 0 if k > 1. This implies, since ρ

sati�es (2.10), that
1

F (aij)
− f(ρx) ≥ 0 if k ≤ 1, and

1

F (aij)
− f(ρx) ≤ 0 if k > 1. That is,

k − 1

F (aij)
≤ (k − 1)f(ρx)

Hence it follows from (3.63) that at (t0, x0)

2 (er∂ρf − kf)H ≤ er⟨∇f,∇r⟩. (3.64)

By (1.7) we have ρ∂ρf(ρx)− kf(ρx) > 0, which implies that

δ0 = min
(ρ,x)∈[R1,R2]×Sn

(
ρ∂ρf(ρx)− kf(ρx)

)
> 0,

where R1 and R2 are de�ned in Proposition 3.1. Since R1 ≤ ρ(t, x) ≤ R2 by Proposition 3.1,

then er∂ρf − kf ≥ δ0. Thus it follows from (3.64) at (t0, x0)

2δ0H ≤ er⟨∇f,∇r⟩ ≤ R2|∇f ||∇r| = R2|∇f |
√
2
√
H

that is

H(t0, x0) ≤
C2

0
R2

2

2δ2
0

, (3.66)

where

C0 = sup
R1≤|y|≤R2

|∇f(y)|.

It follows from (3.49) and (3.66) that

H(t0, x0) ≤ max

(
max
x∈Sn

H(0, x),
C2

0
R2

2

2δ2
0

)
.

This ends the proof of Proposition 3.3.

4 C2-estimates and proof of the main results

To get C2-estimates we need to controll the principal curvatures.

Proposition 4.1. Suppose that F satis�es conditions (1.3)-(1.6) and that f satis�es conditions

(1.7)-(1.8). Let ρ : [0, T ]× Sn → (0,+∞) be an admissible solution of (2.10). We suppose that
F [ρ0] ≥ 0 if k ≤ 1

0 ≤ −F [ρ0] ≤
kR1

(k + 1)R2

min
R1≤|Y |≤R2

f(Y ) if k > 1,

(4.1)

where the operator F is given by (2.11), k is the homogeneity degree of F , and

R1 = min

(
r1, min

x∈Sn
ρ0(x)

)
, R2 = max

(
r2,max

x∈Sn
ρ0(x)

)
with r1, r2 as in (1.8). Then there exists a positive constant C depending only on f, r1, r2 and ρ0
sucht that

max
(t,x)∈[0,T ]×Sn

max
1≤i≤n

|κi(t, x)| ≤ C,

where κ1, ..., κn are the principal curvatures of the hypersurface Mt parametrized by X(t, x) =
ρ(t, x)x.
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Proof. De�ne the function h : [0, T ]× Sn → R by

h(t, x) = log

max
1≤i≤n

κi(t, x)

⟨X(t, x), ν(t, x)⟩
(4.2)

where κ1, ..., κn are the principal curvatures of the hypersurface Mt parametrized by X(t, x) =
ρ(t, x)x, and ν(t, .) is its outer normal vector. First we shall give an upper bound on the function

h. Let (t0, x0) ∈ [0, T ]× Sn the point where h achieves its maximum on [0, T ]× Sn, that is,

h(t0, x0) = max
(t,x)∈[0,T ]×Sn

h(t, x) = max
(t,x)∈[0,T ]×Sn

log

max
1≤i≤n

κi(t, x)

⟨X(t, x), ν(t, x)⟩
.

We want to prove that

h(t0, x0) ≤ C0, (4.3)

where the constant C0 depends only on f, r1, r2 and ρ0. If t0 = 0, then h(t0, x0) = h(0, x0), and
(4.3) is trivially satis�ed in this case. From now on, we suppose that t0 > 0. Without loss of

generality, we may suppose that x0 is the south pole of Sn. Let S the tangent hyperplane toMt0 at

the point Z0 = X(t0, x0). Then near (t0, Z0), the family of hypersurfacesMt can be represented

as the graph of a smooth function u de�ned on a neighborhood of (t0, Z0) in [0, T ]× S. Since ρ
is an admissible solution of (2.10), then u is an admissible solution of (2.19).

By choosing a new coordinate system in the hyperplane S, with origin at the point Z0, then

in the coordinate parallel to the new ones with centre at the original origin, denoted by x1, ..., xn,

we have

Z0 = (a1, ..., an,−a) , for some constants a1, ..., an, a, with a > 0,

and

X(t, x) = (a1, ..., an,−a) + (x, u(t, x)) with u(t0, 0) = 0.

By formula (2.16) of section 2, we have

ν =
1

v
(Du,−1) (4.4)

and

⟨X, ν⟩ = 1

v

(
a− u+

n∑
k=1

(xk + ak)Dku

)
, (4.5)

where

v = (1+ |Du|2)1/2. (4.6)

By our choice of coordinates we have

u(t0, 0) = 0 (4.7)

and

Du(t0, 0) = (0, ..., 0). (4.8)

By rotating the new x1, ..., xn coordinates, we may suppose that max
1≤i≤n

κi(t0, x0) occurs in the

x1-direction. We have then by using formula (2.17) and (4.8)

max
1≤i≤n

κi(t0, x0) = κ1(t0, x0) =
D11u(t0, 0)

v(t0, 0)(1+ (D1u(t0, 0))
2
)

= D11u(t0, 0).

On a neighborhood of (t0, 0) de�ne the function H by

H = log

(
D11u

φv(1+ (D1u)2)

)
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where

φ = ⟨X, ν⟩ = 1

v

(
a− u+

n∑
k=1

(xk + ak)Dku

)
Thus we have

H(t0, 0) = h(t0, x0) = max
(t,x)∈[0,T ]×Sn

h(t, x). (4.9)

We will give an upper bound on H(t0, 0). By our choice of coordinates we have

D1αu(t0, 0) = 0 for α > 1, (4.10)

so by rotating the x2, ..., xn coordinates, we may suppose that the matrix D2u(t0, 0) is diagonal
and that D11u(t0, 0) > 0.

We have, since H attains a local maximum at (t0, 0), that

DH(t0, 0) = 0 (4.11)

and

∂tH(t0, 0) ≥ 0 (4.12)

since t0 > 0. On the other hand, we have

DαH =
D11αu

D11u
− Dαv

v
− 2D1uD1αu

1+ (D1u)2
− Dαφ

φ

and

Dαφ =
n∑

k=1

(ak + xk)Dαku

v
− φDαv

v
.

But by using (4.8) and (4.10) we have at (t0, 0)

Dαv =
n∑

k=1

DkuDαku

v
= 0,

so

Dαφ = aαDααu

and

DαH =
D11αu

D11u
− aαDααu

φ

which together with (4.11) give at (t0, 0),

D11αu

D11u
− aαDααu

φ
= 0. (4.13)

Differentiating once again, we get at (t0, 0)

Dααv = (Dααu)
2

and

Dα

(
Dαφ

φ

)
=

1

φ

(
Dααu+

n∑
k=1

akDααku

)
− (aαDααu)2

φ2
− (Dααu)

2
.

So

DααH =
D11ααu

D11u
−
(
D11αu

D11u

)2

− 2 (D1αu)
2
+

(aαDααu)2

φ2

− 1

φ

(
Dααu+

n∑
k=1

akDααku

)
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at (t0, 0). And using (4.13) we obtain then

DααH =
D11ααu

D11u
− 2 (D1αu)

2 − 1

a

(
Dααu+

n∑
k=1

akDααku

)
(4.14)

at (t0, 0) for α = 1, ..., n, where we have used the fact that a = φ(t0, 0).

Now if we differentiate equation (2.19) in the x1 direction, we get

D1∂tu = − 1√
1+ |Du|2

(
1

F
− f

) n∑
k=1

DkuDk1u

+

√
1+ |Du|2
F 2

n∑
i,j=1

FijD1aij +
√
1+ |Du|2 (D1f +Dn+1fD1u) .

Differentiating once again in the x1 direction and using (4.7), (4.8) and (4.10) we get at (t0, 0)

D11∂tu = −
(
1

F
− f

)
(D11u)

2
+

1

F 2

n∑
i,j=1

FijD11aij −
2

F 3

 n∑
i,j=1

FijD1aij

2

+
1

F 2

n∑
j,j,r,s=1

Fij,rsD1aijD1ars +D11f +Dn+1fD11u. (4.15)

But since logF is concave, we have

− 2

F 3

 n∑
i,j=1

FijD1aij

2

+
1

F 2

n∑
j,j,r,s=1

Fij,rsD1aijD1ars ≤ 0,

so it follows from (4.15) that at (t0, 0)

D11∂tu ≤ −
(
1

F
− f

)
(D11u)

2
+

1

F 2

n∑
i,j=1

FijD11aij +D11f +Dn+1fD11u (4.16)

Now from the de�nition of the matrix [aij ] in (2.17), we have at (t0, 0) by using (4.7) and (4.8),

D11aij = D11iju− (D11u)
2Diju− 2D1iuD1juD11u,

and since D2u is diagonal at (t0, 0), then we have at this point

D11a11 = D1111u− 3(D11u)
3 (4.17)

and

D11aαα = D11ααu−Dααu(D11u)
2 (4.18)

for α = 2, ..., n. Combining (4.16), (4.17) and (4.18) we obtain, since [Fij ] is diagonal at (t0, 0),

D11∂tu ≤ −
(
1

F
− f

)
(D11u)

2 +
1

F 2

(
n∑

α=1

FααD11ααu− (D11u)
2

n∑
α=2

FααDααu

)

− 3
F11

F 2
(D11u)

3 +D11f +Dn+1fD11u. (4.19)

But from (4.14) we have

D11ααu = D11uDααH + 2D11u (D1αu)
2
+

D11u

a

(
Dααu+

n∑
k=1

akDααku

)
,
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which gives by replacing in (4.19)

D11∂tu ≤ −
(
1

F
− f

)
(D11u)

2 +
D11u

F 2

n∑
α=1

FααDααH − (D11u)2

F 2

n∑
α=1

FααDααu

+
D11u

aF 2

n∑
α=1

FααDααu+
D11u

aF 2

n∑
α,k=1

FααakDααku+D11f +Dn+1fD11u, (4.20)

and since F is homogenous of degree k we have at (t0, 0)

n∑
α=1

FααDααu = kF.

So it follows from (4.20) that at (t0, 0)

D11∂tu ≤ −
(
k + 1

F
− f

)
(D11u)

2 + k
D11u

aF
+

D11u

F 2

n∑
α=1

FααDααH

+
D11u

aF 2

n∑
α,k=1

FααakDααku+D11f +Dn+1fD11u. (4.21)

SinceH achieves a local maximum at (t0, 0), then the matrix [DijH] is negative semi-de�nite at

(t0, 0), and since [Fij ] is positive semi-de�nite and diagonal at (t0, 0), then we have at (t0, 0)

n∑
α=1

FααDααH ≤ 0.

Then using the fact that D11u(t0, 0) > 0, we get from (4.21) at (t0, 0),

D11∂tu ≤ −
(
k + 1

F
− f

)
(D11u)

2+k
D11u

aF
+

D11u

aF 2

n∑
α,k=1

FααakDααku+D11f+Dn+1fD11u.

(4.22)

Let us prove that the �rst term in the right side of (4.22) is negative,that is

k + 1

F
− f ≥ 0. (4.23)

If 0 < k ≤ 1, then by Proposition 3.2, we have a

1

F
− f ≥ 0 (4.24)

since 1

F − f = ρ√
ρ2+|∇ρ|2

∂tρ ≥ 0. It is clear that (4.24) implies (4.23) since F > 0. Now if

k > 1, then by Proposition 3.2 we have

0 ≤ −
(
1

F
− f

)
= − ρ√

ρ2 + |∇ρ|2
∂tρ ≤ |∂tρ| ≤

R2

R1

max
x∈Sn

∣∣F [ρ0](x)
∣∣ ,

that is,
1

F
≥ f − R2

R1

max
x∈Sn

∣∣F [ρ0](x)
∣∣. (4.25)

Now it is easy to see that (4.23) is a consequence of (4.25) and the second part of condition 4.1

in Proposition 4.1. Thus it follows from (4.22) and (4.23) that at (t0, 0),

∂tD11u ≤ k
D11u

aF
+

D11u

aF 2

n∑
α,k=1

FααakDααku+D11f +Dn+1fD11u. (4.26)
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On the other hand, since at (t0, 0) we have

Dkaij = Dijku,

then by differentiating equation (2.19) we get at (t0, 0)

Dk∂tu =
1

F 2

n∑
i,j=1

FijDijku+Dkf =
1

F 2

n∑
α=1

FααDααku+Dkf (4.27)

since [Fij ] is diagonal at (t0, 0).

Now differentiating H with respect to t, we see that at (t0, 0)

∂tH =
∂tD11u

D11u
− ∂tφ

φ
=

∂tD11u

D11u
+

1

a
∂tu− 1

a

n∑
k=1

akDk∂tu

and using equation (2.18) and (4.27) we obtain then at (t0, 0)

∂tH =
∂tD11u

D11u
− 1

a

(
1

F
− f

)
− 1

aF 2

n∑
α,k=1

FααakDααku− 1

a

n∑
k=1

akDkf. (4.28)

Thus we obtain from (4.26) and (4.28) at (t0, 0)

∂tH ≤ k − 1

aF
+

D11f

D11u
+Dn+1f − 1

a

n∑
k=1

akDkf +
1

a
f (4.29)

Since by (4.12) we have ∂tH(t0, 0) ≥ 0, then it follows from (4.29) that

0 ≤ k − 1

aF
+

D11f

D11u
+Dn+1f − 1

a

n∑
k=1

akDkf +
1

a
f. (4.30)

And since

Dn+1f(a1, .., an,−a)− 1

a

n∑
k=1

akDkf(a1, .., an,−a) = −1

a
ρ∂ρf(a1, .., an,−a),

then (4.30) becomes

0 ≤ k − 1

aF
+

D11f

D11u
− 1

a
ρ∂ρf +

1

a
f (4.31)

But by Proposition 3.2 we have ∂tρ ≥ 0 if k ≤ 1, and ∂tρ ≤ 0 if k > 1. This implies that
1

F (aij)
− f(ρx) ≥ 0 if k ≤ 1, and

1

F (aij)
− f(ρx) ≤ 0 if k > 1. That is,

k − 1

F (aij)
≤ (k − 1)f(ρx). (4.32)

It follows from (4.31) and (4.32) that at (t0, 0)

1

a
(ρ∂ρf − kf) ≤

D11f

D11u
(4.33)

Since f satis�es (1.7), then ρ∂ρf − kf > 0, which implies

δ0 = min
(ρ,x)∈[R1,R2]×Sn

(
ρ∂ρf(ρx)− kf(ρx)

)
> 0,

and since R1 ≤ ρ(t, x) ≤ R2 by Proposition 3.1, then ρ∂ρf − kf ≥ δ0. Thus we get from (4.33)

at (t0, 0)



32 Ali Fardoun and Rachid Regbaoui

δ0
a

≤ D11f

D11u
≤ C

D11u
, (4.34)

where

C = ∥f∥C2(AR
1
,R

2
), with AR1,R2

=
{
X ∈ Rn+1 : R1 ≤ |X| ≤ R2

}
.

We recall that by de�nition of H , we have D11u = aeH at (t0, 0). It follows from (4.34) that

eH(t0,0) ≤ δ−1

0
C

or equivalently

H(t0, 0) ≤ log
C

δ0
. (4.35)

Thus the estimate (4.3) is proved by taking

C0 = max

(
log

C

δ0
, max

x∈Sn
h(0, x)

)
.

(4.3) implies then, for any (t, x) ∈ [0, T ]× Sn,

h(t, x) ≤ C0. (4.36)

We have by (4.2)

max
1≤i≤n

κi = ⟨X, ν⟩eh

and since by Proposition 3.1 we have

⟨X, ν⟩ = ρ2√
ρ2 + |∇ρ|2

≤ ρ ≤ R2,

then we get from (4.36) the upper bound

max
1≤i≤n

κi ≤ R2e
C0 . (4.37)

Now, to get a lower bound on the principal curvatures, it suf�ces to observe that κ1+· · ·+κn > 0

since κ = (κ1, ..., κn) ∈ G, and then use the upper bound (4.37). Indeed, we have for all

i = 1, ..., n,
0 < κ1 + · · ·+ κn ≤ κi + (n− 1)R2e

C0

so

κi ≥ −(n− 1)R2e
C0 .

The proof of Proposition 4.1 is complete.

The previous proposition allows us to get higher order estimates on our solutions.

Proposition 4.2. Let ρ : [0, T ]× Sn → (0,+∞) be an admissible solution of (2.10) as in Propo-

sition 4.1. Then for any m ∈ N, there exist two positive constants Cm and λm depending only

on m, f, F, r1, r2 and ρ0 such that

∥ρ∥Cm([0,T ]×Sn) ≤ Cm (4.38)

and for all t ∈ [0, T ],
∥∂tρ(t, .)∥Cm(Sn) ≤ Cme−λmt. (4.39)

Moreover, there exists a compact setK ⊂ M(G) depending only on f, F, r1, r2 and ρ0, sucht that
for any (t, x) ∈ [0, T ]× Sn,

[aij(t, x)] ∈ K , (4.40)

where the cone M(G) is de�ned in section 2, and the matrix [aij ] is given by (2.4) in section 2.
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Proof. The principal curvatures κi of the hypersurface Mt parametrized by X(t, x) = ρ(t, x)x,
are the eigenvalues of the matrix [aij ] (see section 2) de�ned by

[aij ] = [gij ]
1

2 [hij ][g
ij ]

1

2 (4.41)

where [gij ]
1

2 is the positive square root of [gij ] which is given by

[gij ]
1

2 = ρ−1

[
δij −

∇iρ∇jρ√
ρ2 + |∇ρ|2(ρ+

√
ρ2 + |∇ρ|2)

]
(4.42)

and [hij ] is the matrix representing the second fondamental form ofMt, given by

hij =
(
ρ2 + |∇ρ|2

)− 1

2 (ρ2δij + 2∇iρ∇jρ− ρ∇ijρ). (4.43)

It is clear from Proposition 4.1, Proposition 3.1 and Proposition 3.3 by using (4.41), (4.42) and

(4.43) that

sup
t∈[0,T ]

∥ρ(t, .)∥C2(Sn) ≤ C, (4.44)

where C depends only on f, r1, r2 and ρ0. In order to get higher order estimates, let us �rst prove

(4.40). By Proposition 3.2 we have

|∂tρ| ≤ Ce−λt ≤ C, (4.45)

where the constant C depends only on f, r1, r2 and ρ0. Since ρ satis�es (2.10), then it follows

from (4.45)

1

F (aij)
− f(ρx) ≤

∣∣∣∣ 1

F (aij)
− f(ρx)

∣∣∣∣
√
ρ2 + |∇ρ|2

ρ
= |∂tρ| ≤ C

that is,
1

F (aij)
≤ f(ρx) + C ≤ C0

or equivalently

F (aij) ≥
1

C0

, (4.46)

where

C0 = C + max
R1≤|X|≤R2

|f(X)| .

Since F ≡ 0 on ∂M(G), it follows from (4.46) that there exists a constant δ0 > 0 depending only

on f, F,R1, R2 and ρ0 such that

dist
(
[aij ], ∂M(G)

)
≥ δ0, (4.47)

where ∂M(G) is the boundary of the cone M(G) and dist
(
[aij ], ∂M(G)

)
is the distance of [aij ]

to ∂M(G). It is clear from (4.47) that there exists a compact set K ⊂ M(G) depending only on

f, F, r1, r2 and ρ0 such that [aij ] ∈ K. Thus (4.40) is proved.
Let us now prove the estimates (4.38) and (4.39). Since F satis�es (1.3)(or equivalently

(2.6)), it follows from (4.40) and the estimate (4.44) that equation (2.10) is uniformly parabolic.

Since by hypothesis the function logF is concave, then we can apply a result of B. Andrews

[2] (Theorem 6, p.3 ), which is a generalisation of the result of N. Krylov [7] on fully nonlinear

parabolic equations, to obtain the estimate

∥∂tρ∥Cα([0,T ]×Sn) + ∥∇ijρ∥Cα([0,T ]×Sn) ≤ C, (4.48)

where Cα([0, T ]×Sn) is the parabolic Hölder's space, and where the constants C > 0, α ∈ (0, 1)
depend only on f, F, r1, r2 and ρ0. The higher order estimates (4.38) follows from (4.48) and

the standard theory of linear parabolic equations (see [8]). In order to prove (4.39) we use
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the following well known interpolation inequality, which is valid on any compact Riemannian

manifold M ,

∥∇u∥2L∞(M) ≤ 4∥u∥L∞(M)∥∇2u∥L∞(M), u ∈ C∞(M), (4.49)

where ∇u and ∇2u denote respectively the gradient and the hessian of u. It suf�ces to apply

(4.49) �rst to u = ∂tρ and iterate it on the spatial higher order derivatives of ∂tρ and using (4.38)
and (3.11) to get (4.39). This achieves the proof of Proposition 4.2.

Now we are in position to prove our main result.

Proof of Theorem 1.1 and Theorem 1.2 . LetX0(x) = ρ0(x)x satis�es conditions (1.10) in The-

orem 1.1 or conditions (1.13) in Theorem 1.2. Let X : [0, T ] × Sn → Rn+1 a local solution of

(1.2). As we saw in section 2, X is given by

X(t, x) = ρ(t, φ(t, x))φ(t, x), (t, x) ∈ [0, T ]× Sn (4.50)

where ρ satis�es (2.10) and φ(t, .) : Sn → Sn is a diffeomorphism satisfying the ODE{
∂tφ(t, x) = Z(t, φ(t, x))

φ(0, x) = x,
(4.51)

with

Z(t, y) = −
(

1

F (aij(t, y))
− f(ρ(t, y)y)

)
∇ρ(t, y)

ρ
√
|∇ρ(t, y)|2 + ρ2(t, y)

= − ∂tρ(t, y)∇ρ(t, y)

|∇ρ(t, y)|2 + ρ2(t, y)
, (t, y) ∈ [0, T ]× Sn. (4.52)

Since X0 satis�es condition (1.10) in Theorem 1.1 or condition (1.13) in Theorem 1.2, then

it is easy to check that the hypothesis of Proposition 4.1(and then Proposition 4.2) concerning ρ0
are satis�ed. We can then apply Proposition 4.2 to the function ρ given above. If we differentiate
equation (4.51) and use the estimates (4.38)-(4.39) in Proposition 4.2, then it is not dif�cult to

see that for any m ∈ N, we have

∥φ∥Cm([0,T ]×Sn, Sn) ≤ Cm (4.53)

and for any t ∈ [0, T ],
∥∂tφ(t, .)∥Cm(Sn, Rn+1) ≤ Cme−λmt, (4.54)

where Cm and λm are positive constants depending only on m, f, F, r1, r2 and X0. It follows

from (4.50) by using the estimates (4.38)-(4.39) in Proposition 4.2 and (4.53)-(4.54) that, for

any m ∈ N,
∥X∥Cm([0,T ]×Sn, Rn+1) ≤ Cm (4.55)

and for all t ∈ [0, T ],
∥∂tX(t, .)∥Cm(Sn, Rn+1) ≤ Cme−λmt, (4.56)

with new constants Cm and λm depending only on m, f, F, r1, r2 and X0. Also by Proposition

4.2 there exists a compact set K ⊂ M(G) depending only on m, f, F, r1, r2 and X0 such that for

any (t, x) ∈ [0, T ]× Sn, we have

[aij(t, x)] ∈ K ⊂ M(G) , (4.57)

where the matrix [aij ] is given by (2.4). Since the constant Cm in (4.55) and the compact set K
in (4.57) are independant of T , then X can be extended to [0,+∞) as a solution of (1.2). The

estimates (4.55), (4.56) and (4.57) become then

∥X∥Cm([0,+∞)×Sn, Rn+1) ≤ Cm (4.58)
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∥∂tX(t, .)∥Cm(Sn, Rn+1) ≤ Cme−λmt for all t ∈ [0,+∞) (4.59)

and

[aij(t, x)] ∈ K ⊂ M(G) for all t ∈ [0,+∞). (4.60)

Now it is clear from (4.58) and (4.59) that there exists a mapX∞ ∈ C∞(Sn,Rn+1) such that
X(t, .) → X∞ as t → +∞ in Cm(Sn,Rn+1) for all m ∈ N, and satisfying

∥X(t, .)−X∞∥Cm(Sn, Rn+1) ≤ Cme−λmt for all t ∈ [0,+∞).

Since X(t, .) is a smooth starshaped embedding, then it is easy to see that X∞ is also a smooth

starshaped embedding, and from (4.60) we deduce that the principal curvatures of X∞ lie in G.

By passing to the limit in equation (1.2) and using (4.59), we see that X∞ satis�es

1

F (κ(X∞))
− f(X∞) = 0.

This achieves the proofs of Theorem 1.1 and Theorem 1.2.

Proof of Corollary 1.1 . As in Remark 1.1, if we take X0(x) = rx, where 0 < r ≤ r1 with

r1 as in (1.8), then by using (1.7) and (1.8) one easily checks that condition (1.10) in Theorem

1.1 is satis�ed by X0. Thus the evolution problem (1.2) admits a global solution X(t, .) which
converges as t → +∞, to a solution X∞ of

1

F (κ(X∞))
= f(X∞) (4.61)

which is smooth starshaped embedding satisfying κ(X∞) ∈ G. It remains then to prove thatX∞
is the unique starshaped solution of (4.61) such that κ(X∞) ∈ G. Let X1 and X2 two starshaped

solutions of (4.61) such that κ(Xl) ∈ G, l = 1, 2. We have then

1

F (κ(Xl))
= f(Xl) , l = 1, 2. (4.62)

Let ρl (l = 1, 2) be the radial function of Xl, and set ul(x) = log ρl(x). Then we have by

using formula (2.4) of section 2,

1

F (aij(ul))
= f(eulx) , l = 1, 2, (4.63)

where the matrix [aij(ul)] is given by

[aij(ul)] =
e−ul√

1+ |∇ul|2
[γij ][bij ][γij ] (4.64)

with 
bij = δij +∇iul∇jul −∇ijul

γij = δij −
∇iul∇jul√

1+ |∇ul|2
(
1+

√
1+ |∇ul|2

) , l = 1, 2.
(4.65)

We shall prove that for any x ∈ Sn, we have

u1(x) ≥ u2(x). (4.66)

It is clear that (4.66) would imply that u1 = u2, and then ρ1 = ρ2. To prove (4.66) de�ne a

function u : Sn → R by u(x) = u1(x) − u2(x), and let x0 ∈ Sn a point where u achieves its
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minimum. Then we have at x0 that ∇u = 0 and the matrix ∇2u is positive semi-de�nite, that is,

∇u1 = ∇u2 and ∇2u1 ≥ ∇2u2 (in the sense of operators) at x0. This implies by using (4.64)

and (4.65) that at x0,
eu1 [aij(u1)] ≤ eu2 [aij(u2)] (4.67)

in the sense of operators. Since the function F is monotone (by (1.3) or equivalently (2.6)) and

homogenous of degree k, it follows from (4.63) and (4.67) that

e−ku1(x0)f(eu1(x0)x0) ≥ e−ku2(x0)f(eu2(x0)x0)

which implies by using (1.7) that u1(x0) ≥ u2(x0) or equivalently u(x0) ≥ 0. This proves (4.66)

and the proof of Corollary 1.1 is complete.
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