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Abstract. For a ring endomirphism α, we introduce the class of central α-rigid rings, which
are a generalization of α-rigid rings, and investigate their properties. For a ring R, we show

that R is central α-rigid if and only if RS−1 is central ᾱ-rigid. Moreover, we give an example

to show that if R is central α-rigid, then Tn(R) is not necessary central ᾱ-rigid, but Sn(R) is
central ᾱ-rigid.

1 Introduction

Throughout this article, R denotes an associative ring with identity and α be an endomorphism

of a ring R. For notation R[x], R[x, x−1], Tn(R), C(R) and eij denote, the polynomial ring over

R, the Laurent polynomial ring over R, its upper triangular matrix ring, the center of a ring R
and the matrix with (i, j)-entry 1 and elsewhere 0, respectively. A ring is reduced if it has no

nonzero nilpotent elements. According to Krempa [5], an endomorphism α of a ring R is called

to be rigid if aα(a) = 0 implies a = 0 for a ∈ R. We call a ring R α-rigid if there exists a rigid

endomorphism α of R. Note that any rigid endomorphism of a ring is a monomorphism, and

α-rigid rings are reduced rings by Hong et al. [2]. Properties of α-rigid rings have been studied

in Krempa [5, 2, 1]. So far α-rigid rings are generalized in several forms [7, 6, 4, 3].

Motivated by the above results, we investigate a generalization of α-rigid rings. A ring R
is called a central α-rigid ring if for any a, b ∈ R, aα(a) = 0 implies a ∈ C(R). Clearly, all

commutative rings and α-rigid rings are central α-rigid.

2 Central α-rigid rings

In this section, the central α-rigid rings are introduced as a generalization of α-rigid rings.

De�nition 2.1. Let α be an endomorphism of a ring R. The ring R is called central α-rigid if for
any a ∈ R, aα(a) = 0 implies a ∈ C(R).

It is clear that α-rigid rings are central α-rigid, but the converse is not always true by the

following examples.

Example 2.2. LetR = R1⊕R2, whereRi is a commutative ring for i = 1, 2. Let α : R −→ R be

an automorphism de�ned by α((a, b)) = (b, a), then (1, 0)α(1, 0) = 0, but (1, 0) ̸= 0. Therefore,

R is not α-rigid. But R is central α-rigid, since R is commutative.

Example 2.3. Let Z4 be the ring of integers modulo 4. Consider a ring R =
{(

ā b̄
0 ā

)∣∣∣ā, b̄ ∈ Z4

}
and α : R −→ R be an endomorphism de�ned by α

((
ā b̄
0 ā

))
=

(
ā −b̄
0 ā

)
. The ring R is not

α-rigid. In fact
(
2̄ 0̄

0 2̄

)
α
((

2̄ 0̄

0 2̄

))
= 0 but

(
2̄ 0̄

0 2̄

)
̸= 0. But it can be easily checked that R is

commutative and so, it is central α-rigid ring.

The subrings of central α-rigid rings are central α-rigid. LetRk be a ring, where k ∈ Z, αk an

endomorphism of Rk and let R =
∏

k∈Z Rk. Then the map α : R −→ R de�ned by α((ak)) =
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(αk(ak)) is an endomorphism of R and therefore Rk is central αk−rigid for each k ∈ Z if and

only if R =
∏

k∈Z Rk is central α−rigid. As a result, for any idempotent e2 = e we have eR and

(1− e)R are central α-rigid if and only if R is central α-rigid, since R = eR⊕ (1− e)R.

Proposition 2.4. Let α be an endomorphism of a ring R. Let S be a ring and φ : R −→ S an

isomorphism. Then R is central α-rigid if and only if S is central φαφ−1 -rigid.

Proof. Let α′ = φαφ−1. Clearly, α′ is an endomorphism of S. Suppose that a′ = φ(a), for
a ∈ R. Since φ is an isomorphism, a′α′(a′) = 0 in S if and only if aα(a) = 0 in R and so

a ∈ C(R) if and only if a′ ∈ C(S). Thus R is central α-rigid if and only if S is central φαφ−1-

rigid. 2

Let α be an endomorphism of a ring R. The endomorphism α of R is extended to the endo-

morphism ᾱ : Tn(R) −→ Tn(R) de�ned by ᾱ((aij)) = (α(aij)). The following example shows

that if R is central α-rigid, then T2(R) is not necessary central ᾱ-rigid.

Example 2.5. Let R = Z4 ⊕ Z4 and α : R −→ R be an automorphism de�ned by α((a, b)) =
(b, a). Then the ring T2(R) is not central ᾱ-rigid. In fact( (2,2) (2,0)

(0,0) (1,0)

)
α
(( (2,2) (2,0)

(0,0) (1,0)

))
= 0

but
( (2,2) (2,0)
(0,0) (1,0)

)
/∈ C(T2(R)). But R is central α-rigid, since it is commutative.

Theorem 2.6. Let α be an endomorphism of a ring R. Then R is central α-rigid if and only if

Sn(R) =

{
a1 0 . . . 0

0 a2 . . . 0
...

...
. . .

...

0 0 . . . an

 |a1, a2, ..., an ∈ R

}
is central ᾱ-rigid for any n ≥ 1.

Proof. Suppose R is central α-rigid. Let A =


a1 0 . . . 0

0 a2 . . . 0
...

...
. . .

...

0 0 . . . an

 ∈ Sn(R) be such that

Aᾱ(A) = 0. Therefore aiα(ai) = 0 for i = 1, 2, ..., n. Hence ai ∈ C(R), since R is central

α-rigid, and so A ∈ C(Sn(R)), as desired.
Conversely, let aα(a) = 0 for any a ∈ R. Therefore ae11α(ae11) = 0. Hence ae11 ∈

C(Sn(R)), since Sn(R) is central α-rigid, and so a ∈ C(R), as desired. 2

Recall that if α is an endomorphism of a ring R, then the map R[x] −→ R[x] de�ned by∑m
i=0

aix
i 7→

∑m
i=0

α(ai)xi is an endomorphism of the polynomial ring R[x] and clearly this

map extends α. We shall also denote the extended map R[x] −→ R[x] by α and the image of

f ∈ R[x] by α(f). The ringR[x] is called linear central α-rigid if for any f(x) = a0+a1x ∈ R[x],
f(x)α(f(x)) = 0 implies that f(x) ∈ C(R[x]). Now we have the following.

Theorem 2.7. Let α be an endomorphism of a ring R. Then R is central α-rigid if and only if

R[x] is linear central α-rigid.

Proof. Assume that R[x] is linear central α-rigid. Then R is central α-rigid as a subring of

R[x]. Conversely, assume that R is central α-rigid and f(x) = a0 + a1x ∈ R[x] such that

f(x)α(f(x)) = 0. Then a0α(a0) = 0 and a1α(a1) = 0 and so a0, a1 ∈ C(R), since R is central

α-rigid. Therefore, f(x) ∈ C(R[x]) and hence R[x] is linear central α-rigid. 2

The following example, shows that there exists a non-identity endomorphism α of a ring R
such that R/I is central ᾱ-rigid and as a ring I is central α-rigid for any nonzero proper ideal I
of R, but R is not central α-rigid.
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Example 2.8. Let F be a �eld and consider a ring R =
(
F F
0 F

)
and an endomorphism α of R

de�ned by α
((

a b
0 c

))
=

(
a −b
0 c

)
. Notice

(
0 1

0 0

)
α
(
0 1

0 0

)
= 0, but

(
0 1

0 0

)
/∈ C(R). Thus R is not

central α-rigid. Consider the ideal I =
(
F F
0 0

)
of R. Hence R/I is central α-rigid because of

R/I ∼= F .

For an ideal I of R, if α(I) ⊆ I then ᾱ : R/I −→ R/I de�ned by ᾱ(a+ I) = α(a) + I is an
endomorphism of a factor ring R/I . The homomorphic image of a central α-rigid ring need not
be central α-rigid. Consider the following example.

Example 2.9. Let D be a division ring, R = D[x, y, z] and I = ⟨z2⟩ where zx ̸= xz. Let

α : R −→ R be an endomorphism de�ned by α(a1 + a2x+ a3y+ a4z) = a1 + a2y+ a3x+ a4z,
for any ai ∈ D. Since R is domain, R is central α-rigid. On the other hand, (z+ I)ᾱ(z+ I) = I
but z + I does not commute with x+ I . Hence R/I is not central ᾱ-rigid.

Let α be an automorphism of a ring R. Suppose that there exists the classical right quotient
ring Q(R) of R. Then for any ab−1 ∈ Q(R) where a, b ∈ R with b regular, the induced map

ᾱ : Q(R) −→ Q(R) de�ned by ᾱ(ab−1) = α(a)α(b)−1 is also an automorphism. Let S denote

a multiplicatively closed subset of a ring R consisting of central regular elements and let RS−1

be the localization of R at S.

Theorem 2.10. Let α be an automorphism of a ring R. Then R is central α-rigid, if and only if

RS−1 is central ᾱ-rigid.

Proof. Suppose that R is central α-rigid. Let (as−1)ᾱ(as−1) = 0, for any (as−1) ∈ RS−1.

Let as−1 = c−1a′ with c regular element in R. Then we have (c−1a′)ᾱ(c−1a′) = 0. Therefore,

a′α(a′) = 0. Since R is central α-rigid, a′ ∈ C(R). and so as−1 is central in R. Thus RS−1 is

central ᾱ-rigid. Conversely, assume that RS−1 is central ᾱ-rigid ring. Then R is central α-rigid
as a subring of RS−1. 2

Corollary 2.11. LetR be a ring and α an automorphism ofR. Then the following are equivalent:

(1)R is central α-rigid.
(2)R[x] is linear central α-rigid.
(3)R[x, x−1] is linear central α-rigid.

Proof. Let S = {1, x, x2, x3, x4, · · · }. Then S is a multiplicatively closed subset of R[x] consist-
ing of central regular elements. Then the proof follows from Theorem 2.7 and Theorem 2.10. 2

Theorem 2.12. The class of central α-rigid rings is closed under direct limits with injective

maps.

Proof. Let D = {Ri, αij} be direct system of central αij−rigid rings Ri, for i ∈ I and ring

homomorphisms αij : Ri −→ Rj for each i ≤ j satisfying αij(1) = 1, where I is a directed par-
tially ordered set. Set R = limRi be a direct limit ofD and let α : R −→ R be an automorphism

de�ned by α(limRi) = limαij(Ri).Also Li : Ri −→ R and Ljαij = Li where every Li is injec-

tive. We will show that R is an central α-rigid ring. Take a, b ∈ R. Then a = Li(ai), b = Lj(bj)
for some i, j ∈ I and there is k ∈ I such that i ≤ k, j ≤ k. De�ne

a+ b = Lk(αik(ai) + αjk(bj)) and ab = Lk(αik(ai)αjk(bj))

where αik(ai) and αjk(bj) are in Rk. Then R forms a ring with 0 = Li(0) and 1 = Li(1). Now
let a ∈ R be nonzero element such that aα(a) = 0. There is k ∈ I such that a ∈ Rk. Hence we

get aαij(a) = 0 in Rk. Since Rk is central αij−rigid, so a ∈ C(Rk). Therefore ack = cka, for
any ck ∈ Ri. Put c = Lk(ck). Then ac = ca, for any c ∈ R. Thus R is central α-rigid ring. 2
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