ON THE STABILITY OF A FUNCTIONAL EQUATION†

Prem Nath and Dhiraj Kumar Singh

Communicated by F. Allan

MSC 2010 Classifications: 39B22; 39B52; 39B82.

Keywords and phrases: Functional equation, additive mapping, multiplicative mapping, stability.

Abstract. In this paper, we study the stability of the functional equation

\[\sum_{i=1}^{n} \sum_{j=1}^{m} T(p_iq_j) = \sum_{i=1}^{n} T(p_i) \sum_{j=1}^{m} T(q_j) + (m - n)T(0) \sum_{j=1}^{m} T(q_j) + m(n - 1)T(0) \]

in which \(T : I \to \mathbb{R} \), \((p_1, \ldots, p_n) \in \Gamma_n \), \((q_1, \ldots, q_m) \in \Gamma_m \), \(n \geq 3 \), \(m \geq 3 \) being fixed integers.

1 Introduction

For \(n = 1, 2, \ldots \); let \(\Gamma_n = \{(p_1, \ldots, p_n) : p_i \geq 0, \; i = 1, \ldots, n; \sum_{i=1}^{n} p_i = 1 \} \) denote the set of all \(n \)-component discrete probability distributions with nonnegative elements.

A mapping \(a : \mathbb{R} \to \mathbb{R} \) is said to be additive on \(I \) or on the unit triangle \(\Delta = \{(x, y) : 0 \leq x \leq 1, \; 0 \leq y \leq 1, \; 0 \leq x + y \leq 1 \} \) if it satisfies the equation \(a(x + y) = a(x) + a(y) \) for all \((x, y) \in \Delta; \; I = \{x \in \mathbb{R} : 0 \leq x \leq 1 \} \), \(\mathbb{R} \) denoting the set of all real numbers. It is known [1] that if a mapping \(a : I \to \mathbb{R} \) is additive on the unit triangle \(\Delta \), then there exists one and only one mapping \(A : \mathbb{R} \to \mathbb{R} \) which is an extension of \(a : I \to \mathbb{R} \) in the sense that \(A(x) = a(x) \) for all \(x \in I \) and is additive on \(\mathbb{R} \), that is \(A(x + y) = A(x) + A(y) \) for all \(x, y \in \mathbb{R} \).

A mapping \(M : I \to \mathbb{R} \) is said to be multiplicative if \(M(pq) = M(p)M(q) \) for all \(p \in I \), \(q \in I \).

Suppose a mapping \(T : I \to \mathbb{R} \) satisfies the functional equation

\[\sum_{i=1}^{n} \sum_{j=1}^{m} T(p_iq_j) = \sum_{i=1}^{n} T(p_i) \sum_{j=1}^{m} T(q_j) + (m - n)T(0) \sum_{j=1}^{m} T(q_j) + m(n - 1)T(0) \] \hspace{1cm} (1.1)

for all \((p_1, \ldots, p_n) \in \Gamma_n \) and \((q_1, \ldots, q_m) \in \Gamma_m \); \(n \geq 3 \), \(m \geq 3 \) being fixed integers.

The functional equation (1.1) has been considered by Nath and Singh [6]. They determined its general solutions for fixed integers \(n \geq 3 \), \(m \geq 3 \).

The functional equation (1.1) plays an important role in finding the general solutions of several multiplicative and nonmultiplicative type sum form functional equations with at least two unknown mappings (see [6] to [11]). Also, their solutions are related to the Shannon [13] entropy and the entropies of degree \(\alpha \) [2].

Result 1.1 ([6]). Let \(n \geq 3 \), \(m \geq 3 \) be fixed integers. If a mapping \(T : I \to \mathbb{R} \) satisfies the functional equation (1.1) for all \((p_1, \ldots, p_n) \in \Gamma_n \), \((q_1, \ldots, q_m) \in \Gamma_m \), then either

\[T(p) = a(p) + T(0) \]

where \(a : \mathbb{R} \to \mathbb{R} \) is an additive mapping with

\[a(1) = \begin{cases} -mT(0) & \text{if } T(1) + (m - 1)T(0) \neq 1 \\ 1 - mT(0) & \text{if } T(1) + (m - 1)T(0) = 1 \end{cases} \]

or

\[T(p) = M(p) - b(p) + T(0) \]

in which \(b : \mathbb{R} \to \mathbb{R} \) is an additive mapping with \(b(1) = mT(0) \) and \(M : I \to \mathbb{R} \) is a nonadditive multiplicative mapping with \(M(0) = 0 \), \(M(1) = 1 \).

†Corresponding author: Dhiraj Kumar Singh
This paper deals with the stability of the sum form functional equation (1.1). For the meaning of stability of a functional equation, see Hyers and Rassias [3]. By the stability problem for the equation (1.1), we mean the following: Let \(n \geq 3, m \geq 3 \) be fixed integers and \(0 \leq \epsilon \in \mathbb{R} \) be a fixed real number. Find all mappings \(T : I \to \mathbb{R} \) satisfying the functional inequality
\[
| \sum_{i=1}^{n} \sum_{j=1}^{m} T(p_{i}q_{j}) - \sum_{i=1}^{n} T(p_{i}) \sum_{j=1}^{m} T(q_{j}) - (m-n)T(0) \sum_{j=1}^{m} T(q_{j}) - m(n-1)T(0) | \leq \epsilon \] (1.2)
for all \((p_{1}, \ldots, p_{n}), (q_{1}, \ldots, q_{m}) \in \Gamma_{n}\).

Now, we mention below some results needed for the development of the main result of this paper.

Result 1.2 ([4]). Let \(\epsilon \) be a given real constant. Suppose \(\phi : I \to \mathbb{R} \) is a mapping which satisfies the functional equation \(\sum_{i=1}^{n} \phi(p_{i}) = c \) for all \((p_{1}, \ldots, p_{n}) \in \Gamma_{n}, n \geq 3 \) a fixed integer. Then there exists an additive mapping \(a : \mathbb{R} \to \mathbb{R} \) such that \(\phi(p) = a(p) - \frac{1}{n}a(1) + \frac{c}{n} \) for all \(p \in I \).

Result 1.3 ([5]). Let \(n \geq 3 \) be a fixed integer and \(\epsilon \) be a fixed nonnegative real number. Suppose a mapping \(\psi : I \to \mathbb{R} \) satisfies the functional inequality \(| \sum_{j=1}^{m} \psi(p_{j}) | \leq \epsilon \) for all \((p_{1}, \ldots, p_{n}) \in \Gamma_{n} \). Then there exist an additive mapping \(A : \mathbb{R} \to \mathbb{R} \) and a bounded mapping \(B : \mathbb{R} \to \mathbb{R} \) satisfying the conditions \(B(0) = 0 \) and \(|B(p)| \leq 18\epsilon \) such that \(\psi(p) - \psi(0) = A(p) + B(p) \) for all \(p \in I \).

2 The Main Result

Theorem 2.1. Let \(n \geq 3, m \geq 3 \) be fixed integers and \(\epsilon \) be a given nonnegative real constant. Suppose the mapping \(T : I \to \mathbb{R} \) satisfies the inequality (1.2) for all \((p_{1}, \ldots, p_{n}) \in \Gamma_{n} \) and \((q_{1}, \ldots, q_{m}) \in \Gamma_{m} \). Then either
\[
T(p) = a(p) + b(p) \tag{2.1}
\]
for all \(p \in I \) or
\[
T(p) = M(p) - B(p) + T(0) \tag{2.2}
\]
for all \(p \in I \) where \(a : \mathbb{R} \to \mathbb{R} \), \(B : \mathbb{R} \to \mathbb{R} \) are additive mappings; \(B(1) = mT(0) \); \(b : \mathbb{R} \to \mathbb{R} \) is a bounded mapping; and \(M : I \to \mathbb{R} \) is a multiplicative mapping which is not additive and \(M(0) = 0 \), \(M(1) = 1 \).

Proof.
Let us write (1.2) in the form
\[
| \sum_{i=1}^{n} \left(\sum_{j=1}^{m} T(p_{i}q_{j}) - T(p_{i}) \sum_{j=1}^{m} T(q_{j}) - (m-n)T(0) \sum_{j=1}^{m} T(q_{j}) - m(n-1)T(0)p_{i} \right) | \leq \epsilon.
\]
By Result 1.3, there exist a mapping \(A_{1} : \mathbb{R} \times \Gamma_{m} \to \mathbb{R} \) additive in the first variable and a bounded mapping \(b_{1} : \mathbb{R} \times \Gamma_{m} \to \mathbb{R} \) with \(b_{1}(0; q_{1}, \ldots, q_{m}) = 0 \) and \(|b_{1}(x; q_{1}, \ldots, q_{m})| \leq 18\epsilon \) for all \(x \in \mathbb{R} \) such that
\[
\sum_{j=1}^{m} T(p_{j}q_{j}) - T(p_{j}) \sum_{j=1}^{m} T(q_{j}) - (m-n)T(0) p \sum_{j=1}^{m} T(q_{j}) - m(n-1)T(0)p_{j} \]
\[
- mT(0) + T(0) \sum_{j=1}^{m} T(q_{j}) = A_{1}(p; q_{1}, \ldots, q_{m}) + b_{1}(p; q_{1}, \ldots, q_{m}) \tag{2.3}
\]
for all \(p \in I \). Let \(x \in I \) and \((r_{1}, \ldots, r_{m}) \in \Gamma_{m} \). Putting successively \(p = xr_{t}, t = 1, \ldots, m \) in
\[(2.3)\]; adding the resulting \(m\) equations and using the additivity of \(A_1\), we obtain

\[
\sum_{t=1}^{m} \sum_{j=1}^{m} T(xr_t q_j) - \sum_{t=1}^{m} T(xr_t) \sum_{j=1}^{m} T(q_j) - (m - n) T(0) x \sum_{j=1}^{m} T(q_j)
- m(n - 1)T(0)x - m^2T(0) + mT(0) \sum_{j=1}^{m} T(q_j)
= A_1(x; q_1, \ldots, q_m) + \sum_{t=1}^{m} b_1(xr_t; q_1, \ldots, q_m). \quad (2.4)
\]

Now put \(p = x, q_1 = r_1, \ldots, q_m = r_m\) in \((2.3)\). We obtain

\[
\sum_{t=1}^{m} T(xr_t) = T(x) \sum_{t=1}^{m} T(r_t) + (m - n) T(0) x \sum_{t=1}^{m} T(r_t) + m(n - 1)T(0)x
+ mT(0) - T(0) \sum_{t=1}^{m} T(r_t) + A_1(x; r_1, \ldots, r_m) + b_1(x; r_1, \ldots, r_m).
\quad (2.5)
\]

From \((2.4)\) and \((2.5)\), it follows that

\[
\sum_{t=1}^{m} \sum_{j=1}^{m} T(xr_t q_j) - [T(x) + (m - n) T(0) x - T(0)] \sum_{t=1}^{m} T(r_t) \sum_{j=1}^{m} T(q_j) - m(n - 1)T(0)x
- m^2T(0) = [m(m - 1)T(0)x + A_1(x; r_1, \ldots, r_m) + b_1(x; r_1, \ldots, r_m)] \sum_{j=1}^{m} T(q_j)
+ A_1(x; q_1, \ldots, q_m) + \sum_{t=1}^{m} b_1(xr_t; q_1, \ldots, q_m).
\quad (2.6)
\]

The left hand side of \((2.6)\) is symmetric in \(q_j\) and \(r_t; j = 1, \ldots, m; t = 1, \ldots, m\). So, the right hand side of \((2.6)\) should also be symmetric in \(q_j\) and \(r_t; j = 1, \ldots, m; t = 1, \ldots, m\). This fact gives rise to the equation

\[
[m(m - 1)T(0)x + A_1(x; q_1, \ldots, q_m)] [\sum_{t=1}^{m} T(r_t) - 1]
- [m(m - 1)T(0)x + A_1(x; r_1, \ldots, r_m)] [\sum_{j=1}^{m} T(q_j) - 1]
= b_1(x; r_1, \ldots, r_m) \sum_{j=1}^{m} T(q_j) + \sum_{t=1}^{m} b_1(xr_t; q_1, \ldots, q_m)
- b_1(x; q_1, \ldots, q_m) \sum_{t=1}^{m} T(r_t) - \sum_{j=1}^{m} b_1(xq_j; r_1, \ldots, r_m).
\quad (2.7)
\]

For fixed \((q_1, \ldots, q_m) \in \Gamma_m, (r_1, \ldots, r_m) \in \Gamma_m\), the right hand side of \((2.7)\) is a bounded mapping of \(x, x \in I\). On the other hand, the left hand side is \(\alpha\)ditive in \(x, x \in I\). By using
Theorem 1.8 (see p-14 in [12]) and the Definition 1.2 (see p-4 in [12]), we have

\[
\begin{align*}
&[n(m - 1)T(0)x + A_1(x; q_1, \ldots, q_m)][\sum_{t=1}^{m} T(r_t) - 1] \\
&\quad - [n(m - 1)T(0)x + A_1(x; r_1, \ldots, r_m)][\sum_{j=1}^{m} T(q_j) - 1] \\
&= x\left\{[n(m - 1)T(0) + A_1(1; q_1, \ldots, q_m)][\sum_{t=1}^{m} T(r_t) - 1] \\
&\quad - [n(m - 1)T(0) + A_1(1; r_1, \ldots, r_m)][\sum_{j=1}^{m} T(q_j) - 1]\right\}
\end{align*}
\]

which, on simplification, reduces to

\[
A_1(x; q_1, \ldots, q_m) - xA_1(1; q_1, \ldots, q_m)[\sum_{t=1}^{m} T(r_t) - 1] \\
= [A_1(x; r_1, \ldots, r_m) - xA_1(1; r_1, \ldots, r_m)][\sum_{j=1}^{m} T(q_j) - 1].
\]

(2.8)

Now we divide our discussion into two cases:

Case 1. \(\sum_{t=1}^{m} T(r_t) - 1\) vanishes identically on \(\Gamma_m\), that is,

\[
\sum_{t=1}^{m} T(r_t) - 1 = 0
\]

for all \((r_1, \ldots, r_m) \in \Gamma_m\). By Result 1.2, there exists an additive mapping \(a : \mathbb{R} \to \mathbb{R}\) such that, for all \(p \in I\),

\[
T(p) = a(p) + T(0)
\]

(2.9)

with \(a(1) = 1 - m T(0)\). The solution (2.9) is included in (2.1) on defining a constant bounded mapping \(b : \mathbb{R} \to \mathbb{R}\) as \(b(p) = T(0)\).

Case 2. \(\sum_{t=1}^{m} T(r_t) - 1\) does not vanish identically on \(\Gamma_m\).

In this case, there exists a probability distribution \((r_1^*, \ldots, r_m^*) \in \Gamma_m\) such that

\[
\sum_{t=1}^{m} T(r_t^*) - 1 \neq 0.
\]

(2.10)

Putting \(r_1 = r_1^*, \ldots, r_m = r_m^*\) in (2.8) and making use of (2.10), it follows that

\[
A_1(x; q_1, \ldots, q_m) = A_2(x) \left[\sum_{j=1}^{m} T(q_j) - 1\right] + xA_1(1; q_1, \ldots, q_m)
\]

(2.11)

where \(A_2 : \mathbb{R} \to \mathbb{R}\) is defined as

\[
A_2(x) = \left[\sum_{t=1}^{m} T(r_t^*) - 1\right]^{-1} \left[A_1(x; r_1^*, \ldots, r_m^*) - xA_1(1; r_1^*, \ldots, r_m^*)\right]
\]

(2.12)

for all \(x \in \mathbb{R}\). The mapping \(A_2\) is additive and \(A_2(1) = 0\). Putting \(p = 1\) in (2.3), we obtain

\[
A_1(1; q_1, \ldots, q_m) = [1 - T(1) - (m - n) T(0) + T(0)]\sum_{j=1}^{m} T(q_j) \\
\quad - mn T(0) - b_1(1; q_1, \ldots, q_m).
\]

(2.13)
From (2.7), (2.11) and (2.13), we have

\[\{ b_1(x; q_1, \ldots, q_m) - x b_1(1; q_1, \ldots, q_m) + x [1 - T(1) - (m - 1)T(0)] \} \sum_{l=1}^{m} T(r_l) \]

\[= \{ b_1(x; r_1, \ldots, r_m) - x b_1(1; r_1, \ldots, r_m) + x [1 - T(1) - (m - 1)T(0)] \} \sum_{j=1}^{m} T(q_j) \]

\[+ \left[\sum_{l=1}^{m} b_1(xr_l; q_1, \ldots, q_m) - \sum_{j=1}^{m} b_1(xq_l; r_1, \ldots, r_m) \right] \\
- x [b_1(1; q_1, \ldots, q_m) - b_1(1; r_1, \ldots, r_m)] \] (2.14)

for all \(x \in I, (r_1, \ldots, r_m) \in \Gamma_m\) and \((q_1, \ldots, q_m) \in \Gamma_m\).

Case 2.1. The coefficient of \(\sum_{l=1}^{m} T(r_l)\), in (2.14), does not vanish identically on \(I \times \Gamma_m\).

In this case, there exist an element \(x^* \in I\) and a probability distribution \((q_1^*, \ldots, q_m^*) \in \Gamma_m\) such that

\[\{ b_1(x^*; q_1^*, \ldots, q_m^*) - x^* b_1(1; q_1^*, \ldots, q_m^*) + x^* [1 - T(1) - (m - 1)T(0)] \} \neq 0. \] (2.15)

From (2.14), (2.15) and the boundedness of \(b_1\), it follows that \(| \sum_{l=1}^{m} T(r_l) | \leq \epsilon^*\) for some nonnegative real number \(\epsilon^*\). So, by Result 1.3, there exist an additive mapping \(a : \mathbb{R} \rightarrow \mathbb{R}\) and a bounded mapping \(b_2 : \mathbb{R} \rightarrow \mathbb{R}\) such that \(T(p) - T(0) = a(p) + b_2(p)\) for all \(p \in I\). This solution is included in (2.1) on defining a bounded mapping \(b : \mathbb{R} \rightarrow \mathbb{R}\) as \(b(p) = b_2(p) + T(0)\).

Case 2.2. The coefficient of \(\sum_{l=1}^{m} T(r_l)\), in (2.14), vanishes identically on \(I \times \Gamma_m\), that is,

\[b_1(x; q_1, \ldots, q_m) - x b_1(1; q_1, \ldots, q_m) + x [1 - T(1) - (m - 1)T(0)] = 0 \] (2.16)

for all \(x \in I\) and \((q_1, \ldots, q_m) \in \Gamma_m\).

From (2.11) and (2.13), we obtain

\[A_1(x; q_1, \ldots, q_m) = A_2(x) \left[\sum_{j=1}^{m} T(q_j) - 1 \right] + x \{1 - T(1) - (m - n)T(0)\} + T(0) \sum_{j=1}^{m} T(q_j) - mnT(0) - b_1(1; q_1, \ldots, q_m) \]. (2.17)

Now, from (2.3), (2.16) and (2.17), one can derive

\[\sum_{j=1}^{m} [T(pq_j) + A_2(pq_j) + \{1 - T(1) + T(0)\} pq_j - T(0)] \\
- [T(p) + A_2(p) + \{1 - T(1) + T(0)\} p - T(0)] \\
\times \sum_{j=1}^{m} [T(q_j) + A_2(q_j) + \{1 - T(1) + T(0)\} q_j - T(0)] \\
+ [T(p) + A_2(p) + \{1 - T(1) + T(0)\} p - T(0)] [1 - T(1) - (m - 1)T(0)] = 0. \] (2.18)

The substitution \(p = 1\) in (2.18) gives (using \(A_2(1) = 0\):

\[1 - T(1) + T(0) = mT(0). \] (2.19)
Now, equations (2.18) and (2.19) give rise to
\[
\sum_{j=1}^{m} \left[T(pq_j) + A_2(pq_j) + mT(0)pq_j - T(0) \right] \\
- \left[T(p) + A_2(p) + mT(0)p - T(0) \right] \sum_{j=1}^{m} \left[T(q_j) + A_2(q_j) + mT(0)q_j - T(0) \right] = 0.
\] (2.20)

Define a mapping \(M : I \to \mathbb{R} \) as
\[
M(x) = T(x) + A_2(x) + mT(0)x - T(0)
\] (2.21)
for all \(x \in I \). Putting \(x = 0 \) and \(x = 1 \) respectively in (2.20) and using the fact that \(A_2(1) = 0 \), we obtain
\[
M(0) = 0, M(1) = 1.
\] (2.22)

Also (2.20) and (2.21) give
\[
\sum_{j=1}^{m} [M(pq_j) - M(p)M(q_j)] = 0.
\]

By Result 1.2, there exists a mapping \(E : I \times \mathbb{R} \to \mathbb{R} \), additive in second variable, such that
\[
M(pq) - M(p)M(q) = E(p; q)
\] (2.23)
for all \(p \in I, q \in I \) and \(E(p; 1) = 0 \). The symmetry of the left hand side of (2.23), in \(p \) and \(q \), gives \(E(p; q) = E(q; p) \) for all \(p \in I, q \in I \). Consequently, \(E \) is also additive in the first variable. We may suppose that \(E(\cdot; q) \) has been extended additively to the whole of \(\mathbb{R} \).

For all \(p, q, r \in I \), (2.23) gives
\[
M(pqr) - M(p)M(q)M(r) = E(pqr; r) + M(r)E(p; q) \\
= E(qr; p) + M(p)E(q; r).
\] (2.24)

Now, we prove that \(E(p; q) \equiv 0 \) on \(I \times I \). To the contrary, suppose that \(E(p; q) \neq 0 \) on \(I \times I \). Then, there exist \(p^* \in I \) and \(q^* \in I \) such that \(E(p^*; q^*) \neq 0 \). Substituting \(p = p^* \), \(q = q^* \) in (2.24) and using \(E(p^*; q^*) \neq 0 \), it follows that
\[
M(r) = [E(p^*; q^*)]^{-1} \left[E(q^* r; p^*) + M(p^*)E(q^*; r) - E(p^* q^*; r) \right]
\] (2.25)
for all \(r \in I \). The right hand side of (2.25) is additive. Hence \(M \) is also additive. Now, making use of (2.10), (2.21), (2.22) and the fact that \(A_2(1) = 0 \), we have
\[
1 \neq \sum_{i=1}^{m} T(r_i) = \sum_{i=1}^{m} M(r_i) - A_2(1) - mT(0) + mT(0) = M(1) = 1,
\]
a contradiction. Hence our supposition \(\text{“} E(p; q) \neq 0 \text{ on } I \times I \text{”} \) is false. So, \(E(p; q) = 0 \) for all \(p \in I, q \in I \). Making use of this fact in (2.23), we conclude that \(M \), defined by (2.21), is multiplicative with \(M(0) = 0 \) and \(M(1) = 1 \).

From (2.21), we have \(T(x) = M(x) = A_2(x) + mT(0)x + T(0) \). Define a mapping \(B : \mathbb{R} \to \mathbb{R} \) as \(B(x) = A_2(x) + mT(0)x \) for all \(x \in I \). Then \(B \) is additive with \(B(1) = mT(0) \). Thus, we have obtained the solution (2.2).

If the multiplicative mapping \(M : I \to \mathbb{R} \), with \(M(0) = 0 \), \(M(1) = 1 \), appearing in the solution (2.2), is also additive, then \(M \) is only of the form \(M(p) = p \) for all \(p \in I \). So, (2.2) reduces to \(T(p) = p - B(p) + T(0) \). Making use of (2.10), we have
\[
1 \neq \sum_{i=1}^{m} T(r_i) = \sum_{i=1}^{m} [r_i + B(r_i) + T(0)] = 1 - B(1) + mT(0) = 1,
\]
a contradiction. Hence \(M \) is not additive. This completes the proof of the theorem.\[\square\]
References

Author information

Prem Nath, Department of Mathematics, University of Delhi, Delhi - 110007, India. E-mail: pnmathmath@gmail.com

Dhiraj Kumar Singh, Department of Mathematics, Zakir Husain Delhi College (University of Delhi), Jawaharlal Nehru Marg, Delhi - 110002, India. E-mail: dhiraj426@rediffmail.com, dksingh@2h.du.ac.in

Received: November 21, 2015.
Accepted: August 2, 2016.