ON THE STABILITY OF A FUNCTIONAL EQUATION ${ }^{\dagger}$

Prem Nath and Dhiraj Kumar Singh
Communicated by F. Allan

MSC 2010 Classifications: 39B22; 39B52; 39B82.
Keywords and phrases: Functional equation, additive mapping, multiplicative mapping, stability.
Abstract. In this paper, we study the stability of the functional equation

$$
\sum_{i=1}^{n} \sum_{j=1}^{m} T\left(p_{i} q_{j}\right)=\sum_{i=1}^{n} T\left(p_{i}\right) \sum_{j=1}^{m} T\left(q_{j}\right)+(m-n) T(0) \sum_{j=1}^{m} T\left(q_{j}\right)+m(n-1) T(0)
$$

in which $T: I \rightarrow \mathbb{R},\left(p_{1}, \ldots, p_{n}\right) \in \Gamma_{n},\left(q_{1}, \ldots, q_{m}\right) \in \Gamma_{m}, n \geq 3, m \geq 3$ being fixed integers.

1 Introduction

For $n=1,2, \ldots$; let $\Gamma_{n}=\left\{\left(p_{1}, \ldots, p_{n}\right): p_{i} \geq 0, i=1, \ldots, n ; \sum_{i=1}^{n} p_{i}=1\right\}$ denote the set of all n-component discrete probability distributions with nonnegative elements.

A mapping $a: \mathbb{R} \rightarrow \mathbb{R}$ is said to be additive on I or on the unit triangle $\Delta=\{(x, y): 0 \leqslant$ $x \leqslant 1,0 \leqslant y \leqslant 1,0 \leqslant x+y \leqslant 1\}$ if it satisfies the equation $a(x+y)=a(x)+a(y)$ for all $(x, y) \in \Delta ; I=\{x \in \mathbb{R}: 0 \leqslant x \leqslant 1\}, \mathbb{R}$ denoting the set of all real numbers. It is known [1] that if a mapping $a: I \rightarrow \mathbb{R}$ is additive on the unit triangle Δ, then there exists one and only one mapping $A: \mathbb{R} \rightarrow \mathbb{R}$ which is an extension of $a: I \rightarrow \mathbb{R}$ in the sense that $A(x)=a(x)$ for all $x \in I$ and is additive on \mathbb{R}, that is $A(x+y)=A(x)+A(y)$ for all $x \in \mathbb{R}, y \in \mathbb{R}$.

A mapping $M: I \rightarrow \mathbb{R}$ is said to be multiplicative if $M(p q)=M(p) M(q)$ for all $p \in I$, $q \in I$.

Suppose a mapping $T: I \rightarrow \mathbb{R}$ satisfies the functional equation

$$
\begin{equation*}
\sum_{i=1}^{n} \sum_{j=1}^{m} T\left(p_{i} q_{j}\right)=\sum_{i=1}^{n} T\left(p_{i}\right) \sum_{j=1}^{m} T\left(q_{j}\right)+(m-n) T(0) \sum_{j=1}^{m} T\left(q_{j}\right)+m(n-1) T(0) \tag{1.1}
\end{equation*}
$$

for all $\left(p_{1}, \ldots, p_{n}\right) \in \Gamma_{n}$ and $\left(q_{1}, \ldots, q_{m}\right) \in \Gamma_{m} ; n \geq 3, m \geq 3$ being fixed integers.
The functional equation (1.1) has been considered by Nath and Singh [6]. They determined its general solutions for fixed integers $n \geq 3, m \geq 3$.

The functional equation (1.1) plays an important role in finding the general solutions of several multiplicative and nonmultiplicative type sum form functional equations with atleast two unknown mappings (see [6] to [11]). Also, their solutions are related to the Shannon [13] entropy and the entropies of degree α [2].
Result 1.1 ([6]). Let $n \geqslant 3, m \geqslant 3$ be fixed integers. If a mapping $T: I \rightarrow \mathbb{R}$ satisfies the functional equation (1.1) for all $\left(p_{1}, \ldots, p_{n}\right) \in \Gamma_{n},\left(q_{1}, \ldots, q_{m}\right) \in \Gamma_{m}$, then either

$$
T(p)=a(p)+T(0)
$$

where $a: \mathbb{R} \rightarrow \mathbb{R}$ is an additive mapping with

$$
a(1)=\left\{\begin{array}{lc}
-m T(0) & \text { if } T(1)+(m-1) T(0) \neq 1 \\
1-m T(0) & \text { if } T(1)+(m-1) T(0)=1
\end{array}\right.
$$

or

$$
T(p)=M(p)-b(p)+T(0)
$$

in which $b: \mathbb{R} \rightarrow \mathbb{R}$ is an additive mapping with $b(1)=m T(0)$ and $M: I \rightarrow \mathbb{R}$ is a nonadditive multiplicative mapping with $M(0)=0, M(1)=1$.

[^0]This paper deals with the stability of the sum form functional equation (1.1). For the meaning of stability of a functional equation, see Hyers and Rassias [3]. By the stability problem for the equation (1.1), we mean the following: Let $n \geq 3, m \geq 3$ be fixed integers and $0 \leq \epsilon \in \mathbb{R}$ be a fixed real number. Find all mappings $T: I \rightarrow \mathbb{R}$ satisfying the functional inequality

$$
\begin{equation*}
\left|\sum_{i=1}^{n} \sum_{j=1}^{m} T\left(p_{i} q_{j}\right)-\sum_{i=1}^{n} T\left(p_{i}\right) \sum_{j=1}^{m} T\left(q_{j}\right)-(m-n) T(0) \sum_{j=1}^{m} T\left(q_{j}\right)-m(n-1) T(0)\right| \leq \epsilon \tag{1.2}
\end{equation*}
$$

for all $\left(p_{1}, \ldots, p_{n}\right) \in \Gamma_{n},\left(q_{1}, \ldots, q_{m}\right) \in \Gamma_{m}$.
Now, we mention below some results needed for the development of the main result of this paper.

Result 1.2 ([4]). Let c be a given real constant. Suppose $\phi: I \rightarrow \mathbb{R}$ is a mapping which satisfies the functional equation $\sum_{i=1}^{n} \phi\left(p_{i}\right)=c$ for all $\left(p_{1}, \ldots, p_{n}\right) \in \Gamma_{n}, n \geq 3$ a fixed integer. Then there exists an additive mapping $a: \mathbb{R} \rightarrow \mathbb{R}$ such that $\phi(p)=a(p)-\frac{1}{n} a(1)+\frac{c}{n}$ for all $p \in I$.

Result 1.3 ([5]). Let $n \geqslant 3$ be a fixed integer and ϵ be a fixed nonnegative real number. Suppose a mapping $\psi: I \rightarrow \mathbb{R}$ satisfies the functional inequality $\left|\sum_{i=1}^{n} \psi\left(p_{i}\right)\right| \leq \epsilon$ for all $\left(p_{1}, \ldots, p_{n}\right) \in$ Γ_{n}. Then there exist an additive mapping $A: \mathbb{R} \rightarrow \mathbb{R}$ and a bounded mapping $B: \mathbb{R} \rightarrow \mathbb{R}$ satisfying the conditions $B(0)=0$ and $|B(p)| \leq 18 \epsilon$ such that $\psi(p)-\psi(0)=A(p)+B(p)$ for all $p \in I$.

2 The Main Result

Theorem 2.1. Let $n \geqslant 3, m \geqslant 3$ be fixed integers and ϵ be a given nonnegative real constant. Suppose the mapping $T: I \rightarrow \mathbb{R}$ satisfies the inequality (1.2) for all $\left(p_{1}, \ldots, p_{n}\right) \in \Gamma_{n}$ and $\left(q_{1}, \ldots, q_{m}\right) \in \Gamma_{m}$. Then either

$$
\begin{equation*}
T(p)=a(p)+b(p) \tag{2.1}
\end{equation*}
$$

for all $p \in I$ or

$$
\begin{equation*}
T(p)=M(p)-B(p)+T(0) \tag{2.2}
\end{equation*}
$$

for all $p \in I$; where $a: \mathbb{R} \rightarrow \mathbb{R}, B: \mathbb{R} \rightarrow \mathbb{R}$ are additive mappings; $B(1)=m T(0) ; b: \mathbb{R} \rightarrow \mathbb{R}$ is a bounded mapping; and $M: I \rightarrow \mathbb{R}$ is a multiplicative mapping which is not additive and $M(0)=0, M(1)=1$.

Proof. Let us write (1.2) in the form

$$
\left|\sum_{i=1}^{n}\left\{\sum_{j=1}^{m} T\left(p_{i} q_{j}\right)-T\left(p_{i}\right) \sum_{j=1}^{m} T\left(q_{j}\right)-(m-n) T(0) p_{i} \sum_{j=1}^{m} T\left(q_{j}\right)-m(n-1) T(0) p_{i}\right\}\right| \leq \epsilon
$$

By Result 1.3, there exist a mapping $A_{1}: \mathbb{R} \times \Gamma_{m} \rightarrow \mathbb{R}$ additive in the first variable and a bounded mapping $b_{1}: \mathbb{R} \times \Gamma_{m} \rightarrow \mathbb{R}$ with $b_{1}\left(0 ; q_{1}, \ldots, q_{m}\right)=0$ and $\left|b_{1}\left(x ; q_{1}, \ldots, q_{m}\right)\right| \leq 18 \epsilon$ for all $x \in \mathbb{R}$ such that

$$
\begin{align*}
& \sum_{j=1}^{m} T\left(p q_{j}\right)-T(p) \sum_{j=1}^{m} T\left(q_{j}\right)-(m-n) T(0) p \sum_{j=1}^{m} T\left(q_{j}\right)-m(n-1) T(0) p \\
& -m T(0)+T(0) \sum_{j=1}^{m} T\left(q_{j}\right)=A_{1}\left(p ; q_{1}, \ldots, q_{m}\right)+b_{1}\left(p ; q_{1}, \ldots, q_{m}\right) \tag{2.3}
\end{align*}
$$

for all $p \in I$. Let $x \in I$ and $\left(r_{1}, \ldots, r_{m}\right) \in \Gamma_{m}$. Putting successively $p=x r_{t}, t=1, \ldots, m$ in
(2.3); adding the resulting m equations and using the additivity of A_{1}, we obtain

$$
\begin{align*}
& \sum_{t=1}^{m} \sum_{j=1}^{m} T\left(x r_{t} q_{j}\right)-\sum_{t=1}^{m} T\left(x r_{t}\right) \sum_{j=1}^{m} T\left(q_{j}\right)-(m-n) T(0) x \sum_{j=1}^{m} T\left(q_{j}\right) \\
& -m(n-1) T(0) x-m^{2} T(0)+m T(0) \sum_{j=1}^{m} T\left(q_{j}\right) \\
& =A_{1}\left(x ; q_{1}, \ldots, q_{m}\right)+\sum_{t=1}^{m} b_{1}\left(x r_{t} ; q_{1}, \ldots, q_{m}\right) \tag{2.4}
\end{align*}
$$

Now put $p=x, q_{1}=r_{1}, \ldots, q_{m}=r_{m}$ in (2.3). We obtain

$$
\begin{align*}
& \sum_{t=1}^{m} T\left(x r_{t}\right)=T(x) \sum_{t=1}^{m} T\left(r_{t}\right)+(m-n) T(0) x \sum_{t=1}^{m} T\left(r_{t}\right)+m(n-1) T(0) x \\
& \quad+m T(0)-T(0) \sum_{t=1}^{m} T\left(r_{t}\right)+A_{1}\left(x ; r_{1}, \ldots, r_{m}\right)+b_{1}\left(x ; r_{1}, \ldots, r_{m}\right) \tag{2.5}
\end{align*}
$$

From (2.4) and (2.5), it follows that

$$
\begin{align*}
& \sum_{t=1}^{m} \sum_{j=1}^{m} T\left(x r_{t} q_{j}\right)-[T(x)+(m-n) T(0) x-T(0)] \sum_{t=1}^{m} T\left(r_{t}\right) \sum_{j=1}^{m} T\left(q_{j}\right)-m(n-1) T(0) x \\
&-m^{2} T(0)= {\left[n(m-1) T(0) x+A_{1}\left(x ; r_{1}, \ldots, r_{m}\right)+b_{1}\left(x ; r_{1}, \ldots, r_{m}\right)\right] \sum_{j=1}^{m} T\left(q_{j}\right) } \\
& \quad+A_{1}\left(x ; q_{1}, \ldots, q_{m}\right)+\sum_{t=1}^{m} b_{1}\left(x r_{t} ; q_{1}, \ldots, q_{m}\right) \tag{2.6}
\end{align*}
$$

The left hand side of (2.6) is symmetric in q_{j} and $r_{t} ; j=1, \ldots, m ; t=1, \ldots, m$. So, the right hand side of (2.6) should also be symmetric in q_{j} and $r_{t} ; j=1, \ldots, m ; t=1, \ldots, m$. This fact gives rise to the equation

$$
\begin{align*}
& {\left[n(m-1) T(0) x+A_{1}\left(x ; q_{1}, \ldots, q_{m}\right)\right]\left[\sum_{t=1}^{m} T\left(r_{t}\right)-1\right]} \\
& \quad-\left[n(m-1) T(0) x+A_{1}\left(x ; r_{1}, \ldots, r_{m}\right)\right]\left[\sum_{j=1}^{m} T\left(q_{j}\right)-1\right] \\
& \quad=b_{1}\left(x ; r_{1}, \ldots, r_{m}\right) \sum_{j=1}^{m} T\left(q_{j}\right)+\sum_{t=1}^{m} b_{1}\left(x r_{t} ; q_{1}, \ldots, q_{m}\right) \\
& \quad-b_{1}\left(x ; q_{1}, \ldots, q_{m}\right) \sum_{t=1}^{m} T\left(r_{t}\right)-\sum_{j=1}^{m} b_{1}\left(x q_{j} ; r_{1}, \ldots, r_{m}\right) \tag{2.7}
\end{align*}
$$

For fixed $\left(q_{1}, \ldots, q_{m}\right) \in \Gamma_{m},\left(r_{1}, \ldots, r_{m}\right) \in \Gamma_{m}$, the right hand side of (2.7) is a bounded mapping of $x, x \in I$. On the other hand, the left hand side is additive in $x, x \in I$. By using

Theorem 1.8 (see p-14 in [12]) and the Definition 1.2 (see p-4 in [12]), we have

$$
\begin{aligned}
& {\left[n(m-1) T(0) x+A_{1}\left(x ; q_{1}, \ldots, q_{m}\right)\right]\left[\sum_{t=1}^{m} T\left(r_{t}\right)-1\right]} \\
& \quad-\left[n(m-1) T(0) x+A_{1}\left(x ; r_{1}, \ldots, r_{m}\right)\right]\left[\sum_{j=1}^{m} T\left(q_{j}\right)-1\right] \\
& \quad=x\left\{\left[n(m-1) T(0)+A_{1}\left(1 ; q_{1}, \ldots, q_{m}\right)\right]\left[\sum_{t=1}^{m} T\left(r_{t}\right)-1\right]\right. \\
& \left.\quad-\left[n(m-1) T(0)+A_{1}\left(1 ; r_{1}, \ldots, r_{m}\right)\right]\left[\sum_{j=1}^{m} T\left(q_{j}\right)-1\right]\right\}
\end{aligned}
$$

which, on simplification, reduces to

$$
\begin{align*}
& \left.A_{1}\left(x ; q_{1}, \ldots, q_{m}\right)-x A_{1}\left(1 ; q_{1}, \ldots, q_{m}\right)\right]\left[\sum_{t=1}^{m} T\left(r_{t}\right)-1\right] \\
& \quad=\left[A_{1}\left(x ; r_{1}, \ldots, r_{m}\right)-x A_{1}\left(1 ; r_{1}, \ldots, r_{m}\right)\right]\left[\sum_{j=1}^{m} T\left(q_{j}\right)-1\right] \tag{2.8}
\end{align*}
$$

Now we divide our discussion into two cases:
Case 1. $\sum_{t=1}^{m} T\left(r_{t}\right)-1$ vanishes identically on Γ_{m}, that is,

$$
\sum_{t=1}^{m} T\left(r_{t}\right)-1=0
$$

for all $\left(r_{1}, \ldots, r_{m}\right) \in \Gamma_{m}$. By Result 1.2, there exists an additive mapping $a: \mathbb{R} \rightarrow \mathbb{R}$ such that, for all $p \in I$,

$$
\begin{equation*}
T(p)=a(p)+T(0) \tag{2.9}
\end{equation*}
$$

with $a(1)=1-m T(0)$. The solution (2.9) is included in (2.1) on defining a constant bounded mapping $b: \mathbb{R} \rightarrow \mathbb{R}$ as $b(p)=T(0)$.

Case 2. $\sum_{t=1}^{m} T\left(r_{t}\right)-1$ does not vanish identically on Γ_{m}.
In this case, there exists a probability distribution $\left(r_{1}^{*}, \ldots, r_{m}^{*}\right) \in \Gamma_{m}$ such that

$$
\begin{equation*}
\sum_{t=1}^{m} T\left(r_{t}^{*}\right)-1 \neq 0 \tag{2.10}
\end{equation*}
$$

Putting $r_{1}=r_{1}^{*}, \ldots, r_{m}=r_{m}^{*}$ in (2.8) and making use of (2.10), it follows that

$$
\begin{equation*}
A_{1}\left(x ; q_{1}, \ldots, q_{m}\right)=A_{2}(x)\left[\sum_{j=1}^{m} T\left(q_{j}\right)-1\right]+x A_{1}\left(1 ; q_{1}, \ldots, q_{m}\right) \tag{2.11}
\end{equation*}
$$

where $A_{2}: \mathbb{R} \rightarrow \mathbb{R}$ is defined as

$$
\begin{equation*}
A_{2}(x)=\left[\sum_{t=1}^{m} T\left(r_{t}^{*}\right)-1\right]^{-1}\left[A_{1}\left(x ; r_{1}^{*}, \ldots, r_{m}^{*}\right)-x A_{1}\left(1 ; r_{1}^{*}, \ldots, r_{m}^{*}\right)\right] \tag{2.12}
\end{equation*}
$$

for all $x \in \mathbb{R}$. The mapping A_{2} is additive and $A_{2}(1)=0$. Putting $p=1$ in (2.3), we obtain

$$
\begin{align*}
A_{1}\left(1 ; q_{1}, \ldots, q_{m}\right)= & {[1-T(1)-(m-n) T(0)+T(0)] \sum_{j=1}^{m} T\left(q_{j}\right) } \\
& -m n T(0)-b_{1}\left(1 ; q_{1}, \ldots, q_{m}\right) \tag{2.13}
\end{align*}
$$

From (2.7), (2.11) and (2.13), we have

$$
\begin{align*}
& \left\{b_{1}\left(x ; q_{1}, \ldots, q_{m}\right)-x b_{1}\left(1 ; q_{1}, \ldots, q_{m}\right)+x[1-T(1)-(m-1) T(0)]\right\} \sum_{t=1}^{m} T\left(r_{t}\right) \\
& \quad=\left\{b_{1}\left(x ; r_{1}, \ldots, r_{m}\right)-x b_{1}\left(1 ; r_{1}, \ldots, r_{m}\right)+x[1-T(1)-(m-1) T(0)]\right\} \sum_{j=1}^{m} T\left(q_{j}\right) \\
& \quad+\left[\sum_{t=1}^{m} b_{1}\left(x r_{t} ; q_{1}, \ldots, q_{m}\right)-\sum_{j=1}^{m} b_{1}\left(x q_{j} ; r_{1}, \ldots, r_{m}\right)\right] \\
& \quad-x\left[b_{1}\left(1 ; q_{1}, \ldots, q_{m}\right)-b_{1}\left(1 ; r_{1}, \ldots, r_{m}\right)\right] \tag{2.14}
\end{align*}
$$

for all $x \in I,\left(r_{1}, \ldots, r_{m}\right) \in \Gamma_{m}$ and $\left(q_{1}, \ldots, q_{m}\right) \in \Gamma_{m}$.
Case 2.1. The coefficient of $\sum_{t=1}^{m} T\left(r_{t}\right)$, in (2.14), does not vanish identically on $I \times \Gamma_{m}$.
In this case, there exist an element $x^{*} \in I$ and a probability distribution $\left(q_{1}^{*}, \ldots, q_{m}^{*}\right) \in \Gamma_{m}$ such that

$$
\begin{equation*}
\left\{b_{1}\left(x^{*} ; q_{1}^{*}, \ldots, q_{m}^{*}\right)-x^{*} b_{1}\left(1 ; q_{1}^{*}, \ldots, q_{m}^{*}\right)+x^{*}[1-T(1)-(m-1) T(0)]\right\} \neq 0 . \tag{2.15}
\end{equation*}
$$

From (2.14), (2.15) and the boundedness of b_{1}, it follows that $\left|\sum_{t=1}^{m} T\left(r_{t}\right)\right| \leq \epsilon^{*}$ for some nonnegative real number ϵ^{*}. So, by Result 1.3 , there exist an additive mapping $a: \mathbb{R} \rightarrow \mathbb{R}$ and a bounded mapping $b_{2}: \mathbb{R} \rightarrow \mathbb{R}$ such that $T(p)-T(0)=a(p)+b_{2}(p)$ for all $p \in I$. This solution is included in (2.1) on defining a bounded mapping $b: \mathbb{R} \rightarrow \mathbb{R}$ as $b(p)=b_{2}(p)+T(0)$.

Case 2.2. The coefficient of $\sum_{t=1}^{m} T\left(r_{t}\right)$, in (2.14), vanishes identically on $I \times \Gamma_{m}$, that is,

$$
\begin{equation*}
b_{1}\left(x ; q_{1}, \ldots, q_{m}\right)-x b_{1}\left(1 ; q_{1}, \ldots, q_{m}\right)+x[1-T(1)-(m-1) T(0)]=0 \tag{2.16}
\end{equation*}
$$

for all $x \in I$ and $\left(q_{1}, \ldots, q_{m}\right) \in \Gamma_{m}$.
From (2.11) and (2.13), we obtain

$$
\begin{align*}
A_{1}\left(x ; q_{1}, \ldots, q_{m}\right)= & A_{2}(x)\left[\sum_{j=1}^{m} T\left(q_{j}\right)-1\right]+x\{[1-T(1)-(m-n) T(0) \\
& \left.+T(0)] \sum_{j=1}^{m} T\left(q_{j}\right)-m n T(0)-b_{1}\left(1 ; q_{1}, \ldots, q_{m}\right)\right\} \tag{2.17}
\end{align*}
$$

Now, from (2.3), (2.16) and (2.17), one can derive

$$
\begin{align*}
& \sum_{j=1}^{m}\left[T\left(p q_{j}\right)+A_{2}\left(p q_{j}\right)+\{1-T(1)+T(0)\} p q_{j}-T(0)\right] \\
& \quad-\left[T(p)+A_{2}(p)+\{1-T(1)+T(0)\} p-T(0)\right] \\
& \quad \times \sum_{j=1}^{m}\left[T\left(q_{j}\right)+A_{2}\left(q_{j}\right)+\{1-T(1)+T(0)\} q_{j}-T(0)\right] \\
& \quad+\left[T(p)+A_{2}(p)+\{1-T(1)+T(0)\} p-T(0)\right][1-T(1)-(m-1) T(0)]=0 \tag{2.18}
\end{align*}
$$

The substitution $p=1$ in (2.18) gives (using $A_{2}(1)=0$):

$$
\begin{equation*}
1-T(1)+T(0)=m T(0) \tag{2.19}
\end{equation*}
$$

Now, equations (2.18) and (2.19) give rise to

$$
\begin{align*}
& \sum_{j=1}^{m}\left[T\left(p q_{j}\right)+A_{2}\left(p q_{j}\right)+m T(0) p q_{j}-T(0)\right] \\
& -\left[T(p)+A_{2}(p)+m T(0) p-T(0)\right] \sum_{j=1}^{m}\left[T\left(q_{j}\right)+A_{2}\left(q_{j}\right)+m T(0) q_{j}-T(0)\right]=0 . \tag{2.20}
\end{align*}
$$

Define a mapping $M: I \rightarrow \mathbb{R}$ as

$$
\begin{equation*}
M(x)=T(x)+A_{2}(x)+m T(0) x-T(0) \tag{2.21}
\end{equation*}
$$

for all $x \in I$. Putting $x=0$ and $x=1$ respectively in (2.20) and using the fact that $A_{2}(1)=0$, we obtain

$$
\begin{equation*}
M(0)=0, M(1)=1 \tag{2.22}
\end{equation*}
$$

Also (2.20) and (2.21) give

$$
\sum_{j=1}^{m}\left[M\left(p q_{j}\right)-M(p) M\left(q_{j}\right)\right]=0
$$

By Result 1.2, there exists a mapping $E: I \times \mathbb{R} \rightarrow \mathbb{R}$, additive in second variable, such that

$$
\begin{equation*}
M(p q)-M(p) M(q)=E(p ; q) \tag{2.23}
\end{equation*}
$$

for all $p \in I, q \in I$ and $E(p ; 1)=0$. The symmetry of the left hand side of (2.23), in p and q, gives $E(p ; q)=E(q ; p)$ for all $p \in I, q \in I$. Consequently, E is also additive in the first variable. We may suppose that $E(\cdot ; q)$ has been extended additively to the whole of \mathbb{R}.

For all $p, q, r \in I,(2.23)$ gives

$$
\begin{align*}
M(p q r)-M(p) M(q) M(r) & =E(p q ; r)+M(r) E(p ; q) \\
& =E(q r ; p)+M(p) E(q ; r) \tag{2.24}
\end{align*}
$$

Now, we prove that $E(p ; q) \equiv 0$ on $I \times I$. To the contrary, suppose that $E(p ; q) \not \equiv 0$ on $I \times I$. Then, there exist $p^{*} \in I$ and $q^{*} \in I$ such that $E\left(p^{*} ; q^{*}\right) \neq 0$. Substituting $p=p^{*}, q=q^{*}$ in (2.24) and using $E\left(p^{*} ; q^{*}\right) \neq 0$, it follows that

$$
\begin{equation*}
M(r)=\left[E\left(p^{*} ; q^{*}\right)\right]^{-1}\left[E\left(q^{*} r ; p^{*}\right)+M\left(p^{*}\right) E\left(q^{*} ; r\right)-E\left(p^{*} q^{*} ; r\right)\right] \tag{2.25}
\end{equation*}
$$

for all $r \in I$. The right hand side of (2.25) is additive. Hence M is also additive. Now, making use of (2.10), (2.21), (2.22) and the fact that $A_{2}(1)=0$, we have

$$
1 \neq \sum_{t=1}^{m} T\left(r_{t}^{*}\right)=\sum_{t=1}^{m} M\left(r_{t}^{*}\right)-A_{2}(1)-m T(0)+m T(0)=M(1)=1
$$

a contradiction. Hence our supposition " $E(p ; q) \not \equiv 0$ on $I \times I$ " is false. So, $E(p ; q)=0$ for all $p \in I, q \in I$. Making use of this fact in (2.23), we conclude that M, defined by (2.21), is multiplicative with $M(0)=0$ and $M(1)=1$.

From (2.21), we have $T(x)=M(x)-A_{2}(x)-m T(0) x+T(0)$. Define a mapping $B: \mathbb{R} \rightarrow \mathbb{R}$ as $B(x)=A_{2}(x)+m T(0) x$ for all $x \in I$. Then B is additive with $B(1)=m T(0)$. Thus, we have obtained the solution (2.2).

If the multiplicative mapping $M: I \rightarrow \mathbb{R}$, with $M(0)=0, M(1)=1$, appearing in the solution (2.2), is also additive, then M is only of the form $M(p)=p$ for all $p \in I$. So, (2.2) reduces to $T(p)=p-B(p)+T(0)$. Making use of (2.10), we have

$$
1 \neq \sum_{t=1}^{m} T\left(r_{t}^{*}\right)=\sum_{t=1}^{m}\left[r_{t}^{*}-B\left(r_{t}^{*}\right)+T(0)\right]=1-B(1)+m T(0)=1
$$

a contradiction. Hence M is not additive. This completes the proof of the theorem.

References

[1] Z. Daróczy and L. Losonczi, Über die Erweiterung der auf einer Punktmenge additiven Funktionen, Publ. Math. (Debrecen), 14, 239-245 (1967).
[2] J. Havrda and F. Charvát, Quantification method of classification process. Concept of structural α-entropy, Kybernetika (Prague), 3, 30-35 (1967).
[3] D.H. Hyers and T.M. Rassias, Approximate homomorphisms, Aequationes Math., 44, 125-153 (1992).
[4] L. Losonczi and Gy. Maksa, On some functional equations of the information theory, Acta Math. Acad. Sci. Hung., 39, 73-82 (1982).
[5] Gy. Maksa, On the stability of a sum form equation, Results in Mathematics, 26, 342-347 (1994).
[6] P. Nath and D.K. Singh, On a multiplicative type sum form functional equation and its role in information theory, Applications of Mathematics, 51(5), 495-516 (2006).
[7] P. Nath and D.K. Singh, On a sum form functional equation and its role in information theory, in Proc.: 8th National Conf. ISITA on "Information Technology: Setting Trends in Modern Era", March 18-20, 88-94 (2006).
[8] P. Nath and D.K. Singh, Some sum form functional equations containing at most two unknown mappings, in Proc.: 9th National Conference of ISITA on "Infor. Tech. and Oper. Resear. Appl.", December 8-9, 54-71 (2007).
[9] P. Nath and D.K. Singh, A sum form functional equation related to various entropies in information theory, Glasnik Matematicki, 43(1), 159-178 (2008).
[10] P. Nath and D.K. Singh, A sum form functional equation and its relevance in information theory, The Australian Journal of Mathematical Analysis and Applications, 5(1), 1-18 (2008).
[11] P. Nath and D.K. Singh, On a functional equation containing an indexed family of unknown mappings, Functional Equations in Mathematical Analysis, edited by Th. Rassias and J. Brzdek, Springer Optimization and its Applications, 52, 671-687 (2011).
[12] P.K. Sahoo and Pl. Kannappan, Introduction to Functional Equations, CRC Press, Boca-Raton-LondonNew York, (2011).
[13] C.E. Shannon, A mathematical theory of communication, Bell Syst. Tech. Jour., 27, 379-423; 623-656 (1948).

Author information

Prem Nath, Department of Mathematics, University of Delhi, Delhi - 110007, India.
E-mail: pnathmaths@gmail.com
Dhiraj Kumar Singh, Department of Mathematics, Zakir Husain Delhi College (University of Delhi), Jawaharlal Nehru Marg, Delhi - 110002, India.
E-mail: dhiraj426@rediffmail.com, dksingh@zh.du.ac.in
Received: November 21, 2015.
Accepted: August 2, 2016.

[^0]: ${ }^{\dagger}$ Corresponding author: Dhiraj Kumar Singh

