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Abstract. In this paper, we characterize the relationship between fuzzy ideals, fuzzy interior

ideals, fuzzy bi-ideals and the characteristic function of fuzzy ideals in PO-G-semigroups. Also

we proved the equivalent statements, necessary and suf�cient conditions on partial ordered G-

semigroups.

1 Introduction

The important concept of fuzzy set has been introduced by Lofti. A. Zadeh [22]. Since then

many papers on fuzzy sets appeared showing its important �elds of mathematics. Rosefneld

[17] introduced the concept of fuzzy group. Semigroup is an algebraic structure consisting of a

non-empty set S together with an associative binary operation. The formal study of semigroups

began in the early 20th century. Semigroups are important in many areas of mathematics, for ex-

ample, coding and language theory, automata theory, combinatorics and mathematical analysis.

Kuroki [8, 9, 10] characterized several class of semigroups in terms of fuzzy left, right and fuzzy

bi-ideals. In [20,21] X. Y. Xie introduced the ideal extensions of fuzzy ideals in semigroups.

The idea of fuzzy bi-ideals in semigroups has been introduced by W. J. Lie [12].

In 1984 the notion of G-semigroup was introduced M. K. Sen in [14]. In 1986 M. K. Sen and

N. K. Saha [15] modi�ed the de�nition of sen's G-semigroups. This newly de�ned G-semigroup

is known as one sided G-semigroup. G-semigroup have been analyzed by a lot of mathemati-

cians, for instance by Chattopadhyay [1], T. K. Dutta and N. C. Adhikari [2,3]. They de�ned

operator semigroups of such type of G-semigroups and established many results and obtained

many correspondence between a G-semigroups. In this paper we have considered both sided G-

semigroups. N. Kehayopulu and M. Tsingelis [7] introduced the notion of fuzzy bi-ideals in PO-

G-semigroups. S. K. Lee and J. H. Jung [11] introduced the notion of PO-semigroups and studied

its related properties and interior ideals in PO-G-semigroups have been introduced. The notion

of ordered G-semigroups have been introduced and studied varies properties by A. Iampan, N.

Siripitukdlet and A. Kanlaya [4,5,6]. S. K. Mujemder and S. K. Sardar studied the properties

of PO-G-semigroups in terms fuzzy ideals and fuzzy interior ideals [13]. Prince williams, Latha

and Chandrasekeran [16] studied the notion of fuzzi�cation of bi-ideals in G-semigroups and

investigate some of their related properties. In this paper we studied some properties of fuzzy

interior ideals of PO-G-semigroups.

2 Preliminaries

De�nition 2.1. [4] Let S and G be two non-empty sets. Then S is called a G-semigroup if

there exists a mapping from S × G × S → S written as (a, α, b) 7→ aαb satisfying the identity

(aαb)βc = aα(bβc) for all a, b, c ∈ S and for all α, β ∈ G.

De�nition 2.2. [13] Let S be a G-semigroup. By G-subsemigroup of S we mean a non-empty

subset A of S such that AGA ⊆ A.
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De�nition 2.3. [4] A G-semigroup S is called a PO-G-semigroup if for any a, b, c ∈ S and for

α ∈ G, a ≤ b implies aαc ≤ bαc and cαa ≤ cαb.

De�nition 2.4. [18] Let S be a PO-G-semigroup. A non-empty subset A of S is said to be right

(resp. left) ideal of S if

(i) AGS ⊆ A (resp. SGA ⊆ A ),

(ii) if x ∈ A and y ∈ S such that y ≤ x, then y ∈ A.

De�nition 2.5. [18] Let S be an PO-G-semigroup. A G-subsemigroup A of S is said to be bi-

ideal of S if

(i) AGSGA ⊆ A,
(ii) if x ∈ A and y ∈ S such that y ≤ x, then y ∈ A.

De�nition 2.6. [13] Let S be a PO-G-semigroup. A G-subsemigroup A of S is said to be interior

ideal of S if

(i) SGAGS ⊆ A,
(ii) if x ∈ A and y ∈ S such that y ≤ x, then y ∈ A.

De�nition 2.7. A fuzzy subset µ of a non-empty set X is a function µ : X → [0, 1].

De�nition 2.8. [4] Let S be non-empty set and A ⊆ S. The characteristic mapping χA : S →
[0, 1] de�ned via

x 7→ χA(x) :=

{
1 if x ∈ A,

0 if x /∈ A.

By the de�nition of a characteristic mapping, χA is a mapping of S into {0, 1} ⊂ [0, 1]. Hence
χA is a fuzzy subset of S.

De�nition 2.9. [12] A fuzzy subset µ of a PO-G-semigroup S is called a fuzzy G-subsemigroup

of S if

µ(xαy) ≥ min{µ(x), µ(y)} for all x, y ∈ S and α ∈ G.

De�nition 2.10. [5] A fuzzy subset µ of a PO-G-semigroup S is called a fuzzy right (resp. left)

ideal of S if

(i) x ≤ y ⇒ µ(x) ≥ µ(y) for all x, y ∈ S, and
(ii) µ(xαy) ≥ µ(x) (resp. µ(xαy) ≥ µ(y)) for all x, y ∈ S and α ∈ G.

A fuzzy subset µ of a PO-G-semigroup S is called a fuzzy ideal of S, if it is both fuzzy left ideal
and fuzzy right ideal.

Example 2.11. Let S be the set of all non-positive integers without zero and G be the set of all

non-positive even integers without zero.Then S is a G-semigroup where xαy denote the usual

multiplication of integers x, α, y with x, y ∈ S and α ∈ G. Then the routine calculation shows

that S is a PO-G-semigroup. Let µ be fuzzy subset of S de�ned as follows:

µ(x) =


0.1 if x = -1

0.3 if x = −2
0.5 if x < −2

for each x ∈ S.
It is easy to verify that µ is fuzzy ideal of a PO-G-semigroup S.

De�nition 2.12. [18] A fuzzy G-subsemigroup µ of a PO-G-semigroup S is called a fuzzy bi-

ideal of S if

(i) x ≤ y ⇒ µ(x) ≥ µ(y) for all x, y ∈ S, and
(ii) µ(xαyβz) ≥ min{µ(x), µ(z)} for all x, y, z ∈ S and α, β ∈ G.

De�nition 2.13. Let S be a PO-G-semigroup and µ, λ be two fuzzy subsets of S. Then the

product µGλ of µ and λ is de�ned as

(µGλ)(x) =

{
sup{min{µ(y), λ(z)}} if x = yαz for y, z ∈ S and α ∈ G,

0 otherwise.
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De�nition 2.14. [13] A fuzzy G-subsemigroup µ of a PO-G-semigroup S is called a fuzzy interior

ideal of S if

(ii) x ≤ y ⇒ µ(x) ≥ µ(y) for all x, y ∈ S, and
(i) µ(xαaβy) ≥ µ(a) for all x, y, a ∈ S and α, β ∈ G.

3 Main results

Proposition 3.1. [5] Let S be a PO-G-semigroup and ∅ ̸= A ⊆ S. Then A = (A] if and only if

the fuzzy subset χA of S has the following property:

x, y ∈ S, x ≤ y ⇒ fA(x) ≥ fA(y).

Theorem 3.2. [5] Let A be a non-empty subset of a PO-G-semigroup S and χA be the charac-

teristic function of A. Then A is a left ideal (right ideal, ideal) of S if and only if χA is a fuzzy

left ideal (resp. fuzzy right ideal, fuzzy ideal) of S.

Theorem 3.3. [6] Let A be a non-empty subset of a PO-G-semigroup S and χA be the charac-

teristic function of A. Then A is an interior ideal of S if and only if χA is a fuzzy interior ideal

of S.

Theorem 3.4. [6] Let A be a non-empty subset of a PO-G-semigroup S and χA be the charac-

teristic function of A. Then A is a bi-ideal of S if and only if χA is a fuzzy bi-ideal of S.

Theorem 3.5. A fuzzy subset µ of a PO-G-semigroup S is a fuzzy G-subsemigroup of S if and

only if µGµ ⊆ µ.

Proof. Suppose µ is a fuzzy G-subsemigroup of S. For any x ∈ S,

(µGµ)(x) =

{
sup{min{µ(y), µ(z)}} if x = yαz for y, z ∈ S and α ∈ G,

0 otherwise.

If (µGµ)(x) = 0, then (µGµ)(x) ≤ µ(x). Let (µGµ)(x) = sup
x=yαz

{min{µ(y), µ(z)}}. Since µ is

a fuzzy G-subsemigroup of S, we have µ(yαz) ≥ min{µ(y), µ(z)} for all y, z ∈ S and α ∈ G.

In particular, µ(x) = µ(yαz) ≥ min{µ(y), µ(z)} for all y, z ∈ S and α ∈ G with x = yαz.
Thus µ(x) ≥ sup

x=yαz
{min{µ(y), µ(z)}} = (µGµ)(x). This implies (µGµ)(x) ≤ µ(x). Hence,

µGµ ⊆ µ.
Conversely, let µGµ ⊆ µ. Then for any x, y ∈ S and α ∈ G, we have µ(xαy) ≥ (µGµ)(xαy) ≥
min{µ(x), µ(y)}. Hence, µ is a fuzzy G-subsemigroup of S.

Theorem 3.6. Every fuzzy ideal of a PO-G-semigroup is fuzzy bi-ideal of a PO-G-semigroup.

Proof. Let S be a PO-G-semigroup and µ be a fuzzy ideal of S. For any x, y ∈ S with x ≤ y,
µ(x) ≥ µ(y).
Case(i): Suppose µ is fuzzy left ideal of a PO-G-semigroup S. Then µ(xαy) ≥ µ(y) for all
x, y ∈ S and α ∈ G. For any x, y, z ∈ S and α, β ∈ G, we have

µ(xαyβz) = µ(xα(yβz)) ≥ µ(yβz) ≥ µ(z).
Case(ii): Suppose µ is fuzzy right ideal of a PO-G-semigroup S. Then µ(xαy) ≥ µ(x) for all

x, y ∈ S and α ∈ G. For any x, y, z ∈ S and α, β ∈ G, we have

µ(xαyβz) = µ(xα(yβz)) = µ((xαy)βz) ≥ µ(xαy) ≥ µ(x).
From the both cases, we have µ(xαy) ≥ µ(x) ∧ µ(y) = min{µ(x), µ(y)} and µ(xαyβz) ≥
min{µ(x), µ(z)} for all x, y, z ∈ S and α, β ∈ G. Hence µ is fuzzy bi-ideal of S. This completes

the proof.

Proposition 3.7. [6] Let S be a PO-G-semigroup and {fi}i∈I a nonempty family of fuzzy subsets

of S. Then
∧

i∈I fi is a fuzzy subset of S.

Proposition 3.8. Let S be a PO-G-semigroup and {fi}i∈I a nonempty family of fuzzy subsets of

S. Then
∨

i∈I fi is a fuzzy subset of S.
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Proof. Let x ∈ M . Then the set {fi(x)}i∈I is a nonempty bounded above subset of R By

the Completeness axiom, there exists the sup{fi(x)}i∈I in R. Since 0 ≤ fi(x) ≤ 1 for each

i ∈ I , we have 0 ≤ sup{fi(x)}i∈I ≤ 1. Thus 0 ≤ (
∨

i∈I fi)(x) ≤ 1. If x, y ∈ S is such that

x = y, then {fi(x)}i∈I = {fi(y)}i∈I . Thus sup{fi(x)}i∈I = sup{fi(y)}i∈I , so (
∨

i∈I fi)(x) =
(
∨

i∈I fi)(y). Hence
∨

i∈I fi is a fuzzy subset of S.

Proposition 3.9. [6] Let S be a PO-G-semigroup and {fi}i∈I a family of fuzzy G-subsemigroups

of S. Then
∧

i∈I fi is a fuzzy G-subsemigroup of S.

Theorem 3.10. Let S be a PO-G-semigroup and {fi}i∈I a family of fuzzy bi-ideals of S. Then∧
i∈I fi is a fuzzy bi-ideal of S.

Proof. By Proposition 3.9, we have
∧

i∈I fi is a fuzzy G-subsemigroups of S. Now, let x, y ∈ S
be such that x ≤ y. Since fi is a fuzzy G-subsemigroup, fi(x) ≥ fi(y) for all i ∈ I . Thus

sup{fi(x)}i∈I ≥ fi(x) ≥ fi(y) for all i ∈ I , so sup{fi(x)}i∈I is an upper bound of {fi(y)}i∈I .

Hence sup{fi(x)}i∈I ≥ sup{fi(y)}i∈I , so (
∨

i∈I fi)(x) ≥ (
∨

i∈I fi)(y). Let x, y, z ∈ S and

α, β ∈ G. Since fi is a fuzzy bi-ideal of S, we have fi(xαyβz) ≥ min{fi(x), fi(z)} for all i ∈ I .
Thus

(
∧
i∈I

fi)(xαyβz) = inf{fi(xαyβz)}i∈I

≥ inf{min{fi(x), fi(z)}}i∈I

= min{inf{fi(x)}i∈I , inf{fi(z)}i∈I}

= min{(
∧
i∈I

fi)(x), (
∧
i∈I

fi)(z))}.

Hence
∧
i∈I

fi is a fuzzy bi-ideal of S.

Theorem 3.11. [6] Let S be a PO-G-semigroup and {fi}i∈I a family of fuzzy left (resp. right)

ideals of S. Then
∧

i∈I fi is a fuzzy left (resp. right) ideal of S.

Theorem 3.12. Let S be a PO-G-semigroup and {fi}i∈I a family of fuzzy left (resp. right) ideals

of S. Then
∨

i∈I fi is a fuzzy left (resp. right) ideal of S.

Proof. By Proposition 3.8, we have
∨

i∈I fi is a fuzzy subset of S. Now, let x, y ∈ S be

such that x ≤ y. Since fi is a fuzzy left ideal of M , fi(x) ≥ fi(y) for all i ∈ I . Thus

sup{fi(x)}i∈I ≥ fi(x) ≥ fi(y) for all i ∈ I , so sup{fi(x)}i∈I is an upper bound of {fi(y)}i∈I .

Hence sup{fi(x)}i∈I ≥ sup{fi(y)}i∈I , so (
∨

i∈I fi)(x) ≥ (
∨

i∈I fi)(y). Finally, let x, y ∈ S
and α ∈ G. Since fi is a fuzzy left ideal of S, we have fi(xαy) ≥ fi(y) for all i ∈ I . Thus

(
∨
i∈I

fi)(xαy) = sup{fi(xαy)}i∈I

≥ sup{fi(y)}i∈I

= (
∨
i∈I

fi)(y).

Hence
∨
i∈I

fi is a fuzzy left ideal of S.

Theorem 3.13. In a PO-G-semigroup S, the following statements are equivalent.

(i) µ is a fuzzy left ideal of S.

(ii) λGµ ⊆ µ, and for any x, y ∈ S, x ≤ y implies µ(x) ≥ µ(y) where λ is the characteristic

function of S.
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Proof. Assume that µ is a fuzzy left ideal of S. For any x ∈ S,

(λGµ)(x) =

{
sup{min{λ(y), µ(z)}} if x = yαz for y, z ∈ S and α ∈ G,

0 otherwise.

=

{
sup{min{1, µ(yαz)}} if x = yαz for y, z ∈ S and α ∈ G,

0 otherwise.

=

{
sup{µ(yαz)} if x = yαz for y, z ∈ S and α ∈ G,

0 otherwise.

=

{
µ(x)

0

≤ µ(x).

Thus λGµ ⊆ µ. Since µ is a fuzzy left ideal of S, we have x ≤ y implies µ(x) ≥ µ(y) for all
x, y ∈ S.

Conversely, let us assume the second statement of the theorem. Let x, y ∈ S. Since λGµ ⊆ µ,
we have

µ(xαy) ≥ (λGµ)(xαy)

≥ min{λ(x), µ(y)}
= min{1, µ(y)}
= µ(y).

Hence, µ is a fuzzy left ideal of S.

Theorem 3.14. In a PO-G-semigroup S, the following statements are equivalent.

(i) µ is a fuzzy right ideal of S.

(ii) µGλ ⊆ µ, and for any x, y ∈ S, x ≤ y implies µ(x) ≥ µ(y) where λ is the characteristic

function of S.

Combining the above two theorems, we have the following.

Theorem 3.15. In a PO-G-semigroup S, the following statements are equivalent.

(i) µ is a fuzzy two sided ideal of S.

(ii) µGλ ⊆ µ, λGµ ⊆ µ, and for any x, y ∈ S, x ≤ y implies µ(x) ≥ µ(y) where λ is the

characteristic function of S.

Theorem 3.16. In a PO-G-semigroup S, the following statements are satis�ed.

(i) If µ is a fuzzy bi-ideal ideal of S, then µGµ ⊆ µ.

(ii) If µGµ ⊆ µ, µGλGµ ⊆ µ, and for any x, y ∈ S, x ≤ y implies µ(x) ≥ µ(y) where λ is the

characteristic function of S, then µ is a fuzzy bi-ideal ideal of S.

Proof. (i) Assume that µ is a fuzzy bi-ideal ideal of S. Since µ is a fuzzy G-subsemigroup of S,
we have for any x ∈ S,

(µGµ)(x) =

{
sup{min{µ(y), µ(z)}} if x = yαz for y, z ∈ S and α ∈ G,

0 otherwise.

≤

{
sup{µ(yαz)} if x = yαz for y, z ∈ S and α ∈ G,

0 otherwise.

=

{
µ(x)

0

≤ µ(x).
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Thus µGµ ⊆ µ.
(ii) Assume that µGµ ⊆ µ, µGλGµ ⊆ µ, and for any x, y ∈ S, x ≤ y implies µ(x) ≥ µ(y) where
λ is the characteristic function of S. Since µGµ ⊆ µ, we have for any x, y ∈ S and α ∈ G,

µ(xαy) ≥ (µGµ)(xαy) ≥ min{µ(x), µ(y)}.

Thus µ is a fuzzy G-subsemigroup of S. Since µGλGµ ⊆ µ, we have for any x, y, z ∈ S and

α, β ∈ G,

µ(xαyβz) ≥ (µGλGµ)(xαyβz)

≥ min{(µGλ)(xαy), µ(z)}
≥ min{min{µ(x), λ(y)}, µ(z)}
= min{min{µ(x), 1}, µ(z)}
= min{µ(x), µ(z)}.

Hence, µ is a fuzzy bi-ideal of S.
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