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Abstract. This work is motivated by the recent study of the class of strongly divided (inte-

gral) domains. We compare two alternatives for the de�nition of a strongly divided (commutative

unital) ring. Neither of these alternatives implies the other. For each of these alternatives, we

seek analogues (or failures of analogues) of results on strongly divided domains, especially for

idealizations. For instance, each pseudo-valuation ring satis�es the conditions in both of the

alternative de�nitions. One byproduct is the determination of all the integrally closed overrings

of an idealization.

1 Introduction

All rings considered below are commutative with identity; all modules, subrings, inclusions of

rings, and ring/algebra-homomorphisms are unital. If R is a ring, then Spec(R) denotes the set
of all prime ideals ofR; �dimension(al)" in regard toR refers to the Krull dimension ofR, which
is denoted by dim(R); and Nil(R) denotes the set of nilpotent elements of R. If R is a ring and

E is an R-module, then Z(E) := ZR(E) := {r ∈ R | there exists e ∈ E \ {0} such that re = 0},
the set of zero-divisors of E (with respect to R); and tq(R) := RR\Z(R), the total quotient ring

of R. If R is a (commutative integral) domain, we write qf(R), instead of tq(R), to denote the

quotient �eld of R. If R is any ring, then an overring of R is any R-subalgebra of tq(R), that
is, any ring B such that R ⊆ B ⊆ tq(R). By a proper simple overring of a ring R, we mean

any ring of the form R[u] where u ∈ tq(R) \ R. As in [8], a ring R is said to be a treed ring

if Spec(R), when viewed as a poset under inclusion, is a tree; that is, if no maximal ideal of

R can contain incomparable prime ideals of R. The main purpose of this paper is to introduce,

study and compare two classes of quasi-local rings (possibly with nontrivial zero-divisors) that

are analogues of a class of quasi-local domains that was introduced in [4]. The next paragraph

recalls some salient facts about that class of domains.

As in [4], a quasi-local domain (R,m) is said to be a strongly divided domain if, whenever B
is an overring of R and Q is a prime ideal of B such that Q ∩R ̸= m, then Q is a prime ideal of

R (that is, Q ⊆ R). It was shown in [4] that the class of strongly divided domains �ts properly

between the class of divided domains (in the sense of [9]) and the class of pseudo-valuation

domains (or PVDs, in the sense of [15]). The �rst result in [4] consists of the following three

assertions [4, Proposition 2.1 (a), (b), (c)]: each strongly divided domain is a divided domain;

each quasi-local domain of dimension at most 1 is a strongly divided domain; and each PVD is a

strongly divided domain. After introducing two concepts that generalize the �strongly divided"

notion from the context of domains to that of arbitrary rings, we will study those generalizations

and the extent to which they admit analogues of the three results that were just stated. We will

also seek analogues of [4, Corollary 3] and [4, Corollary 4], which state the following: a quasi-

local integrally closed domain R is a strongly divided domain (resp., PVD) if and only if each

proper simple overring of R is a treed domain (resp., a going-down domain, in the sense of [8],

[13]).

It is now straightforward to get the de�nition of the �rst generalization being introduced here:

simply replace �domain" with �ring" in the earlier de�nition of a strongly divided domain. More

precisely put: a quasi-local ring (R,m) is said to be a strongly divided ring in the �rst sense

if, whenever B is an overring of R and Q is a prime ideal of B such that Q ∩ R ̸= m, then

Q is a prime ideal of R (that is, Q ⊆ R). It is manifest that a domain is a strongly divided
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ring in the �rst sense if and only if it is a strongly divided domain. Getting the de�nition of

the second generalization being introduced here will not be straightforward, but we will get to it

after it has been motivated by a discussion of some additional background material in the next

two paragraphs.

The following implications are known and none of them can be reversed: pseudo-valuation

domain ⇒ strongly divided domain ⇒ divided domain ⇒ going-down domain ⇒ treed domain

(see [4], [9], [8], [14]). Apart from �strongly divided", the other domain-theoretic concepts

which have just been mentioned have well established generalizations to rings, and it is well

known that pseudo-valuation ring (or PVR, in the sense of [2]) ⇒ divided ring (in the sense of

[9], [5]) ⇒ going-down ring (in the sense of [9]) ⇒ treed ring (with none of these implications

being reversible). Moreover, if P stands for any of �pseudo-valuation", �divided", �going-down"

or �treed", then a domain is aP-ring if and only if it is aP-domain. We noted above that the same

behavior holds in passing from strongly divided domains to strongly divided rings in the �rst

sense. We believe that it should also hold for the concept that is about to be introduced, namely,

a �strongly divided ring in the second sense." A clue as to how to formulate this de�nition is

provided next by recalling the genesis of the de�nition of going-down rings given in [11].

One could have simply taken verbatim the de�nition of a going-down domain (in terms of the

going-down property GD of ring extensions [17, page 28]) and then changed the word �domain"

to �ring" throughout in that de�nition (which is akin to how we obtained the de�nition of a

�strongly divided ring in the �rst sense"). Instead, it was decided that a ring R would be de�ned

to be a going-down ring if and only if R/P is a going-down domain for all P ∈ Spec(R). It was
shown in [11] that these two candidates for the de�nition of a going-down ring are equivalent

for any ring R such that Z(R) = Nil(R), but in general, examples in [11] showed that neither of

these candidates implies the other.

In accordance with the style of the de�nition that was chosen in [11], we now say that a

quasi-local ring R is a strongly divided ring in the second sense if R/P is a strongly divided

domain for all P ∈ Spec(R). Thanks to [4, Proposition 2 (a)], a domain is strongly divided ring

in the second sense if and only if it is a strongly divided domain. In particular, the two senses of

�strongly divided ring" agree in the context of domains. We turn next to the question of �nding

a natural ring-theoretic context beyond that of domains where one can compare these two senses

of the �strongly divided ring" concept.

Our main focus will be on the context of idealizations. Recall that if R is a ring and E is

an R-module, then the idealization A := R(+)E is the ring whose addition is that of R ⊕ E
and whose multiplication is given by (r1, e1)(r2, e2) = (r1r2, r1e2 + r2e1) for all r1, r2 ∈ R
and e1, e2 ∈ E. It is customary to view R as a subring of A via the injective (unital) ring-

homomorphismR → A, r 7→ (r, 0). This focus has been chosen for several reasons: A is never a

domain (provided thatE ̸= 0); the two newly introduced de�nitions may seem hard to work with

because the construction of the total quotient ring of either a factor ring or a ring of fractions can

behave pathologically, but such is not the case for idealizations; and idealizations will provide us

ample opportunity to compare the two de�nitions and to see the extent to which either of them

admits analogues of the �ve results from [4] which were recalled in the second paragraph.

Most of the next section builds on some results for idealizations which are due to J. A. Huck-

aba [16] and which are restated for convenience in Proposition 2.1. As above, let R be a ring and

E an R-module, with A := R(+)E. Corollary 2.2 (c) infers an easy but useful characterization

of when A is integrally closed. Then Theorem 2.3 determines A′, which turns out to be an ideal-
ization, from which it follows that each overring of A′ is also an idealization. Also, Proposition

2.4 collects some basic and useful facts about the interaction of the "torsion-free" and "divisible"

concepts from module theory with a condition that arose naturally in Corollary 2.2.

Our main results are given in Section 3. Proposition 3.2 shows that, in testing whether a

given ring (resp, domain) is a strongly divided ring in the �rst sense (resp., strongly divided

domain), it suf�ces to restrict attention to the integrally closed overrings B of R. This result is
used in the proof of Theorem 3.4, whose part (a) characterizes the idealizations A := R(+)E
which are strongly divided rings in the �rst sense. In case E is a torsion-free R-module, that

characterization simpli�es to a particularly elegant form in Theorem 3.4 (b).Turning next to the

target analogues, we note that the possibility of an analogue of [4, Proposition 1 (a)] fails utterly,

as Example 3.23 (resp., Remarks 3.29 and 3.32 (b)) constructs an idealization which is a strongly

divided ring in the �rst sense and a strongly divided ring in the second sense but is not a divided
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ring (resp., not a PVR).

Proposition 3.13 records that the two senses of �strongly divided ring" agree when the am-

bient ring is a domain (where they each serve to characterize strongly divided domains). But

the �second sense" concept is clearly the more tractable one, as Proposition 3.14 notes that an

idealization A := R(+)E is a strongly divided ring in the second sense if and only if R is a

strongly divided ring in the second sense. In fact, the two concepts are inequivalent. Our path

to showing this involves the search for analogues of [4, Proposition 1 (b)]. Indeed, Proposition

3.16 (b) shows that if R is any ring such that dim(R) ≤ 1, then R is a strongly divided ring in the

second sense. In addition, Proposition 3.3 observes that each zero-dimensional ring (more gener-

ally, each total quotient ring) is a strongly divided ring in the �rst sense. However, in view of [4,

Proposition 1 (b)], a special case of Example 3.19 leads to the construction of a one-dimensional

idealization A which is not a strongly divided ring in the �rst sense (for instance, one could take

A = R(+)R, where R is any quasi-local one-dimensional domain). Given an earlier comment

about a result in [11], it is somewhat surprising (to us) that this example satis�es Z(A) = Nil(A).
Another result along these lines (this time, not using an idealization) is given in Example 3.21,

which constructs a one-dimensional local (Noetherian) ring R which is (a strongly divided ring

in the second sense but) not a strongly divided ring in the �rst sense. Interestingly, while the ring

A in Example 3.19 has two prime ideals, the ring R in Example 3.21 has three prime ideals. One

upshot of these one-dimensional examples is that �strongly divided ring in the second sense"

does not imply �strongly divided ring in the �rst sense." To complete a summary on these points,

we note that Example 3.20 constructs an idealization which is a strongly divided ring in the �rst

sense but is not a strongly divided ring in the second sense.

The best possible analogues of [4, Proposition 1 (c)] are given in Theorem 3.24: each pseudo-

valuation ring is a strongly divided ring in both senses. Finally, with respect to analogues of [4,

Corollary 3] and [4, Corollary 4]: we achieve the former, for strongly divided rings in either

sense, in Corollaries 3.11 and 3.17, for integrally closed idealizations A = R(+)E arising from

a quasi-local domain R and a vector space E over the quotient �eld of R; and we achieve the

latter in Proposition 3.28 for integrally closed idealizations A = R(+)E arising from a quasi-

local domain R and a torsion-free R-module E.

As usual, if R is a ring, R′ denotes the integral closure of R (in tq(R)). Also, if E is an

R-module and P ∈ Spec(R), then EP := ER\P ; in particular, if R ⊆ T are rings and P ∈
Spec(R), then TP := TR\P . Following [17, page 28], we let INC denote the incomparability

property of ring extensions. Given an idealization A = R(+)E arising from a ring R and an

R-module E, it will be convenient to let U(+)V denote the subset U × V of A, for any sets

U ⊆ R and V ⊆ E (without any presumption as to whether the set U(+)V may have any

additional algebraic structure). As usual, ⊂ denotes proper inclusion. Any unexplained material

is standard, as in [17].

2 On the overrings of an idealization

We begin by collecting some results of J. A. Huckaba concerning idealizations that will be useful

below. The recent literature has seen some variants of the traditional meaning of �torsion-free",

but we will adopt the following de�nition of this term (while stressing that it is still widely,

but no longer universally, adopted). If R is a ring and E is an R-module, we say that E is a

torsion-free R-module if Z(E) ⊆ Z(R).

Proposition 2.1. (J. A. Huckaba). Let R be a ring and E an R-module. Put S := R \ (Z(R) ∪
Z(E)), and consider the idealization A := R(+)E. Then:

(a) ([16, Theorem 25.1 (1), (2)]) J is an ideal of A if and only if J = I(+)C for some

ideal I of R and some R-submodule C of E such that IE ⊆ C. If these conditions hold, then

I = {r ∈ R | (r, e) ∈ J for some e ∈ E} and C = {c ∈ E | (r, c) ∈ J for some r ∈ R}.
(b) ([16, Theorem 25.1 (3)]) Spec(A) = {P (+)E | P ∈ Spec(R)}.
(c) ([16, Theorem 25.3]) Let r ∈ R and e ∈ E. Then (r, e) ∈ Z(A) if and only if r ∈ R \ S

(that is, if and only if r ∈ Z(R) ∪ Z(E)).
(d) ([16, Lemma 25.4 and Theorem 25.5 (2)]) If P ∈ Spec(R), then an R-algebra isomor-

phism AP (+)E → RP (+)EP can be given by (r, e)/(s, f) 7→ (r/s, (se − rf)/s2) for all r ∈ R,
s ∈ R \ P and e, f ∈ E.
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(e) ([16, Lemma 25.4 and Theorem 25.5 (1)]) The assignment in (d), but this time for s ∈ S,
induces an R-algebra isomorphism tq(A) → RS(+)ES .

(f) ([16, Lemma 25.4 and Theorem 25.5 (3)]) If E is a torsion-free R-module, then (e) gives

an R-algebra isomorphism tq(A) → tq(R)(+)ES .

(g) ([16, Theorem 25.6]) A′ = (R′ ∩ RS)(+)ES . In particular, if E is a torsion-free R-
module, then A′ = R′(+)ES .

(h) ([16, Corollary 25.7]) If R is an integrally closed ring, then A′ = R(+)ES .

(i) ([16, Corollary 25.8]) If E is a torsion-free R-module, R(+)ES is integrally closed if and

only if R is integrally closed.

We pause to record how Proposition 2.1 (g) leads to a characterization of integrally closed

idealizations.

Corollary 2.2. Let R be a ring and E an R-module. Put A := R(+)E and S := R \ (Z(R) ∪
Z(E)). Then:

(a) R′ ∩RS = R if and only if R is integrally closed in RS .

(b) ES = E if and only if E is a module over RS .

(c) The following conditions are equivalent:
(1) A is integrally closed;

(2) R′ ∩RS = R and ES = E;

(3) R is integrally closed in RS and E is a module over RS .

Proof. The proof of (a) is easy and omitted. Before proving (b), we will explicate the conditions

in its statement. In general, we can view E ⊆ ES via the injective R-module homomorphism

i : E → ES , e 7→ e/1. The condition �ES = E" means that i is surjective. The condition �E
is a module over RS" means that the abelian group E (under addition) is an RS-submodule of

ES . Now, the �only if" assertion in (b) is clear since ES is an RS-module. For the �if" assertion

in (b), it suf�ces to prove that if E is a module over RS , with e ∈ E and s ∈ S, then e/s ∈ E.

This, in turn, holds, since e/s = (1/s) · (e/1) ∈ RS · E = E, thus completing the proof of (b).

Finally, to prove (c), note that Proposition 2.1 (g) leads to (1) ⇔ (2); and (2) ⇔ (3) follows by

combining (a) and (b).

We next determine the integrally closed overrings of any idealization.

Theorem 2.3. Let R be a ring and E an R-module. Put A := R(+)E and S := R \ (Z(R) ∪
Z(E)). Then:

(a) Let T be an overring of R. Put D := {δ ∈ RS | (δ, f) ∈ T for some f ∈ ES} and

F := {f ∈ ES | (δ, f) ∈ T for some δ ∈ RS}. Then D is an overring of R (and D ⊆ RS),
T ⊆ D⊕F as abelian groups (under addition), and T is an R-submodule of D(+)ES . Moreover,

T ′ = (D(+)ES)
′ = (D′ ∩RS)(+)ES .

(b) The integrally closed overrings of A are the rings of the form D(+)ES , where D is a ring

such that R ⊆ D ⊆ RS and D is integrally closed in RS .

(c) Suppose, in addition, that E is torsion-free as an R-module. Then the integrally closed

overrings of A are the rings of the form D(+)ES , where D is an integrally closed overring of R.

Proof. (a) Using the isomorphism prescribed in Proposition 2.1 (e), we can identify tq(A) =
RS(+)ES . The de�nitions of D and F are now clear. One can easily verify that D is an overring

of R which is contained in RS , T ⊆ D ⊕ F as abelian groups (under addition), and T is an

R-submodule of D(+)ES . The rest of the proof of (a) will be devoted to establishing the stated

descriptions of T ′. That will be done by an argument some of which has been inspired by the

proof of [16, Theorem 25.6].

Since T ⊆ D ⊕ F ⊆ D(+)ES , we have T ′ ⊆ (D(+)ES)′. We claim that (D(+)ES)′ ⊆
(D′ ∩ RS)(+)ES . Proving this claim amounts to showing that if (η, f) ∈ RS(+)ES is integral

over D(+)ES , then η ∈ D
′ (∩RS). This, in turn, can be shown by reworking the calculation

(adapted to the present context) from lines 3-7 in [16, page 166]. This proves the above claim.

It now suf�ces to show that (D′ ∩RS)(+)ES ⊆ T ′. As each element of 0(+)ES is nilpotent
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(and hence integral over T ), it will be enough to show that if ξ ∈ D
′ ∩ RS , then ρ := (ξ, 0) is

integral over T . We have

ξn + δn−1ξ
n−1 + · · · + δ1ξ + δ0 = 0 ∈ RS ,

for some �nitely many elements δi ∈ D (and n ≥ 1). For each i, pick fi ∈ F such that ti :=
(δi, fi) ∈ T . Then

ρn + tn−1ρ
n−1 + · · · + t1ρ+ t0 = (ξn + δn−1ξ

n−1 + · · · + δ1ξ + δ0, g) = (0, g),

where g := ξn−1fn−1 + · · · + ξf1 + f0 ∈ ES . As (0, g)2 = (0, 0), squaring both sides of the

preceding display leads to

(ρn + tn−1ρ
n−1 + · · · + t1ρ+ t0)

2 = (0, g)2 = (0, 0) ∈ RS(+)ES ,

and expansion reveals that ρ is indeed integral over T , thus completing the proof of (a).

(b) Suppose �rst that T is an integrally closed overring of A. Let D be as in the statement of

(a). Put D := D
′ ∩ RS . It is clear that D is a ring such that R ⊆ D ⊆ D ⊆ RS , and it is easy to

see that D is integrally closed in RS (cf. Corollary 2.2 (a)). As T is integrally closed, T = T ′,
which, by (1), coincides withD(+)ES . Thus, T can be expressed in the asserted form.

Next, suppose that D is a ring such that R ⊆ D ⊆ RS and D is integrally closed in RS ,

and consider the ring T := D(+)ES . By Proposition 2.1 (e), T is an overring of A. By the

�rst assertion in (a), T ′ = (D′ ∩ RS)(+)ES . The assumptions on the ring D are equivalent to

D′ ∩RS = D, and so T ′ = D(+)ES = T . Thus, T is integrally closed.

(c) The assertion is trivial if R is the zero ring, and so, without loss of generality, R ̸= 0.

Then, since E is a torsion-free R-module, we have Z(E) = 0 ⊆ Z(R), and so S = Z(R) and
RS = tq(R). The assertion is now immediate as a special case of (b).

In the next section, we will apply the fact (from Theorem 2.3 (b)) that any integrally closed

overring of an idealization is an idealization. It seems to be an open question to �nd an equally

explicit description of an arbitrary overring of an idealization.

Proposition 2.4 will give a companion for Corollary 2.2 (b) that will be of use in the next

section. First, recall that if R is a ring and E is an R-module, we say that E is a divisible

R-module if, for all e ∈ E and r ∈ R \ Z(R), there exists f ∈ E such that rf = e.

Proposition 2.4. Let R be a ring and E an R-module. Put S := R \ (Z(R) ∪ Z(E)). Then:
(a) If E is a divisible R-module, then E is a module over RS .

(b) If E is torsion-free as an R-module and E is a module over RS , then E is a divisible

R-module.

(c) If E is torsion-free as an R-module, then E is a module over RS if and only if E is a

divisible R-module.

(d) If E is a module over tq(R), then E is a divisible R-module.

Proof. (a) Since E is an R-module, there is a ring homomorphism g : R → HomZ(E,E)
(given by g(r)(e) = re for all r ∈ R and e ∈ E). Our task is to show that g induces an R-
algebra homomorphism RS → HomZ(E,E); equivalently, to show that if r ∈ S, then g(r) is a
bijection. Note that g(r) is an injection (for, if, on the contrary, there exists a nonzero element

e ∈ ker(g(r)), then re = 0, whence r ∈ Z(E), contradicting r ∈ S). Finally, if e ∈ E, the

hypothesis that E is a divisible R-module supplies f ∈ E such that rf = e (since r ∈ R\Z(R)),
whence g(r)(f) = rf = e, so that g(r) is also a surjection.

(b) We will show that if e ∈ E and r ∈ R \ Z(R), then there exists f ∈ E such that

rf = e. Note that r ̸∈ Z(E), since the hypothesis that E is a torsion-free R-module means that

Z(E) ⊆ Z(R). Therefore, r ∈ S. Hence, the hypothesis that E is a module over RS yields an

element f := (1/r) · e. It is clear that rf = e.
(c) Combine (a) and (b).

(d) As in the proof of (a), we need to show that the ring homomorphism g : R → HomZ(E,E)
induces an R-algebra homomorphism RR\Z(R) → HomZ(E,E); equivalently, to show that if

r ∈ R \Z(R), then g(r) is a bijection. To see that g(r) is an injection, note that if e ∈ ker(g(r)),
then e = (1/r) · (re) = (1/r) · g(r)(e) = (1/r) · 0 = 0. Finally, to show that g(r) is a surjection,
observe that if e ∈ E, then g(r) sends f := (1/r) · e to e, since g(r)(f) = rf = e.
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Remark 2.5. Let R be a ring and E an R-module. As usual, put S := R \ (Z(R) ∪ Z(E)). The
above result leads to the question whether the �torsion-free" hypothesis in Proposition 2.4 (c) can

be deleted (equivalently, whether the converse of Proposition 2.4 (a) is valid). In other words, is

it the case that E is a divisible R-module if (and only if) E is an RS-module? By Proposition 2.2

(b), an equivalent question is the following. Is it the case that E is a divisible R-module if (and

only if) E = ES? The answer is in the negative. To see this, we will make the �rst of several

uses of the following construction of J. A. Huckaba [16, page 166].

Let R be any nonzero ring and take the R-module E to be ⊕R/Pα, where Pα ranges over the

set of prime ideals ofR. As above, take S := R\(Z(R)∪Z(E)) and A := R(+)E. As Huckaba

notes, Z(E) is the set of nonunits of R, so that (by Proposition 2.1 (e)) tq(A) can be identi�ed

with R(+)ES . In fact, since S is the set of units of R, we have (not only that RS = R but also)

that ES = RS · E = R · E = E. Thus, tq(A) = R(+)E = A; that is, A is a total quotient ring.

To answer the above question in the negative, we now apply the above construction to the

case where (R,m) is any quasi-local domain of (Krull) dimension 1. Then Spec(R) = {0,m}
and the above construction leads (up to R-module isomorphism) to E = R ⊕ R/m. Pick any

nonzero element r ∈ m. Put e := (0, 1 +m) ∈ E. As we saw above that E = ES , it remains

only to show that E is not a divisible R-module. To do so, observe that r ∈ R \ Z(R) and each

element f = (ρ, ξ) ∈ E satis�es rf = (rρ, rξ) = (rρ, 0) ̸= (0, 1+m) = e.

3 Testing the Two De�nitions

We begin this section by seeking an idealization-theoretic analogue of the following result [4,

Corollary 3]: a quasi-local integrally closed domain R is a strongly divided domain if and only

if each proper simple overring of R is treed. Using Proposition 2.1 (b), one sees easily that an

idealization A := R(+)E is treed if and only if R is treed. Also because of Proposition 2.1

(b), we henceforth restrict attention to quasi-local rings (although, as in Proposition 3.1, that

restriction is occasionally irrelevant).

Proposition 3.1. Let (R,m) be a quasi-local ring and E an R-module such that the idealization

A := R(+)E is integrally closed. Put S := R \ (Z(R) ∪ Z(E)). Then:
(a) The following two conditions are equivalent:

(1) Each proper simple overring of A is treed;

(2) R[ρ] is treed for each ρ ∈ RS \R.
(b) Suppose, in addition, that E is torsion-free as an R-module. Then the following two

conditions are equivalent:

(1) Each proper simple overring of A is treed;

(2) Each proper simple overring of R is treed.

Proof. By Proposition 2.1 (b), A is quasi-local, with unique maximal idealm(+)E. Recall from

Proposition 2.1 (e) that we can identify tq(A) = RS(+)ES .

(a) By Corollary 2.2 (c), the �integrally closed" hypothesis on A means that R′ ∩ RS = R
and ES = E (equivalently, that R is integrally closed in RS and E is a module over RS). In

other words, A = R(+)E where E is a module over RS and the quasi-local ring R is integrally

closed in RS . A proper simple overring of A is any ring T of the form T = A[(ρ, f)] where
(ρ, f) ∈ tq(A) \ A; that is (since E = ES), a ring of the form T = A[(ρ, f)] where ρ ∈ RS \ R
and f ∈ E. As (0, f) ∈ A ⊂ T , we have T = A[(ρ, 0)] = R[ρ](+)E. By an earlier comment,

such a ring T is treed if and only if R[ρ] is treed, and so (a) follows at once.
(b) The assertion is trivial if R is the zero ring, and so, without loss of generality, R ̸= 0.

Then, as in the proof of Theorem 2.3 (c), the �torsion-free" hypothesis leads to tq(R) = RS , and

so (b) follows as a special case of (a).

Before making a connection with Proposition 3.1, we give a characterization of �strongly

divided ring in the �rst sense" which is new even in the case of domains.

Proposition 3.2. Let (R,m) be a quasi-local ring (resp., quasi-local domain). Then R is a

strongly divided ring in the �rst sense (resp., strongly divided domain) if (and only if), whenever
T is an integrally closed overring of R and Q is a prime ideal of T such that Q∩R ̸= m, then Q
is a prime ideal of R (that is, Q ⊆ R).
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Proof. The �only if" assertion is trivial. As for the �if" assertion, suppose that T is an overring

of R and P is a prime ideal of T such that P ∩ R ̸= m. Our task is to prove that P is a prime

ideal of R (that is, P ⊆ R). Since the ring extension T ⊆ T ′ is integral, it follows from the

Lying-over Theorem (cf. [17, Theorem 44]) that there existsQ ∈ Spec(T ′) such thatQ∩T = P .
Then Q ∩ R = Q ∩ (T ∩ R) = P ∩ R ̸= m. Therefore, by the hypothesis of the �if" assertion,

Q ⊆ R and so, a fortiori, P ⊆ R. Finally, the parenthetical assertion characterizing strongly

divided domains now follows because a domain is a strongly divided domain if and only if it is

a strongly divided ring in the �rst sense.

We pause to isolate an easy, but surprisingly useful, result.

Proposition 3.3. Let R be a ring. If tq(R) = R, then R is a strongly divided ring in the �rst

sense. In particular, if dim(R) = 0, then R is a strongly divided ring in the �rst sense.

Proof. The �rst assertion is trivial. The second assertion is a special case of the �rst, since every

zero-dimensional ring is its own total quotient ring (by [17, Theorem 84]).

Theorem 3.4. Let (R,m) be a quasi-local ring and E an R-module. Put A := R(+)E and

S := R \ (Z(R) ∪ Z(E)). Then:
(a) The following two conditions are equivalent:

(1) A is a strongly divided ring in the �rst sense;

(2) E = ES and, whenever D is a ring such that R ⊆ D ⊆ RS and D is integrally closed

in RS and Q ∈ Spec(D) such that Q ∩R ̸= m, then Q ∈ Spec(R) (that is, Q ⊆ R).
(b) Suppose, in addition, that E is torsion-free as an R-module. Then the following three

conditions are equivalent:

(i) A is a strongly divided ring in the �rst sense;

(ii) E = ES and R is a strongly divided ring in the �rst sense;

(iii) E is a module over tq(R) and R is a strongly divided ring in the �rst sense.

Proof. (a) Suppose �rst that dim(R) = 0. We will show that both (1) and (2) hold. By Proposi-

tion 2.1 (b), dim(A) = 0, and so Proposition 3.3 shows that (1) holds. To prove (2), it suf�ces to

prove that E = ES . This, in turn, will follow from Corollary 2.2 (b) if we show that RS = R. To
that end, observe that since dim(R) = 0, it follows from [17, Theorem 84] that each non-zero-

divisor in R is a unit of R, whence S must be the set of units of R, and so RS = R. Therefore,
we may assume henceforth that dim(R) > 0.

Applying Proposition 3.2 to the ring A, we see (in view of Theorem 2.3 (b) and parts (e) and

(b) of Proposition 2.1) that (1) is equivalent to the following condition: D(+)ES , whenever D
is a ring such that R ⊆ D ⊆ RS and D is integrally closed in RS and Q ∈ Spec(D) such that

(Q(+)ES) ∩ A ⊂ m(+)E (that is, such that Q ∩ R ⊂ m), then Q(+)ES ⊆ A (that is, Q ⊆ R
and E = ES). It therefore suf�ces to prove that if no such D and Q exist with the property that

Q ∩ R ⊂ m, then E = ES . In fact, since dim(R) > 0, such D and Q must exist, because every

minimal prime ideal of a base ring is lain over in any ring extension (cf. [17, Exercise 1, page

41]).

(b) The �torsion-free" hypothesis ensures that RS = tq(R). Under these conditions, we see
via Proposition 3.2 that condition (2) in the statement of (a) becomes equivalent to (ii). It now

follows via Corollary 2.2 (b) that (b) is a special case of (a).

Remark 3.5. It is important to note that one cannot delete the condition �E = ES" from the

statements of conditions (a) (2) and (b) (ii) in Theorem 3.4; nor can one delete the condition

�E is a module over tq(R)" from the statement of condition (b) (iii) in Theorem 3.4. Perhaps

the easiest example showing this fact is given as follows. Let (R,m) be a quasi-local one-

dimensional domain. Then R is a strongly divided domain (and hence a strongly divided ring in

the �rst sense) by [4, Proposition 1 (b)]. However, A := R(+)R is not a strongly divided ring

in the �rst sense, by Theorem 3.4 (a) (even though E = R is a torsion-free R-module), since E
(= R) is not a module (that is, is not a vector space) over qf(R) = ES .

The domain-theoretic case of Theorem 3.4 (b) deserves to be isolated. We give it next and

follow it with several applications.
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Corollary 3.6. Let R be a quasi-local domain with quotient �eld K and let E be a torsion-free

R-module. Put A := R(+)E. Then A is a strongly divided ring in the �rst sense ⇔ R is a

strongly divided domain andKE = E ⇔ R is a strongly divided domain and E is a vector space

over K.

Proof. The assertions follow from Theorem 3.4 (b) once we notice that RS = K and KE =
RSE = ES .

Corollary 3.7. Let R be a quasi-local domain with quotient �eld K and let E be a vector space

over K. Put A := R(+)E. Then A is a strongly divided ring in the �rst sense if and only if R is

a strongly divided domain.

Proof. The assertion follows from Corollary 3.6 once we notice that every vector space over K
must be a torsion-free R-module.

Remark 3.8. (a) The conditions in Corollaries 3.6 and 3.7 are tractable and will form the setting

for a number of applications in the rest of this paper. However, one should note that even if R is

a quasi-local domain (and E is an R-module), the equivalence of those conditions can fail in the

absence of the �torsion-free" hypothesis. For instance, let us revisit the construction of Huckaba

that was recalled in Remark 2.5. Specialize to the context where (R,m) is a quasi-local domain

with quotient �eld K and, as before, take the R-module E to be ⊕R/Pα, where Pα ranges over

the set of prime ideals of R. Recall from Remark 2.5 that A := R(+)E is its own total quotient

ring, and so A is trivially a strongly divided ring in the �rst sense. However, the other conditions

from the statements of Theorem 3.4 (b) and Corollary 3.6 need not hold in this setting. Indeed,

although E = ES (where, as usual, we de�ne S := R\(Z(R)∪Z(E))), E need not be a module

over tq(R) (= K) and R need not be a strongly divided ring in the �rst sense. To see this, one

need only takeR to be a quasi-local domain which is not a strongly divided domain (for instance,

take R to be the divided domain in [4, Example 3]). To avoid such �pathology", we will often

impose a "torsion-free" hypothesis from now on.

(b) We next pursue the role of the �torsion-free" condition. Consider further the construction

in (a). Using the notation from (a), observe that S is the set of units of R, whence E = ES

canonically. Thus, unless each nonunit of R is a zero-divisor (in R), E is not a torsion-free

R-module. In particular, if R is a domain but not a �eld, then E is not a torsion-free R-module.

On the other hand, if R is a �eld, call it K, then A = K(+)K = tq(A) and, in this case, E = K
is a torsion-free module over K = R and R is trivially a strongly divided domain.

While the next result could have been given in the preceding section, it is also motivated by

the above discussion concerning torsion-freeness and it will be used in the proof of Corollary

3.10.

Proposition 3.9. Let R be a quasi-local ring and E a torsion-free R-module. Put A := R(+)E
and S := R \ (Z(R) ∪ Z(E)). If A is an integrally closed ring, then R is integrally closed, E is

a divisible R-module and E = ES .

Proof. The �torsion-free" hypothesis ensures that RS = tq(R). The assertions then follow by

combining parts (c) and (b) of Corollary 2.2 with Proposition 2.4 (b).

Corollary 3.10. Let (R,m) be a quasi-local domain and E a torsion-freeR-module such that the

idealization A := R(+)E is integrally closed. Then the following conditions are equivalent:

(1) Each proper simple overring of A is treed;

(2) R is a strongly divided domain;

(3) Each proper simple overring of R is treed.

Proof. Since R is integrally closed by Corollary 2.2 (c) (or by Proposition 3.9), we see via [4,

Corollary 3] that (2)⇔ (3); and (1) ⇔ (3) by Proposition 3.1 (b).

Corollary 3.11. Let (R,m) be a quasi-local domain with quotient �eld K and E a vector space

over K such that the idealization A := R(+)E is integrally closed. Then the following condi-

tions are equivalent:

(1) A is a strongly divided ring in the �rst sense;

(2) Each proper simple overring of A is treed;

(3) R is a strongly divided domain;

(4) Each proper simple overring of R is treed.
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Proof. As E is a vector space over K, we have that E is a torsion-free R-module. The assertion

now follows by combining Corollary 3.7 and 3.10.

Remark 3.12. Corollary 3.11 is the kind of desirable result that was mentioned in the �rst para-

graph of this section. It is natural to ask if the �torsion-free" hypothesis in Corollary 3.10 (which

played a major role in the proof of Corollary 3.11) can be deleted. The answer is in the negative.

To see this, one need only rework the example in Remark 3.8 (a).

It also seems natural to ask if the concept of �a strongly divided ring in the second sense"

admits results with some of the �avor of the earlier results in this section. We begin the analysis

of this concept by answering the most clearly relevant question.

Proposition 3.13. Let R be a quasi-local domain. Then the following conditions are equivalent:

(1) R is a strongly divided ring in the �rst sense;

(2) R is a strongly divided ring in the second sense;

(3) R is a strongly divided domain.

Proof. (1)⇔ (3) since, by de�nition, a domain is a strongly divided ring in the �rst sense if and

only if it is a strongly divided domain. Also, (2) ⇒ (3) since R/0 ∼= R. It remains to prove that

(3) ⇒ (2); in other words, that if R is a strongly divided domain and P ∈ Spec(R), then R/P is

a strongly divided domain. This assertion holds if P is a maximal ideal of R since any �eld is

trivially a strongly divided domain; and it also holds if P is a non-maximal prime ideal of R, by
[4, Proposition 2 (a)].

Next, we show that the analogue of Theorem 3.4 for the �strongly divided ring in the second

sense" concept is surprisingly easy.

Proposition 3.14. Let (R,m) be a quasi-local ring and E an R-module. Put A := R(+)E. Then

A is a strongly divided ring in the second sense if and only if R is a strongly divided ring in the

second sense.

Proof. By Proposition 2.1 (b), A is a strongly divided ring in the second sense if and only if

A/(P (+)E) is a strongly divided domain for each P ∈ Spec(R). The assertion now follows

because, for any such P , we have A/(P (+)E) ∼= R/P .

The domain-theoretic case of Proposition 3.14 deserves to be isolated.

Corollary 3.15. Let (R,m) be a quasi-local domain and E an R-module. Put A := R(+)E.

Then A is a strongly divided ring in the second sense if and only if R is a strongly divided

domain.

Proof. Combine Propositions 3.13 and 3.14.

Recall from the proof of Proposition 3.13 that each factor domain of a strongly divided do-

main must be a strongly divided domain. Finding a generalization or even an analogue of this

assertion for the "strongly divided ring in the �rst sense" concept is problematic because the total

quotient ring of a factor ring can behave erratically (especially for non-divided rings). However,

Proposition 3.16 (a) will easily give a generalization for the "strongly divided ring in the second

sense" concept. In addition, Proposition 3.16 (b) goes beyond �nding an analogue for the second

assertion in Proposition 3.3. In view of Proposition 3.16 (a), it seems natural to ask if the class

of strongly divided rings in the second sense is stable under the formation of rings of fractions.

In part (c) of the next result, we give an af�rmative answer to this question, and then in part (d),

we give the domain-theoretic special case of (c) which seems to have been overlooked in [4].

Proposition 3.16. (a) Let R be a ring. Then R is a strongly divided ring in the second sense (if
and) only if R/I is a strongly divided ring in the second sense for each ideal I of R.

(b) If (R,m) is a quasi-local ring and dim(R) ≤ 1, then R is a strongly divided ring in the

second sense.

(c) IfR is a strongly divided ring in the second sense and S is a multiplicatively closed subset

of R, then RS is a strongly divided ring in the second sense.

(d) If R is a strongly divided domain and S is a multiplicatively closed subset of R, then RS

is a strongly divided domain.
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Proof. (a) The �if" assertion is clear because R/0 ∼= R. Conversely, suppose that R is a strongly

divided ring in the second sense, and let I be an ideal of R. Our task is to show that if P is any

prime ideal of R that contains I , then (R/I)/(P/I) is a strongly divided domain. The assertion

now follows since (R/I)/(P/I) ∼= R/P .
(b) We will prove that if P ∈ Spec(R), then R/P is a strongly divided domain. This holds if

P = m since any �eld is a strongly divided domain. Moreover, this also holds if P ̸= m since

any quasi-local one-dimensional domain is strongly divided [4, Proposition 1 (b)].

(c), (d) We begin the proof of (c) by showing that it can be reduced to proving (d). Consider

Q ∈ Spec(RS); that is, Q = PRS where P ∈ Spec(R) satis�es P ∩ S = ∅. To prove (c), one

must show that RS/Q is a strongly divided domain. By combining (a) with Proposition 3.13, we

see that D := R/P is a strongly divided domain. Note that S∗ := {s + P ∈ D | s ∈ S} is a

multiplicatively closed subset of D. It is well known (and easy to check) that the canonical ring

homomorphism j : DS∗ → RS/Q (given by (r + P )/(s+ P ) 7→ r/s+ PRS for all r ∈ R and

s ∈ S) is an isomorphism. Therefore, to complete the reduction of (c) to (d), it will be enough to

show that DS∗ is quasi-local. This, in turn, follows from the more general consequence of [17,

Theorem 9] that if A is any quasi-local treed ring, then so is any nonzero ring of fractions of A.
(Of course, this fact applies to the present situation since the quasi-local domain D is treed, as

can be seen by combining [4, Proposition 1 (a)] with the fact that any divided domain must be

treed [1, Theorem 1.3], [9, Lemma 2.2 (c)].)

In view of the above isomorphism (j), we may now assume (after a harmless change of

notation) that R is a domain. In other words, it remains only to prove (d), so that (R,m) is
assumed to be a strongly divided domain. By the above comments, RS is a quasi-local treed

domain, say with unique maximal ideal QRS for some prime ideal Q (⊆ m) of R such that

Q ∩ S = ∅. Our task is to show that if T is an overring of RS (and hence of R) and P is a prime

ideal of T such that P ∩ RS ⊂ QRS , then P ⊆ RS . In fact, since P ∩ R = (P ∩ RS) ∩ R ⊂
QRS ∩ R = Q ⊆ m, the fact that R is a strongly divided domain yields that P ⊆ R, whence
P ⊆ RS , as desired.

It seems natural to ask if idealizations admit a result with at least some of the �avor of

Proposition 3.13. We show next that the answer is in the af�rmative if we add some hypotheses.

However, Examples 3.19 and 3.20 will show that the answer is in the negative in general, as

these examples will show that the two senses of �strongly divided ring" are not equivalent, even

for idealizations.

Corollary 3.17. Let R be a quasi-local domain with quotient �eld K, let E be a vector space

over K, put A := R(+)E. Then A is a strongly divided ring in the �rst sense if and only if A is

a strongly divided ring in the second sense (if and only if R is a strongly divided domain).

Proof. Combine Corollaries 3.7 and 3.15.

Remark 3.18. Corollary 3.17 allows us to expand the statement of Corollary 3.11 by adding a

�fth equivalent condition, namely, (5): A is a strongly divided ring in the second sense.

Example 3.19. Let R be a (quasi-local) strongly divided domain which is distinct from K :=
qf(R). Let E be a torsion-free R-module which is not a vector space over K (for instance, take
E to be R). Put A := R(+)E. Then A is a strongly divided ring in the second sense, but A is

not a strongly divided ring in the �rst sense.

Proof. The �rst assertion follows from Corollary 3.15; and the second assertion follows from

Theorem 3.4 (b).

Example 3.20. Let R be a quasi-local domain which is not a strongly divided domain. Take the

R-module E to be⊕R/Pα, where Pα ranges over the set of prime ideals ofR. Put A := R(+)E.

Then A is a strongly divided ring in the �rst sense, but A is not a strongly divided ring in the

second sense.

Proof. Notice that A has been built with the oft-used construction of Huckaba. As shown in

Remark 2.5, tq(A) = A, and so it follows from the �rst assertion in Proposition 3.3 that A is

a strongly divided ring in the �rst sense. However, since R is not a strongly divided domain, it

follows from Corollary 3.15 that A is not a strongly divided ring in the second sense.
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We next expand upon the inequivalence of the two �strongly divided ring" concepts by show-

ing that the second assertion in Proposition 3.3 cannot be generalized so as to have the full �avor

of Proposition 3.16 (b). While the ring R in Example 3.21 will be shown to admit the same

conclusion as the idealization in Corollary 3.19, R is not overtly an idealization.

Example 3.21. There exists a one-dimensional (quasi-) local Noetherian ring which is (a strongly
divided ring in the second sense, but) not a strongly divided ring in the �rst sense. One way to

construct such an R is as follows. Let X and Y be commuting algebraically independent inde-

terminates over a �eld k, put B := k[X,Y ]/(XY ), let x := X + (XY ) and y := Y + (XY ) (in
B), and set R := B(x,y).

Proof. The class of Noetherian rings is stable under the formation of polynomial rings in �nitely

many variables, the formation of factor rings and the formation of rings of fractions. Therefore,

R is Noetherian. Moreover, since (x, y) is a maximal ideal of B, we see that R is quasi-local.

Consider the elements u := x/1 and v := y/1 in R. As dim(k[X,Y ]) = 2 (cf. [17, Theorem

149]), it is easy to see that the only prime ideals of R are p := Ru, q := Rv, and Ru + Rv
(= p+ q =: m); and that these ideals are pairwise distinct. Hence, dim(R) = 1. Therefore, by

Proposition 3.16 (b), R is a strongly divided ring in the second sense.

It remains to show that R is not a strongly divided ring in the �rst sense. To do so, we need

to identify T := tq(R). First, note that since X and Y are non-associated prime elements of the

unique factorization domain k[X,Y ], it follows easily thatBx∩By = 0. Then, since localization

commutes with �nite intersections, we have Ru∩Rv = 0. Thus, R is a reduced ring. Therefore,

Z(R) is the union of the minimal prime ideals of R, whence T = RR\(p∪q).

Observe that pT ∈ Spec(T ) and pT ∩ R = p ⊂ m. Hence, to prove that R is not a strongly

divided ring in the �rst sense, it suf�ces to show that pT ̸= p (equivalently, that pT ̸⊆ R).
Suppose, on the contrary, that pT ⊆ R. Pick an element λ ∈ m \ (p ∪ q). (To �nd λ, one could
appeal to the Prime Avoidance Lemma [17, Theorem 81], but in this case, it is just as easy to

take λ := u + v.) For each n ≥ 1, λn ∈ m \ (p ∪ q). As pT = p has been assumed, it follows

that u/λn ∈ p ⊆ R for each n ≥ 1. Then, by cross-multiplication,

u ∈ ∩∞
n=1 λnR ⊆ ∩∞

n=1 mn.

The last-displayed intersection is 0, by the Krull Intersection Theorem (cf. [17, Theorem 79]).

But u ̸= 0 (since, for instance, Ru = p ̸⊆ q). This (desired) contradiction completes the

proof.

Remark 3.22. In the Introduction, motivated by [11, Theorems 2.4 and 2.5], we raised the ques-

tion whether a ring A that is strongly divided in the �rst (resp., second) sense and satis�es

Z(A) = Nil(A) must also be strongly divided in the second (resp., �rst) sense. We can answer

one of these questions in the negative (leaving the other question open). Indeed, the idealization

in Example 3.19 does satisfy Z(A) = Nil(A) because of the following general fact. If R is a do-

main and E is a torsion-free R-module, then every zero-divisor of the ring R(+)E is nilpotent.

This methodology cannot be applied to the construction in Example 3.20 (where the ambient

module is not torsion-free).

One can view Propositions 3.3 and 3.16(b) and Example 3.21 as resulting from our search for

analogues, amid nontrivial zero-divisors, of the fact [4, Proposition 1 (b)] that each quasi-local

domain of (Krull) dimension at most 1 is a strongly divided domain. In the same spirit, one

can ask for analogues of the result [4, Proposition 1 (a)] that each strongly divided domain is a

divided domain. Recall from [9] (resp., [5]) that a domain (resp., ring) R is said to be a divided

domain (resp., divided ring) if, whenever P ∈ Spec(R) and r ∈ R \ P , then P ⊆ Rr. It is easy
to see that any divided ring is a quasi-local treed ring.

We will show in Example 3.23 that the most naturally stated analogues of [4, Proposition 1

(a)] are not valid. To further motivate the next result, note that [6, Example 2.18 (a)] constructed

a ringR such that tq(R) = R (so thatR is a strongly divided ring in the �rst sense, by Proposition

3.3) and R is not a divided ring.

The construction in Example 3.23 will involve a pseudo-valuation ring (PVR). The class of

PVRs was introduced in [2] and studied further in [3]. We will recall the de�nition of a PVR and

some related facts after Example 3.23.
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Example 3.23. For each integer d ≥ 2, there exists a d-dimensional pseudo-valuation ring

(R,m) such that A := R(+)R is a strongly divided ring in the �rst sense and a strongly di-

vided ring in the second sense, but A is not a divided ring. It can be also be arranged that

Z(R) = m (so that tq(R) = R) and tq(A) = A.

Proof. By [3, Example 3.16 (c)], there exists a d-dimensional pseudo-valuation ring (R,m) such
that Z(R) = m. As in the statement, A := R(+)R. Note that S := R \ Z(R) = R \m is the set

of units of R, and so RS = R canonically. Hence, by Proposition 2.1 (e), tq(A) = RS(+)RS =
R(+)R = A. Thus, by Proposition 3.3, A is a strongly divided ring in the �rst sense. Moreover,

sinceR is a strongly divided ring in the second sense by Lemma 3.23, it follows from Proposition

3.14 that A is also a strongly divided ring in the second sense. It remains only to prove that A is

not a divided ring. We will do so via an argument that is inspired by the �nal paragraph of the

proof of [6, Lemma 2.13].

Note that P0 := Nil(R) is the unique minimal prime ideal of R (cf. [6, Remark 2.4 (a)]).

Consider Q := P0(+)R. It follows from Proposition 2.1 (b) that Nil(A) = Nil(R)(+)R =
P0(+)R = Q. To complete the proof, it suf�ces to �nd an element a ∈ A \Q such that Q ̸⊆ Aa.
Take P to be any non-minimal non-maximal prime ideal of R; that is, P ∈ Spec(R) and P0 ⊂
P ⊂ m. Pick r ∈ P \ P0 and e ∈ m \ P . Observe that a := (r, 0) ∈ A \ Q. It now suf�ces

to obtain a contradiction from the assumption that Q ⊆ Aa. Under this assumption, there exists

b = (s, f) ∈ A such that (0, e) = ba; that is, (0, e) = (sr, fr), whence e = fr ∈ RP = P , the
desired contradiction.

Recall that a ring R is said to be a pseudo-valuation ring if, for each P ∈ Spec(R) and
a, b ∈ R, one has that Pa and Rb are comparable with respect to inclusion. The case a = 1

shows that each PVR is a divided ring. However, the converse is false, even if R is a domain [10,

Remark 4.10 (b)]. To facilitate the proof of Theorem 3.24, we also record here the facts that the

class of PVRs is stable under homomorphic images [2, Corollary 3]; and a domain is a PVR if

and only if it is a pseudo-valuation domain (PVD).

In view of Proposition 3.13, one consequence of [4, Example 3] is that a divided ring need

not be a strongly divided ring in either sense, even for domains. Thus, the next result shows one

way that PVRs behave much more nicely than arbitrary divided rings.

Theorem 3.24. If (R,m) is a PVR, then R is a strongly divided ring in the �rst sense and a

strongly divided ring in the second sense.

Proof. We will take care of the �second sense" assertion �rst. One must show that if P ∈
Spec(R), then R/P is a strongly divided domain. By the above-mentioned facts, R/P is a PVD

and hence, by [4, Proposition 1 (c)], a strongly divided domain.

We turn to the (more dif�cult) proof of the ��rst sense" assertion. Suppose the assertion

fails. Then there exist an overring B of R and P ∈ Spec(B) such that p := P ∩ R ⊂ m and

P ̸⊆ R. Pick u ∈ P \ R. One can express u = a/b for some a ∈ R and b ∈ R \ Z(R). In fact,

a = bu ∈ P ∩ R = p. Note that a ̸∈ Rb, since u ̸∈ R. In particular, p ̸⊆ Rb. However, p and Rb
are comparable (since R is a divided ring), and soRb ⊆ p; that is, b ∈ p. In particular, p ̸⊆ Z(R).
Next, since R is a quasi-local treed ring, Z(R) ∈ Spec(R). (To see this, recall that Z(A) is a
union of prime ideals for any ring A and then apply [17, Theorem 9].) Hence Z(R) ⊂ p. Thus,
there is a canonical R-algebra homomorphism h : Rp → RR\Z(R) (= tq(R)). One checks easily
that h is an injection. (Indeed, if c ∈ R and d ∈ R \ p with (c/d =) h(c/d) = 0/1 ∈ tq(R), then
there exists ζ ∈ R \ Z(R) such that ζc = 0, whence c = 0 and c/d = 0/1 ∈ Rp.) Thus, we can

view R ⊆ Rp ⊆ BR\p ⊆ tq(R).
For the sake of completeness, we pause to show that pRp = p. It is clearly enough to prove

that pRp ⊆ R; in other words, that if x ∈ p and y ∈ R \ p, then x/y ∈ R. In fact, since R is a

divided ring, p ⊂ Ry, whence there exists γ ∈ R with x = γy and x/y = γ ∈ R, as required.
Since R is a PVR and p is a non-maximal prime ideal of R, it follows from [2, Theorem

12] that Rp is a chained ring (in the sense that the ideals of this ring are linearly ordered by

inclusion). Suppose �rst that Rpa ⊆ Rpb. Then

u = a/b ∈ Rp ∩ P ⊆ Rp ∩ PR\p = (R ∩ P )R\p = pR\p = pRp = p ⊆ R,
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a contradiction. Therefore, Rpb ⊆ Rpa. In particular, b ∈ Rpa, whence a = bu ∈ Rpau. If

a ̸∈ Z(R), then 1 ∈ Rpu ⊆ BR\pu, whence u is a unit of BR\p, a contradiction (since u is a

member of the prime ideal PBR\p of BR\p). Therefore, a ∈ Z(R).
Finally, since R is a divided ring and Z(R) ∈ Spec(R), we have that Z(R) is comparable

to Rb. As b ∈ R \ Z(R), it follows that Z(R) ⊆ Rb. In particular, a ∈ Rb, the desired

contradiction.

Apart from Theorem 3.24 and the role of PVRs in the proof of Example 3.23, further con-

sideration of PVRs is warranted here because we wish to give a full analogue of the result [4,

Proposition 1 (c)] that each PVD is a strongly divided domain. Corollary 3.26 (a) will do so for

certain idealizations A = R(+)E. In view of the more technical requirements for A to be a PVR

when the ring R is not a domain (for which, see the statement of [7, Theorem 3.2 (b)]), we will,

in the interest of simplicity, restrict R to being a domain. The next result gleans some useful

facts from [7].

Proposition 3.25. Let R be a domain with quotient �eld K and let E be an R-module. Put

A := R(+)E. Then:

(a) The following two conditions are equivalent:
(1) A is a PVR;

(2) R is a PVD and E is a divisible R-module.

(b) Suppose, in addition, that E is an overring of R. Then the following conditions are

equivalent:

(i) A is a PVR;

(ii) R is a PVD and E = K.

Proof. For (a), apply [7, Theorem 3.1]; for (b), apply [7, Theorem 3.2].

The domain-theoretic assumption in Proposition 3.25 has substantially simpli�ed matters.

Indeed, note that the ring A = R(+)R in Example 3.23 is not a PVR (it is not even a divided

ring), although R is a PVR, R = tq(R), and R is a divisible R-module.

Corollary 3.26. (a) Let R be a domain and E a torsion-free R-module such that A := R(+)E
is a PVR. Then A is a strongly divided ring in the �rst sense and A is a strongly divided ring in

the second sense.

(b) Let R be a domain with quotient �eld K, and let E be a vector space over K. Put

A := R(+)E. Then A is a PVR if and only if R is a PVD.

Proof. (a) Theorem 3.24 gives both assertions (regardless of whether the ring R is a domain or

the moduleE is torsion-free). We next give an alternate direct proof of the ��rst sense" assertion.

Note, by Proposition 2.1 (b), that R inherits the �quasi-local" property from A. Therefore, by
Corollary 3.6, it suf�ces to prove thatR is a strongly divided domain andE is a vector space over

K := qf(R). As Proposition 3.25 (a) ensures that R is a PVD, it follows from [4, Proposition 1

(c)] thatR is a strongly divided domain. Next, note thatE is a divisibleR-module, by Proposition

3.25 (a). Hence, by Proposition 2.4 (a), E is a module over RS , where S := R \ (Z(R)∪Z(E)).
Since E is torsion-free over R, we have S = R \ Z(R), whence RS = tq(R) = K.

(b) By Proposition 3.25 (a), it suf�ces to prove that E is a divisible R-module. This, in turn,

follows directly from Proposition 2.4 (d) sinceE is a module overK (= tq(R)). (For an alternate
�nal step in this proof, one could apply Proposition 2.4 (c) after noting that E is a torsion-free

R-module and, as in the proof of (a), RS = K.)

In the spirit of Corollary 3.11 and Remark 3.18, Proposition 3.28 will give an analogue of the

result [4, Corollary 4] that an integrally closed quasi-local domain is a PVD if and only if each of

its proper simple overrings is a going-down domain. For the de�nition of a going-down domain,

see [8], [13]. Recall from [11] that a ring R is called a going-down ring if R/P is a going-

down domain for each P ∈ Spec(R). Also, a domain is a going-down ring if and only if it is a

going-down domain, by [11, Proposition 2.1 (a)]; the class of going-down rings is stable under

the formation of factor rings [11, Proposition 2.1 (b)]; and each divided ring (in particular, each

PVR) is a going-down ring [11, Remark (c), page 4] (cf. also [5, Corollary 3], [11, Proposition

2.1 (d)]).
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Lemma 3.27. Let R be a ring and E an R-module. Put A := R(+)E. Then A is a going-down

ring if and only if R is a going-down ring.

Proof. By Proposition 2.1 (b), A is a going-down ring⇔ A/(P (+)E) (∼= R/P ) is a going-down
domain for all P ∈ Spec(R) ⇔ R/P is a going-down domain for all P ∈ Spec(R) ⇔ R is a

going-down ring.

Proposition 3.28. Let (R,m) be a quasi-local domain with quotient �eld K and E a torsion-

free R-module such that the idealization A := R(+)E is integrally closed. Then the following

conditions are equivalent:

(1) Each proper simple overring of A is a going-down ring;

(2) A is a pseudo-valuation ring;

(3) Each proper simple overring of R is a going-down domain;

(4) R is a pseudo-valuation domain.

Proof. By Corollary 2.2 (c), R is integrally closed and E is a vector space over K. Hence, by

Proposition 2.1 (f), tq(A) = K(+)E. It follows easily that the set of proper simple overrings of

A consists of the rings of the form R[u](+)K, as u runs over all the elements of K \ R. This
is the set of all the rings of the form D(+)K such that D is a proper simple overring of R.
Therefore, by Lemma 3.27, (1) ⇔ (3). Moreover, (3) ⇔ (4) by [4, Corollary 4]. Finally, (2) ⇔
(4) by Corollary 3.26 (b).

Remark 3.29. By combining Corollary 3.7, Proposition 3.13, Proposition 3.14 and Corollary

3.26 (b), we have the following result. Let R be a strongly divided domain which is not a PVD

(for instance, as in [4, Example 1, Example 2, Remark 4]) and let K := qf(R). Then the ring

R(+)K is strongly divided in the �rst sense and strongly divided in the second sense, butR(+)K
is not a PVR.

An overring of a PVD need not be a divided domain. Nevertheless, Proposition 3.30 will

establish a suf�cient condition for an idealization which is a PVR to have the property that each

of its overrings is a divided ring.

Proposition 3.30. Let R be a PVD with canonically associated valuation domain V and quotient

�eld K. Suppose also that R′ = V . Let E be a torsion-free R-module, and put A := R(+)E.

Then the following conditions are equivalent:

(1) E is a vector space over K;

(2) A is a divided ring;

(3) Each overring of A (including A itself) is a divided ring;
(4) A is a PVR;

(5) Each overring of A (including A itself) is a PVR.

Proof. Any PVD is a divided domain [10, page 560]. In particular, R is a divided ring. Hence,

(1) ⇒ (2) by [6, Proposition 2.14]. On the other hand, since E is a torsion-free R-module, it

follows from [6, Lemma 2.13] that (2) ⇒ (1). Since each PVR is a divided ring, we get that (4)

⇒ (2); and that (5) ⇒ (3). Also, (3) ⇒ (2) trivially; and (5) ⇒ (4) trivially. It therefore suf�ces

to prove that (2) ⇒ (5).

Assume (2). As (2) ⇒ (1) and E is a torsion-free R-module, it follows from Proposition 2.1

(f) that tq(A) = K(+)E. Hence, each overring B of A can be expressed as B = D(+)E for

some corresponding overring D of R. In view of Corollary 3.26 (b), B is a PVR if (and only

if) D is a PVD. Therefore, we need only show that D is a PVD. In fact, each overring of R is

a PVD because of the hypothesis that R′ = V . To see this, note that it follows easily from [18,

Corollary 2.15] that this hypothesis on the pseudo-valuation domain R is equivalent to R being

an i-domain, in the sense of [18]. By de�nition of �i-domain", this means that the canonical

function Spec(D) → Spec(R) is an injection for each overringD of R. Hence, for each such D,

the ring extension R ⊆ D satis�es INC. Thus, by [15, Theorem 1.7], each such D inherits the

�pseudo-valuation domain" property from R, as desired.

The proof of Proposition 3.30 used a crucial fact about i-domains. Recall also that each i-

domain is a going-down domain [18, Proposition 2.12] (but the converse is false). In view of the

role of going-down rings in some of the motivating material in the Introduction, it seems �tting

to take our leave of that topic here by collecting three more relevant facts about it.
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Remark 3.31. (a) Despite expectations that may have been raised by combining Corollary 3.26

and Theorem 3.24, there exists a ring R which is strongly divided in the �rst sense but is not a

going-down ring. Indeed, consider the ring R constructed in [11, Example 2, page 11]. It was

shown in [11] that tq(R) = R and that R is not a going-down ring. The assertion now follows

from Proposition 3.3.

(b) If R is a strongly divided ring in the second sense, then R is a going-down ring. (This

generalizes, but uses, the fact that each strongly divided domain is a going-down domain.) For a

proof, let P ∈ Spec(R). One must show that R/P is a going-down domain. This conclusion is

however clear since R/P is a strongly divided domain.

(c) It seems natural to ask what can be concluded from the context of Proposition 3.28 if

one deletes the hypothesis that the idealization A is integrally closed. By using Lemma 3.27

and reworking some of the proof of Proposition 3.28, one can prove the following. (Note the

additional hypothesis on the module E.) Let R be a domain with quotient �eld K, let E be

a vector space over K, and put A := R(+)E. Then each proper simple overring (resp., each

overring) of A is a going-down ring if and only if each proper simple overring (resp., each

overring) of R is a going-down domain.

In closing, we present a miscellanea of relevant facts. The �rst two of these involve PVRs.

The �nal two parts of Remark 3.32 are motivated by the following special case of [4, Corollary

1]: ifR is a strongly divided domain, then each integral overring ofR is a locally divided domain.

Recall from [9] (resp., [6]) that a domain (resp., ring) R is said to be a locally divided domain

(resp., locally divided ring) ifRP is a divided domain (resp., divided ring) for each P ∈ Spec(R)
(equivalently, for each maximal ideal P of R).

Remark 3.32. (a) Perhaps the easiest example of a pseudo-valuation domain R satisfying the

condition �R′ = V " that was assumed in Proposition 3.30 is provided by Q + XQ(
√
2)[[X]]

(where, here and below, X denotes an analytic indeterminate over the ambient base ring). Note

that this PVD is not integrally closed. While any valuation domain gives an example of an

integrally closed PVD that satis�es the �R′ = V " condition, it need not be the case that an

integrally closed PVD must satisfy this condition. To see this, consider the oft-cited example

k +Xk(Y )[[X]], where k is a �eld and Y is an indeterminate over k (cf. [12, Remark 3.2 (b)]).

(b) Despite Corollary 3.26 (a) and Proposition 3.30, a quasi-local ring A that is strongly

divided in the �rst sense and also strongly divided in the second sense need not be a PVR. This

was shown in Remark 3.29, where the relevant ring A was an idealization of positive (Krull)

dimension. By way of contrast, note that [12, Proposition 2.3] provides a family of examples

(the easiest of which is Z/8Z(+)Z/8Z) of quasi-local zero-dimensional rings (hence, rings that

are strongly divided in the �rst sense and strongly divided in the second sense) that are not PVRs.

Note that these rings, being total quotient rings, are also trivially integrally closed. On the other

hand, the ring A built in Remark 3.29 by using Example 1 (resp., Example 2) of [4] is not (resp.,

is) integrally closed.

(c) Let R be a domain with quotient �eld K, let E be a vector space over K, and put A :=
R(+)E. If A is strongly divided in the second sense, then each integral overring of A is a locally

divided ring. For a proof, note �rst via Proposition 2.1 (g) that A′ = R′(+)E. Then one can

reason as in the proof of Proposition 3.30 to reduce our task to showing that if D is any integral

overring of R, then B = D(+)E is a locally divided ring. By [6, Proposition 2.14], this is

equivalent to proving that each integral overring D of R is a locally divided ring; that is, that

each such D is a locally divided domain. Since A is strongly divided in the second sense, so is

R (by Proposition 3.14); that is, R is a strongly divided domain, by Proposition 3.13. Hence, by

[4, Corollary 1], each integral overring of R is a locally divided domain, as desired.

(d) Let R be a domain and put A := R(+)R. Then (regardless of whether A is strongly

divided in the second sense) if R is not a �eld, then A is not a locally divided ring. For a proof,

letK := qf(R). Suppose, on the contrary, that A is a locally divided ring. Then, by [6, Corollary

2.17 (a)], RM is a vector space overK, for each maximal idealM of R. Thus, any suchM must

be 0, and so R is a �eld, the desired contradiction. This completes the proof.

For the sake of completeness, we conclude by observing that if R is any strongly divided

domain which is not a �eld (for instance, Z2Z), then A := R(+)R is a strongly divided ring in

the second sense (by Propositions 3.14 and 3.13) and, by the above, A is not a (locally) divided

ring.
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