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Abstract. In this paper, we have established and studied two new subclasses of bi-univalent
functions defined in the open unit disc U. Furthermore, we find Taylor-Maclaurin coefficients
|as| and |as| for these new subclasses .

1 Introduction

Let A denote the class of functions of the form :

f2) =24 apz" (1.1
n=2

which are analytic in the unit disc U = {z € C : |2|] < 1}. Let S denote the subclass of A,
which consists of functions of the form (1.1) that are univalent and normalized by the conditions
f(0)=0and f'(0) =1inU.

A function f € S is said to be starlike of order & (0 < o < 1) if and only if

Re <ZJJ:(S)> Sa, zeU

and is convex of order « (0 < a < 1) if and only if

2f"(2)
f'(2)
Denote these classes respectively by S*(a) and K () .

It is well known by the Koebe one quarter theorem [4] that the image of U under every

Re<1+ >>a,z€U.

function f € S contains a disc of radius T Thus every univalent function f € S has an inverse

f71, satisfying f~! (f(z)) =2, z2€Uand f (f~'(w)) = w, (|w <ro(f); ro(f) > i) )

The inverse of f(z) has a series expansion in some disc about the origin of the form
N w) = w+ Agw® + Azw® + ... . (1.2)
A function f(z) univalent in a neighborhood of the origin and its inverse satisfy the condition

f(fHw) =w.
Using (1.1), we have

w=f(w) + ax(F 7 () +as(f 7 (w)) .. . (13)

Now using (1.2), we get following result

f Y w) = w — apw? + (203 — a3)w® — (563 — Sazaz + az)w* + ... . (1.4)
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A function f € A is said to be bi-univalent in U if both f(z) and f~!(z) are univalent in U.
Let Y denote the class of bi-univalent functions in U given by (1.1).
Some examples of functions in the class > are

1+ 2z

z 1
— - 1 - - — .
1 2:7 lOg( 2)7 lOg ( 1 Z) and so on

However, the familiar Koebe function is not bi-univalent. Also functions in S such as 22% and
2 are not bi-univalent functions (see[10]).

1—22

In [6] Lewin first investigated the class > of bi-univalent functions and showed that |a,| <
1.51. Subsequently, Brannan and Clunie [2] conjectured that |a;| < v/2. Netanyahu [7], on the
other hand showed that max |a,| = i

fex 3

The coefficient estimate problem for each of the Taylor-Maclaurin coefficients |a,| (n >
3; n e N)foreach f € Y given by (1.1) is still an open problem.

In [3] Brannan and Taha introduced certain subclasses of bi-univalent function class > sim-
ilar to the familiar subclasses S*(«) and K («) of the univalent function class S. Thus following
Brannan and Taha [3], a function f € A of the form (1.1) is in the class S3-(a) (0 < a < 1) of
strongly bi-starlike functions of order « if it satisfies following conditions :

fGZ and arg(zf’(z)>’<a7r (zeU;0<a<)

f(2) 2
and |arg (w;(/z%]))‘ < % (welU;0<a<l),

where g is extension of f~! to U. The classes Si(a) and Ks-(a) of bi-starlike function of
order o and bi-convex function of order « respectively, corresponding to the function classes
5*(ar) and K (cv), were also introduced analogously. For each of the function classes 53~ («) and
Ks~(a), they found non-sharp estimates on the initial coefficients |a,| and |a3| ( for details see

[3D.

In [9] Srivastava et al. introduced two new subclasses of analytic and bi-univalent functions
as follows :
Definition 1.1 A function f(z) given by (1.1) is said to be in the class Hy~ () if the following
conditions are satisfied :

Fey and larg(f'() < 5 (z€U)

aTm

2

where 0 < a < 1 and the function g is extension of f~! to U and is given by

and |arg(g'(w))] < (weU),

g(w) = w — axw? + (2a3 — az)w® — (5a3 — Saraz + ag)w* + ... .

Definition 1.2 A function f(z) given by (1.1) is said to be in the class Hx~(/3) if the following
conditions are satisfied :

fe Z and Re(f'(z))>pB (z€U)
and Re(g'(w)) > B (weU),

where 0 < 8 < 1, and the function g is extension of f~! to U and is given by
g(w) = w — agw* + (243 — az)w® — (5a3 — Sazaz + ag)w* + ... .

In [1] Babalola defined the class £ (/) of A-pseudo starlike functions of order 3 as follows.
Definition 1.3 Let f € A, suppose 0 < 8 < 1 and A > 1 is real then f(z) € £,(3) in the unit
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disc U if and only if
Re <W> >3 (zel).

1
Alsoin [1] Babalola proved that all pseudo-starlike functions are Bazilevic of type (1 - A) ,

order B% and univalent in open disc U. Recently, Joshi et al. [5] introduced and investigated the
subclasses of bi-univalent functions associated with pseudo starlike functions.

Motivated by aforementioned work of Babalola [1], we introduce two new subclasses of bi-
univalent function classes H. %)‘ and H % (8) which is similar type to A-pseudo starlike functions.

We estimates on the initial coefficients |az| and |as| for these two new subclasses of bi-univalent
functions. The techniques used are same as Srivastava et al.[10].
In order to derive our main results, we have to recall here the following Lemma.
Lemma 1.1 [8] Leth € P the family of all functions h analytic in U for which Re {h(z)} >0
and have the form
h(z) =1+prz+p2®+ps2° +... for zeU.

Then |p,| < 2 for each n.

2 Coefficient bounds for the function class H. %’)‘.

Definition 2.1. A function f(z) given by (1.1) is said to be in the class H;z’A if the following
conditions are satisfied :

fe Z and ‘arg(f’(z)))“ < a—zﬂ- (z€U) 2.1

N« (wen), (2.2)

and Jarg (¢' () < 5

where 0 < a < 1, A > 0 and the function g is extension of f~! to U and is given by

g(w) = w — axw® + 203 — az]w® + ... . (2.3)

We state and prove the following results.

Theorem 2.1. Let f(z) given by (1.1) be in the class H%)‘ . Then

lasf € 2 2.4
2220 + )
and (20 + 30)
e} + 3«
las| < o (2.5)
Proof. We can write the argument inequality in (2.1) and (2.2) as
OO (2.6)
and \
9" (w)]” = [a(w)]* 2.7)
respectively.

Where p(z) and g(w) satisfy the inequalities Re(p(z)) > 0 (z € U) and Re(q(w)) >0 (w € U)
. Furthermore the functions p(z), ¢(w) € P have the forms

p(z) =1+p1z + ;3
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and
q(w) =14+ quw + Q2w2 + q3w3 + ...
Clearly,
—1
[p(2)]* =1+ ap1z+ (apz + a(az)p%) 224
and
-1
[q(w)]* =1+ aqw + (aqz + a(az>q%> w? ... .
Also
[f'()]) = 14 2Xapz + Bhaz + 22\ — 1)a3]z* + ...
and

[ (w)]* =1 =2 aw + [(2N* + 4N\)a3 — 3 az]w? + ... .

Now equating the coefficients in (2.6) and (2.7) we get
2)\042 =apr ,

—1
3Xhaz + 22\ — l)a% =apy + %p% ,

—2Xap = aqp

—1
(202 +4)\)a3 — 3Xa3 = aqy + 7@(042 )q% .

From equations (2.12) and (2.14) we get

P1=—q

and
8)\%a3 = @’ (i + ) -
Now by adding equations (2.13) and (2.15), we get

ala—1) (

(4N +20 )63 = a(p + @) + ——

by using (2.17), we get

(42 +20)a3 = alps + @) + 5 "

ala—1) <8A2ag>

2 _ a?(p2 + )
27220+ a)

Applying Lemma 1 for the coefficients p, and ¢, we have

=aq

2c
2221 +a)

This gives the bound on |ay| as given in (2.4).

las| <

Next, in order to find the bound on |as|, by subtracting (2.15) from (2.13) we get

ala—1)

6Xaz — 6 a3 = a(py — @) + 5

(pt —ai).

(2.8)

(2.9)

(2.10)

2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)
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From (2.16) we get p? = ¢} and also using (2.17) we have

3a’p?
6Maz = o\ +a(p2 — @)
o?pl | a(pr—q)
e T T e

Applying Lemma 1 for the coefficients p;, p; and ¢, we get

a(2A 4+ 3a)

<
|0’3| > 3)\2

This completes the proof of Theorem 1.

3 Coefficient bounds for the function class H % (B).

Definition 3.1. A function f(z) given by (1.1) is said to be in the class H% (B) if the following
conditions are satisfied :

fe) and Re[(f'(2))*] > B (3.1)
and Re[(g (w))*] > B. (3.2)

where z € U, w € U,0 < 8 < 1, A > 0 and the function g is defined in (2.3). For functions
in the class H % (B) the following coefficient estimates hold.

Theorem 3.1. Let f(z) given by (1.1) be in the class H% (B). Then

2(1-5)
| aa |< A1) (3.3)
and
o < (1-p)@r-35+3) 34)

3)2

Proof. First of all, the argument inequalities in (3.1) and (3.2) can be written in their equivalent
forms as :

(f'()* =8+ (1-B)p(z) 3.5)

and

(¢ (w)* =B+ (1 - B)g(w) (3.6)

respectively.
Where p(z), ¢(w) € P and have the forms

p(2) =14 prz+pr2® +p32® + ...

and
q(w) =1+ quw + pu* + gw’ + ... .

Clearly,

B+ (1= B)p(z) =1+ (1= B)prz + (1 = B)p2® + ..
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and
B+ (1=B)gw) =1+ (1=B)aw+ (1-Fguw’ + ... .
Also
(f'(2))* = 14 2Xazz + [BAaz + 2A(\ — 1)a3])2* + ...
and

(¢ (w))* = 1 =2 aow + [(2A% + 4\)a3 — 3haz|w?® + ... .
Now, equating the coefficients in (3.5) and (3.6), we get

2Xay = (1 - B)p1
3haz + 2N = Nai = (1-8)ps ,
—2)\a2 = (1 - ,B)QI y

(202 +4)\)a3 — 3haz = (1 — B)ga.
From equations (3.7) and (3.9), we have
pP1=—q
and
8\az = (1 - B)*(pt +qi) -
Now, by adding equations (3.8) and (3.10), we get
(4X° +2X)a3 = (1 - B)(p2 + ¢2)

2 (1 *5)(|p2|+|Q2|)
Zlol < ey

Applying Lemma 1 for the coefficients p, and ¢, we have

2(1-5)

< —_—
2l <\ X 1)

Which is the bound on |a;| as given in (3.3).

Next, in order to find the bound on |as|, by subtracting (3.10) from (3.8), we get

6)az — 6)a3 = (1 — B)(p2 — q)-
6Aaz = 6Aa3 + (1 — B) (2 — @)
From (3.11), we get p? = ¢7 and also using (3.12) we have
(1= 870 , (1-8)— )
4)2 6 ’
Applying Lemma 1 for the coefficients p;, p; and ¢, we get

(1—p3)(2x—35+3)
3)\2

a3 —

| a3 |<

This completes the proof of Theorem 2.

By specializing the parameter in this work we get result studied by earlier author.

(3.7

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)
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