CERTAIN SPECIAL SUBCLASSES OF ANALYTIC FUNCTION ASSOCIATED WITH BI-UNIVALENT FUNCTIONS

V. B. Girgaonkar, S. B. Joshi, P. P. Yadav
Communicated by Pradeep Banerji

2010 Mathematics Subject Classification: 30C45, 30C50.
Keywords: Univalent function, bi-univalent function, coefficient estimates.

Abstract

In this paper, we have established and studied two new subclasses of bi-univalent functions defined in the open unit disc U. Furthermore, we find Taylor-Maclaurin coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for these new subclasses .

1 Introduction

Let A denote the class of functions of the form :

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the unit disc $U=\{z \in \mathbb{C}:|z|<1\}$. Let S denote the subclass of A, which consists of functions of the form (1.1) that are univalent and normalized by the conditions $f(0)=0$ and $f^{\prime}(0)=1$ in U.

A function $f \in S$ is said to be starlike of order $\alpha(0 \leq \alpha<1)$ if and only if

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha, \quad z \in U
$$

and is convex of order $\alpha(0 \leq \alpha<1)$ if and only if

$$
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\alpha, \quad z \in U
$$

Denote these classes respectively by $S^{*}(\alpha)$ and $K(\alpha)$.
It is well known by the Koebe one quarter theorem [4] that the image of U under every function $f \in S$ contains a disc of radius $\frac{1}{4}$. Thus every univalent function $f \in S$ has an inverse f^{-1}, satisfying $f^{-1}(f(z))=z, \quad z \in U$ and $f\left(f^{-1}(w)\right)=w,\left(|w|<r_{0}(f) ; r_{0}(f) \geq \frac{1}{4}\right)$. The inverse of $f(z)$ has a series expansion in some disc about the origin of the form

$$
\begin{equation*}
f^{-1}(w)=w+A_{2} w^{2}+A_{3} w^{3}+\ldots \tag{1.2}
\end{equation*}
$$

A function $f(z)$ univalent in a neighborhood of the origin and its inverse satisfy the condition $f\left(f^{-1}(w)\right)=w$.
Using (1.1), we have

$$
\begin{equation*}
w=f^{-1}(w)+a_{2}\left(f^{-1}(w)\right)^{2}+a_{3}\left(f^{-1}(w)\right)^{3}+\ldots \tag{1.3}
\end{equation*}
$$

Now using (1.2), we get following result

$$
\begin{equation*}
f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\ldots \tag{1.4}
\end{equation*}
$$

A function $f \in A$ is said to be bi-univalent in U if both $f(z)$ and $f^{-1}(z)$ are univalent in U. Let \sum denote the class of bi-univalent functions in U given by (1.1).
Some examples of functions in the class \sum are

$$
\frac{z}{1-z},-\log (1-z), \quad \frac{1}{2} \log \left(\frac{1+z}{1-z}\right) \text { and so on. }
$$

However, the familiar Koebe function is not bi-univalent. Also functions in S such as $\frac{2 z-z^{2}}{2}$ and $\frac{z}{1-z^{2}}$ are not bi-univalent functions (see[10]).

In [6] Lewin first investigated the class \sum of bi-univalent functions and showed that $\left|a_{2}\right|<$ 1.51. Subsequently, Brannan and Clunie [2] conjectured that $\left|a_{2}\right| \leq \sqrt{2}$. Netanyahu [7], on the other hand showed that $\max _{f \in \Sigma}\left|a_{2}\right|=\frac{4}{3}$.

The coefficient estimate problem for each of the Taylor-Maclaurin coefficients $\left|a_{n}\right|$ ($n \geq$ $3 ; n \in \mathbb{N}$) for each $f \in \sum$ given by (1.1) is still an open problem.

In [3] Brannan and Taha introduced certain subclasses of bi-univalent function class \sum similar to the familiar subclasses $S^{*}(\alpha)$ and $K(\alpha)$ of the univalent function class S. Thus following Brannan and Taha [3], a function $f \in A$ of the form (1.1) is in the class $S_{\sum}^{*}(\alpha)(0<\alpha \leq 1)$ of strongly bi-starlike functions of order α if it satisfies following conditions :

$$
\begin{aligned}
& f \in \sum \text { and }\left|\arg \left(\frac{z f^{\prime}(z)}{f(z)}\right)\right|<\frac{\alpha \pi}{2}(z \in U ; 0<\alpha \leq 1) \\
& \text { and }\left|\arg \left(\frac{w g^{\prime}(w)}{g(w)}\right)\right|<\frac{\alpha \pi}{2} \quad(w \in U ; 0<\alpha \leq 1)
\end{aligned}
$$

where g is extension of f^{-1} to U. The classes $S_{\sum}^{*}(\alpha)$ and $K_{\sum}(\alpha)$ of bi-starlike function of order α and bi-convex function of order α respectively, corresponding to the function classes $S^{*}(\alpha)$ and $K(\alpha)$, were also introduced analogously. For each of the function classes $S_{\sum}^{*}(\alpha)$ and $K_{\sum}(\alpha)$, they found non-sharp estimates on the initial coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ (for details see [3]).

In [9] Srivastava et al. introduced two new subclasses of analytic and bi-univalent functions as follows :
Definition 1.1 A function $f(z)$ given by (1.1) is said to be in the class $H_{\sum}(\alpha)$ if the following conditions are satisfied :

$$
\begin{array}{r}
f \in \sum \text { and }\left|\arg \left(f^{\prime}(z)\right)\right|<\frac{\alpha \pi}{2} \quad(z \in U) \\
\text { and }\left|\arg \left(g^{\prime}(w)\right)\right|<\frac{\alpha \pi}{2} \quad(w \in U)
\end{array}
$$

where $0<\alpha \leq 1$ and the function g is extension of f^{-1} to U and is given by

$$
g(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\ldots
$$

Definition 1.2 A function $f(z)$ given by (1.1) is said to be in the class $H_{\sum}(\beta)$ if the following conditions are satisfied :

$$
\begin{aligned}
f \in \sum \text { and } \operatorname{Re}\left(f^{\prime}(z)\right)>\beta & (z \in U) \\
& \text { and } \operatorname{Re}\left(g^{\prime}(w)\right)>\beta
\end{aligned} \quad(w \in U), ~ \$
$$

where $0 \leq \beta<1$, and the function \mathbf{g} is extension of f^{-1} to U and is given by

$$
g(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\ldots
$$

In [1] Babalola defined the class $\mathfrak{L}_{\lambda}(\beta)$ of λ-pseudo starlike functions of order β as follows. Definition 1.3 Let $f \in A$, suppose $0 \leq \beta<1$ and $\lambda \geq 1$ is real then $f(z) \in \mathfrak{L}_{\lambda}(\beta)$ in the unit
disc U if and only if

$$
\operatorname{Re}\left(\frac{z\left[f^{\prime}(z)\right]^{\lambda}}{f(z)}\right)>\beta \quad(z \in U)
$$

Also in [1] Babalola proved that all pseudo-starlike functions are Bazilevic of type $\left(1-\frac{1}{\lambda}\right)$, order $\beta^{\frac{1}{\lambda}}$ and univalent in open disc U. Recently, Joshi et al. [5] introduced and investigated the subclasses of bi-univalent functions associated with pseudo starlike functions.
Motivated by aforementioned work of Babalola [1], we introduce two new subclasses of biunivalent function classes $H_{\sum}^{\alpha, \lambda}$ and $H_{\sum}^{\lambda}(\beta)$ which is similar type to λ-pseudo starlike functions. We estimates on the initial coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for these two new subclasses of bi-univalent functions. The techniques used are same as Srivastava et al.[10].

In order to derive our main results, we have to recall here the following Lemma.
Lemma 1.1 [8] Let $h \in P$ the family of all functions h analytic in U for which $\operatorname{Re}\{h(z)\}>0$ and have the form

$$
h(z)=1+p_{1} z+p_{2} z^{2}+p_{3} z^{3}+\ldots \text { for } z \in U
$$

Then $\left|p_{n}\right| \leq 2$ for each n .

2 Coefficient bounds for the function class $H_{\sum}^{\alpha, \lambda}$.

Definition 2.1. A function $f(z)$ given by (1.1) is said to be in the class $H_{\sum}^{\alpha, \lambda}$ if the following conditions are satisfied :

$$
\begin{array}{r}
f \in \sum \text { and }\left|\arg \left(f^{\prime}(z)\right)^{\lambda}\right|<\frac{\alpha \pi}{2} \quad(z \in U) \\
\text { and }\left|\arg \left(g^{\prime}(w)\right)^{\lambda}\right|<\frac{\alpha \pi}{2} \quad(w \in U) \tag{2.2}
\end{array}
$$

where $0<\alpha \leq 1, \lambda>0$ and the function g is extension of f^{-1} to U and is given by

$$
\begin{equation*}
g(w)=w-a_{2} w^{2}+\left[2 a_{2}^{2}-a_{3}\right] w^{3}+\ldots \tag{2.3}
\end{equation*}
$$

We state and prove the following results.

Theorem 2.1. Let $f(z)$ given by (1.1) be in the class $H_{\sum}^{\alpha, \lambda}$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{2 \alpha}{\sqrt{2 \lambda(2 \lambda+\alpha)}} \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{\alpha(2 \lambda+3 \alpha)}{3 \lambda^{2}} \tag{2.5}
\end{equation*}
$$

Proof. We can write the argument inequality in (2.1) and (2.2) as

$$
\begin{equation*}
\left[f^{\prime}(z)\right]^{\lambda}=[p(z)]^{\alpha} \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[g^{\prime}(w)\right]^{\lambda}=[q(w)]^{\alpha} \tag{2.7}
\end{equation*}
$$

respectively.
Where $p(z)$ and $q(w)$ satisfy the inequalities $\operatorname{Re}(p(z))>0 \quad(z \in U)$ and $\operatorname{Re}(q(w))>0(w \in U)$
. Furthermore the functions $p(z), q(w) \in P$ have the forms

$$
p(z)=1+p_{1} z+p_{2} z^{2}+p_{3} z^{3}+\ldots
$$

and

$$
q(w)=1+q_{1} w+q_{2} w^{2}+q_{3} w^{3}+\ldots
$$

Clearly,

$$
\begin{equation*}
[p(z)]^{\alpha}=1+\alpha p_{1} z+\left(\alpha p_{2}+\frac{\alpha(\alpha-1)}{2} p_{1}^{2}\right) z^{2}+\ldots \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
[q(w)]^{\alpha}=1+\alpha q_{1} w+\left(\alpha q_{2}+\frac{\alpha(\alpha-1)}{2} q_{1}^{2}\right) w^{2}+\ldots \tag{2.9}
\end{equation*}
$$

Also

$$
\begin{equation*}
\left[f^{\prime}(z)\right]^{\lambda}=1+2 \lambda a_{2} z+\left[3 \lambda a_{3}+2 \lambda(\lambda-1) a_{2}^{2}\right] z^{2}+\ldots \tag{2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[g^{\prime}(w)\right]^{\lambda}=1-2 \lambda a_{2} w+\left[\left(2 \lambda^{2}+4 \lambda\right) a_{2}^{2}-3 \lambda a_{3}\right] w^{2}+\ldots \tag{2.11}
\end{equation*}
$$

Now equating the coefficients in (2.6) and (2.7) we get

$$
\begin{gather*}
2 \lambda a_{2}=\alpha p_{1} \tag{2.12}\\
3 \lambda a_{3}+2 \lambda(\lambda-1) a_{2}^{2}=\alpha p_{2}+\frac{\alpha(\alpha-1)}{2} p_{1}^{2} \tag{2.13}\\
-2 \lambda a_{2}=\alpha q_{1} \tag{2.14}\\
\left(2 \lambda^{2}+4 \lambda\right) a_{2}^{2}-3 \lambda a_{3}=\alpha q_{2}+\frac{\alpha(\alpha-1)}{2} q_{1}^{2} \tag{2.15}
\end{gather*}
$$

From equations (2.12) and (2.14) we get

$$
\begin{equation*}
p_{1}=-q_{1} \tag{2.16}
\end{equation*}
$$

and

$$
\begin{equation*}
8 \lambda^{2} a_{2}^{2}=\alpha^{2}\left(p_{1}^{2}+q_{1}^{2}\right) \tag{2.17}
\end{equation*}
$$

Now by adding equations (2.13) and (2.15), we get

$$
\left(4 \lambda^{2}+2 \lambda\right) a_{2}^{2}=\alpha\left(p_{2}+q_{2}\right)+\frac{\alpha(\alpha-1)}{2}\left(p_{1}^{2}+q_{1}^{2}\right)
$$

by using (2.17), we get

$$
\begin{aligned}
\left(4 \lambda^{2}+2 \lambda\right) a_{2}^{2} & =\alpha\left(p_{2}+q_{2}\right)+\frac{\alpha(\alpha-1)}{2}\left(\frac{8 \lambda^{2} a_{2}^{2}}{\alpha^{2}}\right) \\
& \Rightarrow a_{2}^{2}=\frac{\alpha^{2}\left(p_{2}+q_{2}\right)}{2 \lambda(2 \lambda+\alpha)}
\end{aligned}
$$

Applying Lemma 1 for the coefficients p_{2} and q_{2}, we have

$$
\left|a_{2}\right| \leq \frac{2 \alpha}{\sqrt{2 \lambda(2 \lambda+\alpha)}}
$$

This gives the bound on $\left|a_{2}\right|$ as given in (2.4).
Next, in order to find the bound on $\left|a_{3}\right|$, by subtracting (2.15) from (2.13) we get

$$
6 \lambda a_{3}-6 \lambda a_{2}^{2}=\alpha\left(p_{2}-q_{2}\right)+\frac{\alpha(\alpha-1)}{2}\left(p_{1}^{2}-q_{1}^{2}\right)
$$

From (2.16) we get $p_{1}^{2}=q_{1}^{2}$ and also using (2.17) we have

$$
\begin{aligned}
6 \lambda a_{3} & =\frac{3 \alpha^{2} p_{1}^{2}}{2 \lambda}+\alpha\left(p_{2}-q_{2}\right) \\
a_{3} & =\frac{\alpha^{2} p_{1}^{2}}{4 \lambda^{2}}+\frac{\alpha\left(p_{2}-q_{2}\right)}{6 \lambda}
\end{aligned}
$$

Applying Lemma 1 for the coefficients p_{1}, p_{2} and q_{2}, we get

$$
\left|a_{3}\right| \leq \frac{\alpha(2 \lambda+3 \alpha)}{3 \lambda^{2}}
$$

This completes the proof of Theorem 1.

3 Coefficient bounds for the function class $H_{\sum}^{\boldsymbol{\lambda}}(\beta)$.

Definition 3.1. A function $f(z)$ given by (1.1) is said to be in the class $H_{\sum}^{\lambda}(\beta)$ if the following conditions are satisfied :

$$
\begin{array}{r}
f \in \sum \text { and } \operatorname{Re}\left[\left(f^{\prime}(z)\right)^{\lambda}\right]>\beta \\
\text { and } \operatorname{Re}\left[\left(g^{\prime}(w)\right)^{\lambda}\right]>\beta \tag{3.2}
\end{array}
$$

where $z \in U, w \in U, 0 \leq \beta<1, \lambda>0$ and the function g is defined in (2.3). For functions in the class $H_{\sum}^{\lambda}(\beta)$ the following coefficient estimates hold.

Theorem 3.1. Let $f(z)$ given by (1.1) be in the class $H_{\sum}^{\lambda}(\beta)$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \sqrt{\frac{2(1-\beta)}{\lambda(2 \lambda+1)}} \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{(1-\beta)(2 \lambda-3 \beta+3)}{3 \lambda^{2}} \tag{3.4}
\end{equation*}
$$

Proof. First of all, the argument inequalities in (3.1) and (3.2) can be written in their equivalent forms as :

$$
\begin{equation*}
\left(f^{\prime}(z)\right)^{\lambda}=\beta+(1-\beta) p(z) \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(g^{\prime}(w)\right)^{\lambda}=\beta+(1-\beta) q(w) \tag{3.6}
\end{equation*}
$$

respectively.
Where $p(z), q(w) \in P$ and have the forms

$$
p(z)=1+p_{1} z+p_{2} z^{2}+p_{3} z^{3}+\ldots
$$

and

$$
q(w)=1+q_{1} w+q_{2} w^{2}+q_{3} w^{3}+\ldots
$$

Clearly,

$$
\beta+(1-\beta) p(z)=1+(1-\beta) p_{1} z+(1-\beta) p_{2} z^{2}+\ldots
$$

and

$$
\beta+(1-\beta) q(w)=1+(1-\beta) q_{1} w+(1-\beta) q_{2} w^{2}+\ldots
$$

Also

$$
\left(f^{\prime}(z)\right)^{\lambda}=1+2 \lambda a_{2} z+\left[3 \lambda a_{3}+2 \lambda(\lambda-1) a_{2}^{2}\right] z^{2}+\ldots
$$

and

$$
\left(g^{\prime}(w)\right)^{\lambda}=1-2 \lambda a_{2} w+\left[\left(2 \lambda^{2}+4 \lambda\right) a_{2}^{2}-3 \lambda a_{3}\right] w^{2}+\ldots
$$

Now, equating the coefficients in (3.5) and (3.6), we get

$$
\begin{gather*}
2 \lambda a_{2}=(1-\beta) p_{1} \tag{3.7}\\
3 \lambda a_{3}+2\left(\lambda^{2}-\lambda\right) a_{2}^{2}=(1-\beta) p_{2} \tag{3.8}\\
-2 \lambda a_{2}=(1-\beta) q_{1} \tag{3.9}\\
\left(2 \lambda^{2}+4 \lambda\right) a_{2}^{2}-3 \lambda a_{3}=(1-\beta) q_{2} \tag{3.10}
\end{gather*}
$$

From equations (3.7) and (3.9), we have

$$
\begin{equation*}
p_{1}=-q_{1} \tag{3.11}
\end{equation*}
$$

and

$$
\begin{equation*}
8 \lambda^{2} a_{2}^{2}=(1-\beta)^{2}\left(p_{1}^{2}+q_{1}^{2}\right) \tag{3.12}
\end{equation*}
$$

Now, by adding equations (3.8) and (3.10), we get

$$
\begin{gathered}
\left(4 \lambda^{2}+2 \lambda\right) a_{2}^{2}=(1-\beta)\left(p_{2}+q_{2}\right) \\
\Rightarrow\left|a_{2}^{2}\right| \leq \frac{(1-\beta)\left(\left|p_{2}\right|+\left|q_{2}\right|\right)}{\left(4 \lambda^{2}+2 \lambda\right)}
\end{gathered}
$$

Applying Lemma 1 for the coefficients p_{2} and q_{2}, we have

$$
\left|a_{2}\right| \leq \sqrt{\frac{2(1-\beta)}{\lambda(2 \lambda+1)}}
$$

Which is the bound on $\left|a_{2}\right|$ as given in (3.3).
Next, in order to find the bound on $\left|a_{3}\right|$, by subtracting (3.10) from (3.8), we get

$$
\begin{aligned}
& 6 \lambda a_{3}-6 \lambda a_{2}^{2}=(1-\beta)\left(p_{2}-q_{2}\right) \\
& 6 \lambda a_{3}=6 \lambda a_{2}^{2}+(1-\beta)\left(p_{2}-q_{2}\right)
\end{aligned}
$$

From (3.11), we get $p_{1}^{2}=q_{1}^{2}$ and also using (3.12) we have

$$
a_{3}=\frac{(1-\beta)^{2}\left(p_{1}^{2}\right)}{4 \lambda^{2}}+\frac{(1-\beta)\left(p_{2}-q_{2}\right)}{6 \lambda}
$$

Applying Lemma 1 for the coefficients p_{1}, p_{2} and q_{2}, we get

$$
\left|a_{3}\right| \leq \frac{(1-\beta)(2 \lambda-3 \beta+3)}{3 \lambda^{2}}
$$

This completes the proof of Theorem 2.

By specializing the parameter in this work we get result studied by earlier author.

References

[1] K.O.Babalola, on λ-pseudo-starlike functions J. Class Anal. 3(2), (2013), 137-147.
[2] D.A.Brannan, J. Clunie, Aspects of contemporary complex analysis, Academic Press, New York London, (1980) .
[3] D.A.Brannan, T.S.Taha, On some classes of bi-univalant functions, in: S.M.Mazhar, A.Hamoui, N.S.Faour(Eds.), Mathematical Analysis and Its Applications, Kuwait; February, 1985, 18-21, in: KFAS Proceeding Series, Vol-3, Pergamon press, Elsevier Science Limited,Oxford, (1988), 53-60; See also Studia Univ. Babe-Bolyai Math. 31(2), (1986), 70-77 .
[4] P.L.Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften, Springer, New York, 259, (1983).
[5] Santosh Joshi, Sayali Joshi, Haridas Pawar, On some subclasses of bi-univalent functions associated with pseudo-starlike functions, J. Egypt. Math. Soc. (2016), 1-4 .
[6] M.Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18, (1967), 63-68.
[7] E.Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z|<1$, Arch. Rational Mech. Anal. 32 , (1969), 100-112.
[8] Ch. Pommerenke, Univalent functions, Vandenhoeck and Rupercht,Gttingen, (1975).
[9] H.M.Srivastava, D.Bansal, Coefficient estimates for a subclass of analytic and bi-univalent functions, J. Egypt. Math. Soc. (2014), 1-4
[10] H.M.Srivastava, A.K.Mishra, P.Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 023, (2010), 1188-1192.

Author information

V. B. Girgaonkar, S. B. Joshi, P. P. Yadav, Department of Mathematics, Walchand College of Engineering, Sangli, INDIA.
E-mail: vasudhakurane@yahoo.com, joshisb@hotmail.com, santosh.joshi@walchandsangli.ac.in, ypradnya@rediffmail.com

Received: August 31, 2016.
Accepted: October 7, 2016.

