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Abstract. We establish uniform decay rate estimates of the wave equation on a compact
Riemannian manifold (1, g) subject to locally distributed viscoelastic effects on a subset w C
M. Assuming that the well-known geometric control condition holds and by employing the
inverse observability property introduced in [13], we extend the prior results in the literature due
to Cavalcanti [1].

1 Introduction

In this paper, we consider the following problem :
t 2
g — koAu + / g1(t — s)div [a1(z)Vu(s)] ds + Z piug(x,t —7(3)) + f1(u,v) =0, M x (0,+00),
0 i=1
(1.1

t 2
v — k1Av + /0 g2(t — s)div [ax(z)Vu(s)] ds + Z avi(z,t —7(1)) + folu,v) =0, M x (0,+00),
i=1

(1.2)
u(z, t) =0, v(z,t) =0, OM x (0,+00), (1.3)
u(z,0) = ugp(z), v(z,0) = vo(x), ue(z,0) = ui(x), x €M, (14)
ut(z,t — 7(2)) = ¢o(z,t — 7(2)), t € (0,72) reM, (1.5)
vz, t —7(2)) = d1(z, t —7(2)), , 7(1) =0, 7(2) =71, te (0,m), zeM. (1.6)

Where (M, g) is n-dimensional compact Riemannian manifold with boundary M and g denotes
a Riemannian metric of class C'>°. We denote by V the Levi-Civita connection on M and by A
the Laplace-Beltrami operator on M, where ko, k1 > 0, ai1(xz) > agr > 0, ax(z) > agpp > 0
in a subset w C M. Assuming that the well-known geometric control condition (w,Tp) holds
and g1,g0 : RT — R*, ¢:(.,.) : R* = Ri = 1,2, are given functions which will be specified
later, » > O is a time delay, where p1, a1, a, pip are positive real numbers and the initial data
(uo, u1, Po), (vo,v1, ¢1) belonging to a suitable space. To motivate our work, let us recall some
results regarding coupled viscoelastic wave equations. Wenjun [2] proved the energy decay result
using the perturbed energy method for the system:

t
|ug|Puge — Au — v Augy + / g1(t — 8)Au(s)ds + fi(z,u) =0, inQ x (0,+00),
0
(1.7)
t
[ve|Poge — Av — 2 Avy + / @t — 8)Av(s)ds + fo(z,u) =0, inQ x (0,+00),
0
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where Q is a bounded domain in R™ (n > 1)with a smooth boundary 9Q,~1,v, > 0 are con-
stants and p is a real number such that 0 < p < (71732) ifn >3orp > 0ifn = 1,2. The functions
up, U1, vo and vy are given initial data. The relaxations functions g; and g, are continuous func-
tions and fi(u,v), fa(u,v) represent the nonlinear terms. Many authors considered the initial
boundary value problem as follows

t
U — Au +/ a1(t — s)Au(s)ds + hy(ur) = fi(z,u), in Qx (0,400),
0
(1.8)
t
v — Av + / g2 (t — 8)Av(s)ds + ha(vy) = fa(z,u), in Q x (0,+00),
0

when the viscoelastic terms g; (i = 1,2.) are not taken into account in (1.8). Agre and Rammaha
[3] obtained several results related to local and global existence of a weak solution. By using
the same technique as in [4], they showed that any weak solution blow-up in finite time with
negative initial energy. Later Said-Houari [5] extended this blow up result to positive initial
energy. Conversely, in the presence of the memory term (g; # 0 (i = 1,2.), there are numerous
results related to the asymptotic behavior and blow up of solutions of viscoelastic systems. For
example, Liang and Gao [6] studied problem (1.8) with A (u;) = —Auy, hy(vi) = —Auy. They
obtained that, under suitable conditions on the functions g;, f;,7 = 1,2, and certain initial data in
the stable set, the decay rate of the energy functions is exponential. On the contrary, for certain
initial data in the unstable set, there are solutions with positive initial energy that blow-up in
finite time. For hy(u;) = |us|™ 'uy and ho(vy) = |vg|"~!v;, Hun and Wang [7] established
several results related to local existence, global existence and finite time blow-up ( the initial
energy £(0) < 0).

This latter has been improved by Messaoudi and Said-Houari [8] by considering a larger class
of initial data for which the initial energy can take positive values, on the other hand, Messaoudi
and Tatar [9] considered the following problem

t
g — Au + / g1(t — s)Au(s)ds + fi(z,u) =0, inQ x (0,+00),
0
(1.9)
t
v — Av —|—/ @2t — s)Av(s)ds + fa(z,u) =0, inQ x (0,+00),
0

where the functions f; and f» satisfy the following assumptions

[ fi(u,v)] < d(jul™ + [o]™),

‘fZ(u7U)| < d('“lﬁ3 + |U|B4)7
for some constant d > 0 and 3; > 0, 3; < (7%2), 1 = 1,2,3,4. They obtained that the solution
goes to zero with an exponential or polynomial rate, depending on the decay rate of the relaxation
functions g;,7 = 1,2. Muhammad I.M [11] considered the following problem

t
ug — Au +/ g1(t — s)Au(s)ds + fi(v,u) =0, inQ x (0,400),
0
(1.10)
t
vy — Av —l—/ @t — 8)Av(s)ds + fo(v,u) =0, inQ x (0,400),
0

and proved the well-posedness and energy decay result for wider class of relaxation functions.

Motivated by the previous works, on Riemannian compact manifolds, we need to use the inverse
observability property introduced in [14] and a unique continuation property. Indeed, we are
assuming that the geometric control condition holds, namely, that the geodesics of M have no
contact of infinite order with M and that there exists 7p > 0 such that every geodesic traveling
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at speed 1 and issued at ¢ = 0 meets @ in a time ¢t < Ty. Then, we guarantee the existence of
constant C' = C(Tp,w) such that

Ty
E(0) gc/o /{\ut(at,t)|2—|—|vt(x,t)|2}det. (1.11)

Under suitable assumptions on the functions g;(.), fi(.,.)(z = 1.2), the initial data and the
parameters in the equations, we establish asymptotic behavior of solutions to (1.1)-(1.6). Our
work is organized as follows. In section 2, we present the preliminaries and some lemmas. In
section 3, decay property is derived.

2 Preliminary Results

In this section, we present some material for the proof of our result. For the relaxation function
gi, W€ assume
(Ap) : The relaxations functions g; and g, are of class C l'and satisfy, for s > 0

91(t) < —rgi(t), vVt >0, g3(t) < —rga(t), V¢ > 0.

To obtain the stabilization of problem (1.1)-(1.6), we shall need the following geometrical as-
sumption:

(A1) : (Geometric control condition). If M is a manifold with boundary, we assume that the
geodesics of M have no contact of infinite order with M. Let w’ be an open subset of M and
consider that there exists Ty > O such that every geodesic traveling at speed 1 and issued att = 0
meets w’ in a time ¢ < Tp. We also assume that a;, ay € C°° (M) are nonnegative functions such
that

ai(z) > apn >0 in w, (2.1)

a(x) > anp >0 in w, (2.2)
where w is an open subset verifying w’ C w. If 9M # () we define Y, = M x]0, T[ and we set
Hy(M) = {ve H' (M);v/om =0},

which is a Hilbert space with the topology endowed by H'(M), the condition v/5p; = O is
required to guarantee the Poincaré’s inequality

Jullzary < (M) M IVullreary  for u € Hy(M), (2.3)

where )\ is the first eigenvalue of the Laplace-Beltrami operator for the Dirichlet problem.
Take f1,/2 as in [10]

f1(u,v) :a|u—|—v\p_1(u+v)+b|u\p74|v|pTHu, (2.4)

p—3
=

folu,v) = alu+ v[P~ (u+ v) + blv u|" v, (2.5)

with a, b > 0. Further, one can easily verify that

wfi(u,v) +vfa(u,v) = (p+ 1) F(u,v),¥(u,v) € R%.

oF oF

pTH)a fl(u,’l}):%, fZ(uav):%'

(alu + v|P*! + 2bjuv

1
(p+1)
(A,) : There exists co, ¢; > 0, such that

co(lulP™! + o) < F(u,v) < er(juf™ + ), V(u,v) € R



ASYMPTOTIC STABILITY ON COMPACT MANIFOLDS 627

and

ofi

—J < p—1 p—1
L < O™ + o),

i=1,2 where 1<p<6.

(w0 + | S o)

(A3) .

Ifn=12; if n=3; (2.6)

Lemma 2.1. [2] For any g € C! and p € H'(0,T), we have

/Ot /M gi(t — s)p(x, s)pi(x, t)drds = —%% <(g¢og0)(t) + /Ot gi(s)d3||<p(t)|%>

p=>3 p=3.

—gi(®)le@)]5 + (giop)(t),

where

(g: * )(t) 1= /th—@w@sma

(giop)(t) = /QM—S/waS

\W@N%z/Lhdnmew

Remark 2.2. Avoiding the complexity of the matter, we take a = b= 11in (2.4) —

o(x,t)|?dMds,

and

(25).

3 Asymptotic stability

In order to prove our stability result of solutions of problem (1.1)-(1.6), we introduce the new
variables 21, 2> as in [12]

Zl(l'vklat) =

,2’2(1', k27 t) =
which implies that

Ut(1'7t—7'2/€1), x e M, ki € (0, 1),

ut(:at — 7’2/{2), reM, k) € (0, 1),
2y (x, ke, t) + 2k, (2, k1, t) = 0,

25 (x, ko, t) + 2k, (2, k2, t) = 0,
therefore, problem (1.1)-(1.6) is equivalent to

in M x (0,1) x (0,00),
in M x (0,1) x (0,00),

Uy — koAu+/O 1(t — s)div[ag(z)Au(s)]ds

+uyug(x,t) + pozi (2, 1,t) + fi(u,v) =0, in M x (0,00),
t

o= hido+ [t = )divfoa()duls)ds

+ajvg(w,t) + anzp(x, 1,) + fo(u,v) =0, in M x (0,00),

2y (@, ki, t) + 2z, (2, k1,t) =0, in M x(0,1) x (0,00),

7225 (x, ko, t) + 21, (2, k2, ) = 0, in M x (0,1) x (0,00), 3.1

21(z,0,t) = ug(z, t), € M,t>0,

22(z,0,t) = vi(x, ), x € M,t>0,

z1(z, k1,0) = do(x, —72k1), re M,

2(x,k2,0) = ¢1(x, —mk2), x € M,

U(x,O):uo(x),ut(x,O):ul(x), ZL’GM,

v(z,0) = vo(x), ve(x,0) = vy (z), x €M,

u(z,t) = 0,v(x,t) =0, x € OM,t > 0.
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In the following, we will give sufficient conditions for the well-posedness of problem (3.1) which
can be established by using the Fadeo-Galerkin’s method.

Theorem 3.1. Let (uo, vo) € (HE (M) N H*(M))?, (u1,v1) € (HL(M))? and (¢o, ¢1) € (LA(M x (0,1))?

satisfying the compatibility conditions

d0o=(,0)=u, ¢ =(,0)=uwvi.

Assume that the hypotheses (Ag)—(Asz) hold. Then there exists a unique weak solution ((u, 1), (v, 22))
of (3.1) such that

u(t),v(t) € C ([=n, T Hy(M)) N C* ([, T): L*(M))

ue(t), ve(t) € L? ([=72(0), T); H (Q)) N L* ([-72(0), T] x Q) ,
JorT > 0.

We define the energy of the solution associated with (3.1) by the following formula:
1 . . ' 2
E(t) = §||Ut(t)\|2 + §||Ut(t)|\2 T3 ki — ai(z) A gi(s)ds | [Vu(t)]

1 t 1
+3 (kz — ag(m)/o gz(s)ds> Vo(t)]3 + 5—21 /M/O 23 (x, by, t)dk dM

1 (3.2)
+ 9/ / 2z, ko, £)dlnd M +/ Flu,v)a + ) (g 0vu) (1)
2 Juo M 2
as(x
+ 2§ ) (grov0) (1)
Now, let &1, &, be positive constants such that
Tap < &1 < (201 — p2), (3.3)
oy < 61 < T(2a1 — 042). (34)

Lemma 3.2. The energy of problem (3.2) satisfies the following inequality

- (26712 - /“;2) /M 7 (x,1,8)dM — (25; - azz) /M 23(x, 1,8)dM (3.5)
+ /M {a1(z) {(g] o Vu) — g1(t)|[Vul*} + az(z) { (g} © Vv) — g2()|V[*} } dM.

Proof. Multiplying the first equation in (3.1) by u; and the second equation in (3.1) by v, inte-
grating over M, using integration by part and Green’s formula, we obtain

dJ1 ko k1
- *||Ut(t)||%+*|\vt(t)”%+*HVU(t)H%?L*HVUU)H%‘F/ F(u,v)dM
a |2 2 2 y
a
O+ OB+ [ a1 naM
M
(3.6)

+an /M 2 (x, 1, t) vy (z, t)dM — /Ot ai(z)gi(t — s) /M Vu(s)Vu (t)dMds

- /t az(z)ga(t — s)/ Vou(s)Vu(t)dMds = 0.
0 M
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Using a lemma 2.1 and integrating (3.6) over (0, ), we get

lu@+ 51u@B+ [ P+ 5 (b-a@ [ a@ds) v?

+a1§$)(910Vu)(t) azé)(g oVv)(t +u1/ [Jus(s ||2d3+a1/ os(s)l2ds

+u2//zl x, 1, 8)us(s des+a2//22 x, 1, 8)vs(s)dMds (3.7

-9 Cigovuyoyis + 2 [ siwatoiBas + 2 [ i) ivo aas

_ azéﬂb‘) /0 (ghoVv)(s)ds +% <k1 - az(x)/o gz(s)ds) |Vo(t)|5 =0,

we multiply the third equation in (3.1) by & >z, (t) and the forth equation in (3.1) by £ 21, (t) and
integrating the result over M x (0, 1) to obtam

1
d ki t)dkydM = —>L k1, t)dkidM
51/M/0 2121(x, ky, t)dky . /M/ 81@121 x, ki, t)dkidM,

(3.8)
& 2 2
— A ZI(I,I,t)*Zl(I,O,t))dM
21 Jur
then
/ / 2oy, )y dM = —i/ ek, )aM + L a3 (3.9)
2 dt ’ 2m R ’
in the same manner for the second equation
/ / 23(x, ky, t)dkpdM = —2/ 23(x, ky, t)dM + é||ﬂut||2 (3.10)
2 dt ’ 21 Sy e

Summing (3.7), (3.9) and (3.10), we get

t
B0+ (= ) [ el + (wr— 2 ) [ igas
T2 0
t
+§i/ / Z%(a?,l,s)des-i-uz/ / 23(x,1, s)vs(x, t)dMds
2 Jo Ju o

! t
3 &1 5
+az/M/0 zz(x,l,s)vs(x,s)des+E/o /le(x,l,s)des 3.11)
t
+/O /Mm(x){(gioVu)—gl(t)wu‘z}det

+/0t/Ma2($){(9§OVU)gz(t)|vv|2}det:E(0)’

using Young and Cauchy-Schwartz inequalities, we obtain

B0+ (= 5 —12) [+ (a0 - 22 - 2) [ igas
(i)//zlx,l,deds+<2Tz>//M (z,1,s)dMds

+/0 /M (ll(-’L') {(gi OVU) _gl(t)|vu|2}det

(3.12)

+/0 /M ax(z) {(gh o Vv) — g2 (t)|Vv|*} dMdt = E(0).
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This completes the proof of lemma 3.1. O

Remark 3.3. Due to the conditions (3.8), (3.9) we have

& _m & o S e & _ o
(‘“ m 2) 70\ 7 )20\, 2 )0 e ) 2

As a consequence of Lemma 3.1, every solution of (3.1) satisfies the following identity

N (R T s o P

JAGEB) e (2 -3)
//a1 {(g} 0 V) — g1(8)|Vul?} dMat

T / | @) {0 v0) —nOVePy b, i >t >0

(3.13)
Note that

t

0 < ko — |la1]|L= / g1(s)ds < ko — |la1|| L= / g1(s)ds < ko, V(z,t) € M x Ry, (3.14)
0 0

t

0<k — ||a2HLoc / gz(S)dS <k - ||a2||Loo / gz(s)ds < kq, V(J?,t) €M x Ry. (3.15)
0 0

Theorem 3.4. Suppose that 1y < i1, ap < o, (Ag)-(A3) hold. Assume that ((ug,u1), (vo,v1)) €
(HY(M))? and (¢o, ¢1) € (L*(M x (0,1)))2 Then we have the following decay property

E(t) < Coe " E(0), Vt>T,
where ¢, w, are positive constants, independent of the initial data and Ey(0) < L.

Our goal is to prove the inequality below

E(T)S/OT{<MI——>/ g dM+(a1—£2—O;2>/M|Ut|2dM}dt

+/OT{<25712_/;z)/Mzg(x,l,s)dM+<§jz—‘;2)
+/T/ ai(z) { (91 o Vu) — g1 (1)|Vu|*} dMdt

//Maz ) {(gh 0 Vo) — ga(1)|Vo2} dMdt, YT > Tp,

where the initial (ug,u1, 29) data are taken in bounded sets of Ha(M) x L*(M). To do this, we
must prove the lemma:

Lemma 3.5. Let us assume hypotheses (Ag). For all T > Ty andV Ly > 0, there exists a positive
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constant C = C(T, L1), such that

E(O)S/OT{(M—ZZ—>/ lu |dM+<a1——>/ |vdM}
+/T{(2€;2—“22> /sz(x717s)dM+<2£j2—a22> /Mzg(x,l,s)dM}dt

{(g1 0 Vu) — t)|Vu|2}det

R
<[ /Mam){(

g o V) — o (t)| Vo } dMdt, VT > Ty,

(3.17)

holds for every solution ((u, 21), (v, 22)) of problem (3.1) provided that the initial data satisfies

E(0) < Ly.

(3.18)

Proof. We argue by contradiction by using compactness-uniqueness argument. Suppose that
(3.17) is not verified and let (uxo, U}y, Uko, Vy) be a sequence of initial data where the corre-
sponding solutions ((uy, z1x), (Vk, 22k ) )ken of (3.1) with £ (0), assumed uniformly bounded in

k, verifies
lim T Ex(0) =400
o / {(”1 B m) s [PdM + (Oél - 5*2 - az) |’Utk|2dM} dt
0 T 27’2 2 M 2 M
S / & % / )
_'_/0 {(27_2 (@, 1, 5)dM + 2 Mzzk(fﬂa 1,s)dM ¢ dt
/ / ay(x gi oVug) + g1 (t)|Vuk|2} dMdt
/ ax(z) {(—=g5 o V) + g2 ()| Vg |*} dMdt
0
(3.19)
T
[ 1(0-5-8) [t (- -5) v}
0 M

T

/ / ai(x) {(—g1 © Vug) +g1(t)|Vuk-|2}det
/0 ax(z) {(~gh o Vv) + ga(t)|Vur, |} dMdt
kli?:l)o Ek(O) =0
(3.20)

Since Fy(t) < E(0) < L; where L is positive constant, we obtain a subsequence, still denoted
by {ur}, {vk} , {21k}, {#2k}. We observe that there exists a subsequence (ug, 21%), (Vk, 22k )

such that

up — v weakly star in L°°(0,T; H*(M) N Hy(M)), (3.21)

vy, — v weakly star in L=(0,T; H*(M) 0 HY(M)), (3.22)

g — uy weakly star in L>=(0,T; HY (M)), (3.23)

vk — vy weakly star in L>°(0,T; HY (M), (3.24)

z1p(x, 1,t) = b1 weakly star in L*(M x (0,T)), (3.25)
2on(x, 1,t) = by weakly star in L*(M x (0,T)). (3.26)
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Further, by Aubin’s lemma [15], it follows from (3.21) and (3.22) that there exists a subsequence
(ug,vy) still represented by the same notation, such that

up — u strongly in LZ(O, T; LZ(M)), (3.27)
v — v strongly in L*(0,T; L*(M)), (3.28)
Then
up = wand vg — v a.ein (0,T) x M, (3.29)
and
Utk — ug and v, — vy a.e in (0,T) x M. (3.30)

(i) Analysis of nonlinear term 1

T
1 (et o) | 2t 0.1y = /O /M<|uk<s>\p - or()[P + lui(s)] "7 g (s)| 5 ) dsdD,

T T
< [ IVu@Irds+ e [ Vo)
0 0

p1 [T p—1 pn [T p+1
+ ¢ / Vg (s)|| 7 ds + ¢s? / Ve (s)| = ds,
prl prl pil
< 2PTLEY +¢i? TL TL e TL>TL* =C.
(3.31)
In the same way for f»(uy,vg)
| f2 (e, vi) | 2 (v x 0,1)) < C- (3.32)
From the (3.31) and (3.32) we deduce that
fi(ug,vr) = fi(u,v) weakly in L*(0,T; L*(M)), (3.33)

fi(ug, vp) = fi(u,v) weakly in L*(0,T; L*(M)).
For suitable functions u,v € L>®(0,T;H}(M)), 21,22 € L>(0,T;L*(M x (0.1)),
V1,92 € L*(M x (0,T)). At this point we will divide our proof into two cases, namely
u=0,v=0andu#0,v#0.

Case 1: u # 0, v # 0 : We observe that F;,(0) < L;, VkeN

/OT{<M1——)/ e ZdM+<a1_§2_>/ o] dM}dt
lim +/0T{<2§;z_m>/ Zlk(w’l’s)dMJ“(;jz—C?) /Mzzk(x,l,s)dM}dt

k—+oco / / al gl (¢} Vuk) + g1 (t) ‘Vuk|2} det
]\4

/0 ax() {(—=gh o Vor) + g (1) Vox[2} Mt

(3.34)
From (3.34), we deduce that

g1(t)a1(z)|Vug|* —l—/o (—g;(t —s)ar()|Vur(.,t) — Vug(., s)|*ds — 0in L' (M x (0,T)),
(3.35)
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g2 (t)aa (z)| Vg —0—/0 (—gh(t — 8)ax()|Vur(.,t) — Vor(., 8)|*ds — 0in L' (M x (0,T)).

(3.36)
Since
ai(z) > ag >0 inw, (3.37)
a(z) > ap >0 inw, (3.38)
91(t) 2 g(T), vtel[0,T], (3.39)
9(t) = g2(T), vt e[0,T]. (3.40)
Following the same ideas in [1], we deduce that
T
/ / a1 (2)g1 ()| Vug|>dMdt
T
/ / ()| Vug| det—I—/ /al(x)gl(t)\VudeMdt
" © (3.41)
> / / a1(z)g1 ()| Vug|*dMdt
0 w
T
> ag1g1(T) / / \Vuy|*dMadt,
0 w
in the same way for the second equation
T T
/ / az(2) g2 (t)| Vg PdMdt > agga(T) / / |V |>dMddt, (3.42)
0 M 0 w
and
r 51 2 52
/ {(ﬂl——>/uk|dM+<C¥1——>/’Utde}dt 0
0 272 27'2
(3.43)
/T{<€1—'u2)/ 22 (x,1,8)dM + (52—042>/ 23, (x, 1 s)dM}dt—O
0 27'2 2 M 1k T 27'2 2 M 2k B '
(3.44)
(3.41)-(3.42), yields
T
lim / |Vug[*dM dt = 0, (3.45)
k—+oo 0 w
T
lim / / |Vug|2dMdt = 0. (3.46)
k—+oo 0 w

Combining (3.27)-(3.28) and (3.45)-(3.46) we deduce that Vu = 0 and Vv = 0 in
L%(0,T; L?(w)) consequently u(z,t) = Ci(t) and v(z,t) = Ch(t) ae in w x (0,7T).
Since u(t) = 0 a.e 9M, v(t) = 0 a.e 9M, we infer that C;(t) = O a.e in (0,7"), C»(t) =0
a.e in (0,7) which implies that u = 0,u; =0, vy =0and v = 0 a.e inw x (0,T) which is
a contradiction.
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Case 2: u = 0, v = 0: We define,

1
ek = [Er(0)]?
and
_ 1 o 1 o 1 o 1
U = —Ug, Vg = Uk, 1k = —Zlk, 2k = 22k
c c c c

(ii) Analysis of nonlinear term 2. From (A4,), we deduce

| F (ug, o)

T
L2(Mx(0,T)) < €1 /0 /M (Jur()[P™ + o (s)[P™) dsdM

T
< clcfj*l/ / (IVur ()P + [Vog(s)[PH) ds (3.47)
o Ju

< clc§+1L1T

where C'is a positive constant.

Eut) = 3wl + 3ol + 5 (- o) [ ao)as ) Va1

1 t 1
w3 (k- [ a@as)IvaoR+ S [ [ e nomaor .

1___
+£—2/ / z%k(x,kz,t)dkszJr/ P m)dn + W (g, 0 V) (1
2 JamJo M 2

ay(z)

T

(92 0 VTg)(t).

Then

1, 1 I
Ei(0) = 5 [@(0)[13 + 5 [T (0)3 + 5[ Vax(0) 3

1 —
5V + 5 [ [ ek 0t
2 2 JuJo

1

1 P | I kv 2
_ 2IIUtk(2 )IlzJr IIUtk(z)\\2+ [ Vur (0) I3

i
1 vak ||2 51 / / zlk ) kl’ dkldM
M

+£72/ / ZZk xazkza )dl{isz+/ F(U/C(O),Uk(o))dM
2 JmJo Ck M

(3.49)

>
Cr

= Ek(O)Ek(O) =1,

we deduce that
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Uy, — 1w weakly star in L>°(0,T; Hy(M)), (3.50)

uy — @ weakly star in L>(0,T; L*(M)), (3.51)

Uy, — 1 strongly in L*(0,T; L*(M)), (3.52)

T — U weakly star in L*>(0,T; H&(M)) (3.53)

Ty — T weakly star in L°°(0,T; L*(M)), (3.54)

T — T strongly in L*(0,T; L*(M)), (3.55)

Zir — 71 weakly star in L>(0,T; L*(M) x (0, 1)), (3.56)

Tk — % weakly star in L>(0,T; L*(M) x (0,1)), (3.57)

F(ur, o) — F(,7) weakly star in L*(0,T; L*(M)), (3.58)

We observe that from (3.5), we can deduce by applying the same idea used in case 1

E(T) — B(0) < — /OT { (m - 2% - ‘;) /M g PAM — <a1 - 2% - 22) /M Ut|2dM} dt
_ /OT { (25712 - “;) /M 2,1, 8)dM — (f; - O;) /M 2z, l,s)dM} dt
+/T/ ai(z) {(g{ o Vu) — g1 (t)|Vu|*} dMdt
/ / ax(z) {(gh o Vv) — g2(#)|V|*} dMt,

and considering (3.35)-(3.36), (3.49) and (3.50)-(3.58), we deduce that

(3.59)

lim Ey(t) =1, Vtel0,T]. (3.60)

k— o0

Let ¢ > 0 be small enough such that T — ¢ > Tj and let us consider a cutoff function ¢ €
C3°(0,T) such that » = 1 in [e,Z— €], 0 < ¢ < 1 in addition, consider another cutoff function
¢ e Cge(M)suchthat = linw’ CCw, ¢ =0in M\, 0 < ¢ <1, we get

-/ ' | wwvsava- [ [ [ Pvsanta + / ) | IvaPisara
/ [ (VoSv)modMit+ / | divtan@)gn » Varymoara
+ / / T T edMdt + / / T (.t — 1) TRUSAM dt
/ | o amar - / | o Pusanrae+ / | Ivetveanar - Gon
[ vmvmoaas [ [ divtontrn « Vorymsoana
o [ ' | s+ o [ ' | et = mymearar

[ [

ToE| 7 wodMdt = 0
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Kipping in mind @ = 0, 7 = 0, Z1; = 0 ,Z2; = 0, by combining (3.50)-(3.58) and (3.61)
T T
- / / @' [Pppd M dt + / / |Vuk|21/J<Z>det} =0, (3.62)
0o Jm 0o Jm

T T
lim {— / / o7 |2ppdMdt + / / |Vuk2¢¢det}
koo 0 JM 0 JMm

from the properties of the function 1), we deduce
T T
lim {— / / @' [P pd M dt + / / |Vuk|2w¢det} =0, (3.64)
k—too 0 w 0 w
} o

T T
lim {— / / o7 P pdMdt + / / |V |*yppd Mdt
k—-+oo 0 w 0 w

Combining (3.61)with (3.45)-(3.46), yields

lim

k—+oo

—N—

0 (3.63)

(3.65)

T
lim / / [ar’ [PippdMdt = 0, (3.66)
k—+oo 0 w
T
lim / / [T |*pdMdt = 0. (3.67)
k—+oo J() w
‘We deduce that
T—e T—e¢
lim / [ax' [*ppdMdt =0,  lim / |Vag*ppdMdt = 0, (3.68)
k—+oo € w’ k—+oo € w’
T—e T—e
lim / TR PibpdM dt =0,  lim / |VTg | 1hopdM dt = 0. (3.69)

From (3.68)-(3.69) and taking (Ag); we have also Ej(t) < E(0) = 1,Vt € [0,T], k € N as in
(1.11)

T—e
=B < Crure [ [ {[wP o+ [or P} vodMde > 0as k- o,

E(T) < —C[E(T) — E(0)], YT > T, (3.70)

as in Munoz-Rivera and Salvatierra [13]

C 1
E(T) < ——FE(0) =
()_C—H ) 1+

Repeating the above process from 7" to 27" we obtain

E(0), YT >T,. (3.71)

EQ2T) < 72E(0), VT >T. (3.72)

(1+3&)

In general
1

(1+3)
t can take the form ¢ = nT + r where 0 < r < T and since E(¢) is a decreasing function, we get
E#)<E({t-r)< %E(O) = Be““E(OL VT > T, (3.74)

(1+&) ™

where 3 = e7 n(+&), q = % This completes the proof. O
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Remark 3.6. Our functional energy formula is different from the one used in [1]. Our problem
contains some nonlinear and delay terms. This work can be viewed as a continuation of the
works of M. Cavalcanti, V D. Cavalcanti and F. A Nascimento [1].
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