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Abstract. In this paper, we study an approximate controllability problem. This problem
appears naturally of approximate sentinel "weakly sentinel". The main tool is a theorem of
uniqueness of the solution of ill-posed Cauchy problem for the parabolic equations.

1 Introduction

The notion of sentinel was introduced by J. L. Lions to study systems of incomplete data [22].
The notion permits to distinguish and to analyse two types of incomplete data: theso called
pollution terms on which we look for informations, independently of the othertype of incomplete
data which is the missing terms, and that we do not want to identify.

Typically, the Lions’ sentinel is a functional defined from an open setO on which we consider
three functions: the “observation”yobs corresponding to measurements, a given “mean” function
h0, and a control functionu to be determined.

Let us remind that Lions’ sentinel theory [22] relies on the following three features: the state
equationy which is gouverned by a system of PDE, the observation system and someparticular
evaluation function: the sentinel itself.

2 Setting the problem

2.1 Problem formulation

Forn = {2; 3} , let Ω be a bounded open subset ofR
n with boundary∂Ω = Γ of classC2, T > 0,

and letO ⊂ Γ,O is a frontier observatory. SetQ = Ω×(0, T ) , Σ = Γ×(0, T ) , U = O×(0, T ) .
If Γ0 is a subset of the borderΓ of Ω such asO ∩ Γ0 = ∅. We consider the parabolic equation:





y′ + ∆2y + f (y)

y

y
∂y
∂ν
∂y
∂ν

y(0)

=

=

=

=

=

=

0
ξ0 + λ0ξ̂0

0
ξ1 + λ1ξ̂1

0
y0 + τ ŷ0

in
on
on
on
on
on

Q
Σ0 = Γ0 × (0, T )
Σ\Σ0

Σ0

Σ\Σ0

Ω

(1.1)

Where(.)′ is the partial derivative with respect to timet.

Remark 2.1.The problem(1.1) admits a unique solution. For the sake of simplicity, we denote
y(x, t;λ, τ) = y(λ, τ); λ = {λ0, λ1} .

That supposes that the dataξ0, ξ1 are rather regular, and that the terms of pollution "that one
wants to estimate" are rather regular. It will be always supposed that thesolutiony check at least
y ∈ L2 (Q) .
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Remark 2.2.One will always indicate byy0 the solutiony (x, t; 0,0) ; thus





y′0 + ∆2y0 + f (y0)

y0

y0
∂y0
∂ν
∂y0
∂ν

y0(0)

=

=

=

=

=

=

0
ξ0

0
ξ1

0
y0

in
on
on
on
on
on

Q
Σ0 = Γ0 × (0, T )
Σ\Σ0

Σ0

Σ\Σ0

Ω

(1.2)

The problem considered here consists in trying to estimateλ0ξ̂0 andλ1ξ̂1 starting from ob-
servations, distributed or borders, without seeking to estimate the tereme lack τ ŷ0.

One starts with a distributed observation, therefore a distributed sentinel

2.2 The “Sentinels method”

Proposition 2.3.(definition, existence and uniqueness of the sentinel)
Leth = {h0, h1} ∈

(
L2(U)

)2
and for any control functionu = {u0, u1} ∈

(
L2(U)

)2
, set

S (λ, τ) =

∫

U

[
(h0 + u0)∆y (λ, τ) + (h1 + u1)

∂∆y
∂ν

(λ, τ)

]
dU (1.3)

The role of the functionu appears in the following definition. We shall say thatS defines a
weakly sentinel (for the system(1.1), and definition ofh) if there existsu such that the functional
S satisfies the following conditions:

for all ǫ > 0 there existsu ∈
(
L2(U)

)2
such as

u ∈
(
L2(U)

)2
, of minimal norm (1.4)

∣∣∣∣
∂

∂τ
S (0,0)

∣∣∣∣ ≤ ǫ (1.5)

ThenS (λ, τ) defined by (1.3, 1.4, 1.5) exists and is unique (that means the existence and
uniqueness of the functionu).

Remark 2.4.The functionu = −h give place to(1.5) so that the problem (1.4, 1.5) admits a
single solution, which is defined byh.

The problem is thus:
(1) to calculate this solution;
(2) to see whether the corresponding sentinel justifies its name, i.e. gives information on

pollutionλ0ξ̂0 andλ1ξ̂1.

Adjoint state

The adjoint state is introducedq by




−q′ + ∆2q + f ′ (y0) q

q

q
∂q
∂ν
∂q
∂ν

q (T )

= 0
= h1 + u1 onU
= 0 onΣ
= − (h0 + u0) onU
= 0 onΣ
=

(1.6)

Where(.)′ is the partial derivative with respect to timet, h, u ∈
(
L2 (U)

)2
.

Remark 2.5.System(1.6) is a backward parabolic problem. It appears under this form in
J.L.Lions sentinels theory as the associated adjoint state.
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Multiply (1.6) by yτ and integrate by parts. We have

(q (0) , yτ (0)) +
∫

Σ

(
∂∆q
∂ν

yτ − ∆q ∂yτ
∂ν

+
∂q

∂ν
∆yτ − q

∂∆yτ
∂ν

)
dΣ = 0

But yτ = 0, ∂yτ

∂ν
= 0 onΣ. So we get

∂

∂τ
S (0,0) = (q (0) , ŷ0) (1.7)

so that(1.5) is equivalent to
‖q (x,0)‖L2(Ω) ≤ ǫ (1.8)

There is thus business with a problem of the type "approximate controllability with zero"
(with, an operator of the 4th order inx)

The main result

The main result is the following

Lemma 2.6.Let v ∈ L2 (U) .Then there is noρ ∈ L2 (Q) , ρ 6= 0 such thatρ satisfies





ρ′ + ∆2ρ+ f ′ (y0) ρ

ρ
∂ρ
∂ν

ρ (T )χO

=

=

=

=

0
0
0
v

in

on

on

Q
Σ
Σ

(1.9)

Proof. If the problem(1.9) admits a solution, then it is given by

ρ (x, t) =
∞∑

j=1

αj (t) uj (x) (1.10)

Whereuj are eigenfunctions of
{

−∆u
u

=

=

λu

0
in Ω,
on Γ.

(1.11)

Differentiate the solution(1.11) once with respect tot and twice with respect tox and sub-
stitute these derivatives into the first equation of(1.9). We then obtain

∞∑

j=1

(
α′
j (t) + λjαj (t)

)
uj (x) = 0 (1.12)

Thus,
α′
j (t) + λjαj (t) = 0 (1.13)

Because(uj) form an orthonormal base ofL2 (Q). Furthermore, the functionρ satisfies the
boundary conditions if and only if

∞∑

j=1

αj (t)uj (x) = vχO (1.14)

As vχO ∈ L2 (Q) then

vχO =
∞∑

j=1

〈vχO, uj〉L2(Q) uj (x) (1.15)

Consequently
αj (t) = 〈vχO, uj〉L2(Q) (1.16)
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Finally, we have
{
α′
j (t) + λjαj (t)

αj (t)

=

=

0
〈vχO, uj〉L2(Q)

in (0, T ) , (1.17)

Then the solution of the first order linear is given by

αj (t) = 〈vχO, uj〉L2(Q) e
λjt (1.18)

Consequently, if the problem(1.9) admits a solution, it is necessarily in the form:

ρ (x, t) =
∞∑

j=1

〈vχO, uj〉L2(Q) e
λjtuj (x) (1.19)

We prove now thatρ /∈ L2 (Q) . Indeed,

∫ T

0
|αj (t)|2 dt =

∣∣∣〈vχO, uj〉L2(Q)

∣∣∣
2
∫ T

0
e2λj tdt =

∣∣∣〈vχO, uj〉L2(Q)

∣∣∣
2
[ −1

2λj
+

1
2λj

e2λjT

]

(1.20)
But,λj is the eigenvalue of problem(1.11), thenλj −→

j 7−→∞
∞. Consequently,

∫ T

0
|αj (T )|2 dt −→

j 7−→∞
∞ (1.21)

Which means that the series whose general termαj (t) is not normally convergent. So, prob-
lem (1.9) admits no solution.

Theorem 2.7.For ǫ > 0, h ∈
(
L2 (U)

)2
, there existe some controlu and some stateq such

that (1.6) and(1.8) hold. Moreover, there exists a unique pair(û, q̂) with û of minimal norm in(
L2 (U)

)2
, i.e. such that (1.6, 1.8) and(1.4) hold.

Proof. Let q be a solution of the system(1.6) andq0 a solution of the following system





−q′0 + ∆2q0 + f ′ (y0) q0

q0

q0
∂q0
∂ν
∂q0
∂ν

q0 (T )

=

=

=

=

=

=

0
h1 onU
0 onΣ
−h0 onU
0 onΣ
0

(1.22)

We put
q = q0 + z (1.23)

Then,z is the solution of the following problem




−z′ + ∆2z + f ′ (y0) z

z

z
∂z
∂ν
∂z
∂ν

z (T )

=

=

=

=

=

=

0
u1 onU
0 onΣ
−u0 onU
0 onΣ
0

(1.24)

We now introduce the set of states reachable at time 0 defined by

F (0) =
{
z (u,0) such asu ∈

(
L2(U)

)2
}
. (1.25)
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It is clear thatF (0) is a vector subspace ofL2 (Ω). According to theHAHN-BANACH
theorem, it will be dense inL2 (Ω) if and only if its orthogonal inL2 (Ω) is reduced to zero. As
{0} ⊂ F⊥ (0) , it remains to show thatF⊥ (0) ⊂ {0} . Let ρ0 ∈ F⊥ (0), then

〈
ρ0, z (0)

〉
L2(Ω)

=

∫

Ω
ρ0z (0) dx = 0 (1.26)

Wherez is solution of(1.24). It is therefore natural to define the adjointρ of z, this is the
solution of the following problem





ρ′ + ∆2ρ+ f ′ (y0) ρ

ρ (0)
∂ρ
∂ν

ρ

=

=

=

=

0
ρ0

0 onΣ
0 onΣ

(1.27)

Whereρ is solution of(1.27).
Now multiply the first equation of system(1.24) by ρ. After integration by parts inQ, it

comes
〈
z (0) , ρ0〉 =

∫

U

[
(∆ρ)2

+

(
∂∆ρ
∂ν

)2
]
dΣ (1.28)

Sincez andρ are solutions of(1.24) and(1.27) respectively,(1.28) becomes

∫

U

[
(∆ρ)2 +

(
∂∆ρ
∂ν

)2
]
dΣ = 0 (1.29)

This is equivalent to

∆ρ = ∂∆ρ
∂ν

= 0 in U (1.30)

Further using the boundary conditions onρ it is seen that theCauchy data are zero onU , so

ρ = 0 in U (1.31)

Therefore,ρ satisfies(1.27) and(1.31) and by applyingMIZOHATA , we deduce that

ρ = 0 in Q
As a consequence,ρ0 = 0 which shows thatF⊥ (0) = {0} .

3 Characterization of optimal control

In this section, we will characterize the optimal control using a result ofFenchel-Rockafellar
duality.

The optimality system satisfied by(û, q̂) is established. Letρ0 ∈ L2 (Ω) andρ the associated
solution of 




ρ′ + ∆2ρ+ f ′ (y0) ρ

ρ (0)
∂ρ
∂ν

ρ

=

=

=

=

0
ρ0

0 onΣ
0 onΣ

(2.1)

We now introduce the functionalJǫ defined by

Jǫ
(
ρ0) =

∫ T

0

∫

O

ρ

(
1
2
ρ+ h

)
dxdt+ ǫ

∥∥ρ0
∥∥
L2(Ω)

(2.2)

Consider the following unconstrained problem

(Pǫ) :

{
minJǫ

(
ρ0
)

ρ0 ∈ L2 (Ω)
(2.3)

Then, we have
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Proposition 3.1.The functionalJǫ defined in (2.2) is coercive.

Proof. To prove thatJǫ is coercive, it suffices to show the following relation:

lim
‖ρ0‖

L2(Ω)→∞

Jǫ
(
ρ0
)

‖ρ0‖L2(Ω)

≥ ǫ (2.4)

Let
(
ρ0
j

)
⊂ L2 (Ω) be a sequence of initial data for the adjoint system (2.1) with

∥∥ρ0
j

∥∥
L2(Ω)

−→
∞. We normalize them as follows

ρ̃0
j =

ρ0
j∥∥ρ0

j

∥∥
L2(Ω)

(2.5)

So
∥∥ρ̃0

j

∥∥
L2(Ω)

≤ 1. On the other hand, let̃ρj be the solution of (2.1) with initial dataρ̃0
j . Then,

we have

Jǫ
(
ρ0
j

)
∥∥ρ0

j

∥∥
L2(Ω)

=
1∥∥ρ0

j

∥∥
L2(Ω)

∫ T

0

∫

O

ρj

(
1
2
ρj + h

)
dxdt+ ǫ =

∫ T

0

∫

O

ρ̃j

(
1
2
ρj + h

)
dxdt+ ǫ

(2.6)
We now show that the last integral in equation (2.6) is bounded. Indeed, we know thatρj is

the solution of the problem




ρ′j + ∆2ρj + f ′ (y0) ρj
ρj

∂ρj

∂ν

ρj (0)

=

=

=

=

0
0
0
ρ0
j

in
on
on
in

Q
Σ
Σ
Ω

(2.7)

Multiplying the first equation of system (2.7) by ρj thenintegrating by parts onQ, yields

0 =

∫ T

0

∫

Ω

(
ρ′j + ∆2ρj + f ′ (y0) ρj

)
ρjdxdt =

1
2
‖ρj (T )‖2

L2(Ω) − 1
2

∥∥ρ0
j

∥∥2

L2(Ω)
+ ‖∇ρj‖2

L2(Q)

(2.8)
By thePoincaré inequality, (2.8) becomes,

C0 ‖ρj‖2
L2(Q) ≤ ‖∇ρj‖2

L2(Q) ≤
1
2

∥∥ρ0
j

∥∥2

L2(Ω)
(2.9)

Now, byCauchy Schwartz inequality, one finds

∫ T

0

∫

O

hρ∥∥ρ0
j

∥∥
L2(Ω)

dxdt ≤ C1

‖ρj‖L2(Q)∥∥ρ0
j

∥∥
L2(Ω)

(2.10)

From (2.9), (2.10), we conclude that
∫ T

0

∫

O

hρ∥∥ρ0
j

∥∥
L2(Ω)

dxdt ≤ C (2.11)

Returning to relation (2.6), two cases can occur:
1.

∫ T

0

∫
O ρ̃

2
jdxdt > 0. In this case, we immediately obtain

Jǫ
(
ρ0
j

)
∥∥ρ0

j

∥∥
L2(Ω)

−→
‖ρ0

j‖L2(Ω)
7−→+∞

+∞. (2.12)

2.
∫ T

0

∫
O
ρ̃2
jdxdt = 0.In this case, since

(
ρ̃0
j

)
j

is bounded inL2 (Ω) , we can extract a subse-

quence
(
ρ̃0
j

)
j

such that:

{
ρ̃0
j ⇀ ψ0 weakly inL2 (Ω) ,

ρ̃j ⇀ ψ weakly inL2
(
0, T ;H1

0 (Ω)
)
.

(2.13)
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Whereψ is solution of system (2.1) with initial dataψ0. Moreover, by lower semi continuity
of the norm, it comes

∫ T

0

∫

O

|ψ|2 dxdt ≤ lim inf
∫ T

0

∫

O

|ρ̃j |2 dxdt = 0 (2.14)

Therefore,
ψ = 0 in O × (0, T ) (2.15)

And asψ is solution of (2.1), and in view of (2.15), we have

ψ = 0 in Ω × (0, T ) (2.16)

Thus,
ρ̃j ⇀ 0 weakly inL2 (0, T ;H1

0 (Ω)
)
. (2.17)

Moreover, from inequality (2.9), we deduce that
(

ρj

‖ρ0
j‖L2(Ω)

)

j

is bounded inL2
(
0, T ;H1

0 (Ω)
)
.

Hence
ρj∥∥ρ0

j

∥∥
L2(Ω)

⇀ ξ in L2 (0, T ;H1
0 (Ω)

)
(2.18)

But,
ρ̃j =

ρj∥∥ρ0
j

∥∥
L2(Ω)

⇀ 0 (2.19)

From (2.18) and (2.19), we conclude that

ξ′ + ∆2ξ + f ′ (y0) ξ = 0 in L2 (Q) (2.20)

So byLemma 2.6, it comes
ξ = 0 in Q (2.21)

As a consequence,

ρ̃j =
ρj∥∥ρ0

j

∥∥
L2(Ω)

7−→ 0 (2.22)

But,
Jǫ

(
ρ0
j

)
∥∥ρ0

j

∥∥
L2(Ω)

=
1∥∥ρ0

j

∥∥
L2(Ω)

∫ T

0

∫

O

ρj

(
1
2
ρj + h

)
dxdt+ ǫ (2.23)

Thus,

lim inf
j 7−→+∞

Jǫ
(
ρ0
j

)
∥∥ρ0

j

∥∥
L2(Ω)

≥ ǫ (2.24)

Hence relation (2.4) is satisfied.

Theorem 3.2.Problem (2.3) has a unique solution̂ρ0 ∈ L2 (Ω). Furthermore, if̂ρ is the solution
of (2.1) associated tôρ0, then(û = ρ̂, q) is solution such that (1.6), (1.8) and (1.4) hold.

Proof. As Jǫ attains its minimum value at̂ρ0 ∈ L2 (Ω), then, for anyψ0 ∈ L2 (Ω) and anyr ∈ R

we have
Jǫ

(
ρ̂0) ≤ Jǫ

(
ρ̂0 + rψ0) =⇒ Jǫ

(
ρ̂0 + rψ0)− Jǫ

(
ρ̂0) ≥ 0 (2.25)

On the other hand,

Jǫ
(
ρ̂0) =

∫ T

0

∫

O

ρ̂

(
1
2
ρ̂+ h

)
dxdt+ ǫ

∥∥ρ̂0
∥∥
L2(Ω)

Jǫ
(
ρ̂0 + rψ0) =

∫ T

0

∫

O

(
1
2
ρ̂2 +

r2

2
ψ2 + rρ̂ψ + h (ρ̂+ rψ))dxd+

√
ε
∥∥ρ̂0 + rψ0

∥∥
L2(Ω)

(2.26)
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Substituting (2.26) in (2.25) and after simplifications, we find

0 ≤ Jǫ
(
ρ̂0 + rψ0)−Jε

(
ρ̂0)0 ≤

∫ T

0

∫

O

(
r2

2
ψ2+rψ (ρ̂+ h))dxdt+ǫ

[∥∥ρ̂0 + rψ0
∥∥
L2(Ω)

−
∥∥ρ̂0

∥∥
L2(Ω)

]

(2.27)
On the other hand,

∥∥ρ̂0 + rψ0
∥∥
L2(Ω)

−
∥∥ρ̂0

∥∥
L2(Ω)

≤ |r| .
∥∥ψ0

∥∥
L2(Ω)

(2.28)

From (2.27) and (2.28), we obtain for anyψ0 ∈ L2 (Ω) andr ∈ R,

0 ≤ r2

2

∫ T

0

∫

O

ψ2dxdt+ ǫ |r| .
∥∥ψ0

∥∥
L2(Ω)

+ r

∫ T

0

∫

O

ψ (ρ̂+ h) dxdt

Dividing by r > 0 and by passing to the limitr → 0, we obtain

ǫ.
∥∥ψ0

∥∥
L2(Ω)

+

∫ T

0

∫

O

ψ (ρ̂+ h) dxdt ≥ 0

The same calculations withr < 0 give
∣∣∣∣∣

∫ T

0

∫

O

ψ (ρ̂+ h) dxdt

∣∣∣∣∣ ≤ ǫ
∥∥ψ0

∥∥
L2(Ω)

; ∀ψ0 ∈ L2 (Ω) .

Alors if we takeû = ρ̂χO in (1.6) and we multiply the first equation of the system (1.6) byψ
solution of (2.1) and we get after integration by parts overQ,

∫

Ω
q(0)ψ0dx =

∫ T

0

∫

O

(h+ ρ̂)ψdxdt (2.29)

It comes from the last two relations:
∣∣∣∣
∫

Ω
q(0)ψ0dx

∣∣∣∣ ≤ ǫ
∥∥ψ0

∥∥
L2(Ω)

; ∀ψ0 ∈ L2 (Ω) .

Consequently,
‖q (x,0)‖L2(Ω) ≤ ǫ. (2.30)

4 A use of the concept of sentinel: Detection of pollution AndFurtivity

We first introduce some notations

M
−→
h =M {h0, h1} (3.1)

Which definesM ∈ L
(
L2 (U) ;L2 (Ω)

)
.

The adjoint operatorM∗ is given by

M∗ρ0 =

{
∆ρχU ,

∂∆ρ
∂ν

χU

}
(3.2)

We will ask

Pρ =

{
∆ρχU ,

∂∆ρ
∂ν

χU

}
(3.3)

With this notation, the sentinel (1.3) is written

S (λ, τ) =

∫

U

[〈−→
h , Py (λ, τ)

〉
+ 〈Pρ, Py (λ, τ)〉

]
dΣ (3.4)
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It is noted that

S (λ, τ) ≃ S (0,0) + λ0
∂S
∂λ0

(0,0) + λ1
∂S
∂λ1

(0,0) (3.5)

And

∆yχU = m0,
∂∆y
∂ν

χU = m1 (3.6)

Therefore, using (3.6), is obtained by putting−→m = {m0,m1} .
With the notation (3.6) for the observation ofy, and while using (1.3), one thus has

∣∣∣∣∣∣

∫
U

[〈−→
h − Pρ,−→m − Py0

〉]
dΣ ≃

∫
U

[〈−→
h − Pρ, P (λ0yλ0 + λ1yλ1)

〉]
dΣ

(3.7)

In (3.7), yλ0 andyλ1 are defined by





y′λ0
+ ∆2yλ0 + f ′ (y0) yλ0

yλ0

yλ0
∂yλ0
∂ν

∂yλ0
∂ν

yλ0(0)

=

=

=

=

=

=

0
ξ̂0

0
0
0
0

in
on
on
on
on
on

Q
Σ0 = Γ0 × (0, T )
Σ\Σ0

Σ0

Σ\Σ0

Ω

(3.8)

And




y′λ1
+ ∆2yλ1 + f ′ (y0) yλ1

yλ1

yλ1
∂yλ1
∂ν

∂yλ1
∂ν

yλ1(0)

=

=

=

=

=

=

0
0
0
0ξ̂1

0
0

in
on
on
on
on
on

Q
Σ0 = Γ0 × (0, T )
Σ\Σ0

Σ0

Σ\Σ0

Ω

(3.9)

That is to sayq (h) the state adjoint correspondent withu = ρχO.
By multiplying the corresponding equation (1.6) by yλ0 then byyλ1, one finds, after integra-

tions by parts, that
∂S
∂λ0

(0,0) =
∫

Σ0

∂

∂ν
∆q

(−→
h
)
ξ̂0dΣ, (3.10)

And
∂S
∂λ1

(0,0) = −
∫

Σ0

∆q
(−→
h
)
ξ̂1dΣ. (3.11)

Consequently

∫

U

[〈−→
h − Pρ, P (λ0yλ0 + λ1yλ1)

〉]
dΣ =

∫

Σ0

[
∂

∂ν
∆q

(−→
h
)
λ0ξ̂0 − ∆q

(−→
h
)
λ1ξ̂1

]
dΣ (3.12)

It is the quantity (3.12) which is estimated by the 1st member of (3.7).

Pollution
{
λ0ξ̂0, λ1ξ̂1

}
is furtive for the sentinel defined by

−→
h = {h0, h1} if

∫

Σ0

[
∂

∂ν
∆q

(−→
h
)
λ0ξ̂0 − ∆q

(−→
h
)
λ1ξ̂1

]
dΣ = 0 (3.13)

There are thus always furtive pollution for a sentinel.
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5 Concluding remarks

In this paper we have presented an efficient method to estimate the pollution terms in the
parabolic equations of the 4th order with missing initial data condition and perturbuted term
or pollution term. The theory used for the identification needs the sentinels method by Lions
[22]. And finally, we give the characterization of the weakly sentinel, which permits to identify
the pollution parameters.
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