
Palestine Journal of Mathematics

Vol. 6(2)(2017) , 403�411 © Palestine Polytechnic University-PPU 2017

DUALITY PRINCIPLE IN g-FRAMES

Amir Khosravi and Farkhondeh Takhteh

Communicated by Akram Aldroubi

MSC 2010 Classi�cations: Primary 42C15; Secondary 42A38, 41A58.

Keywords and phrases: g-Orthonormal basis, g-Riesz basis, g-Riesz dual sequence.

The authors express their gratitude to the referee for very valuable suggestions.

Abstract. The concept of Riesz dual sequences (R-dual sequences) was introduced by

Casazza et al. in 2004. Recently, for generalizing this concept to g-frames the concept of g-
Riesz dual sequences has been introduced and various de�nitions of R-duals for frames are in

the literature. In this paper, we generalize these concepts for g-frame and introduce g-Riesz duals
(g-R-duals) of type II , III and IV . Since the g-R-dual of type IV is the most general g-R-dual,
we focus on the g-R-dual of type IV . We give characterizations of g-frames and g-Riesz bases
in terms of their g-R-dual of type IV . We characterize all dual g-frames of a g-frame in terms

of its g-R-dual of type IV which can be considered as Wexler-Raz biorthogonality relations

for g-frames. Also, we present a generalization of Ron-Shen duality principle to g-frames. In

addition, we investigate the construction of dual g-frames in more details and we give another

characterization of dual g-frames with respect to its g-R-dual sequence.

1 Introduction and preliminaries

The concept of R-duality of a Bessel sequence in a separable Hilbert space was introduced by

Casazza, Kutyniok and Lammers in [1], in order to obtain a generalization of duality principles

in Gabor frames to abstract frame theory.

Let (ei)i∈I , (hi)i∈I be orthonormal bases and (fi)i∈I be a Bessel sequence. The R-dual se-

quence of (fi)i∈I with respect to the orthonormal bases (ei)i∈I and (hi)i∈I is the sequence

(wf
j )j∈I , such that for every j ∈ I

wf
j =

∑
i∈I

⟨fi, ej⟩hi.

The R-duality has been favored by many authors. The R-duality with respect to orthonormal

bases has been discussed in [2] and [3]. In [8], the authors introduced various alternative R-duals

and showed their relation with Gabor frames. In [11], the authors generalized the R-duality

in Banach spaces. In [4] the authors, proved that the duality principle extends to any pair of

projective unitary representation of countable groups. Recently, for generalizing this concept to

g-frames the concept of g-Riesz dual sequences has been introduced [7]. Various de�nitions of

R-duals for frames are in the literature.

In this paper, we generalize these concepts to g-frame and introduce g-Riesz duals (g-R-

duals) of type II , III and IV . Since the g-R-dual of type IV is the most general g-R-dual,

we focus on the g-R-dual of type IV . We give characterizations of g-frames and g-Riesz bases

in terms of their g-R-dual of type IV . We characterize all dual g-frames of a g-frame in terms

of its g-R-dual of type IV , which can be considered as Wexler-Raz biorthogonality relations

for g-frames. Also, we present a generalization of Ron-Shen duality principle to g-frames. In

addition, we investigate the construction of dual g-frames in more details and we give another

characterization of dual g-frames with respect to its g-R-dual sequence.

Throughout this paper H denotes a separable Hilbert space with inner product ⟨., .⟩ and I is a

subset of Z, and {Hi : i ∈ I} is a sequence of separable Hilbert spaces . Also, for every i ∈ I,
L(H,Hi) is the set of all bounded, linear operators from H to Hi.
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In the rest of this section we review several well-known de�nitions and results. The new results

are stated in Section 2.

For every sequence {Hi}i∈I , the space

(
∑
i∈I

⊕
Hi)ℓ2 = {(fi)i∈I : fi ∈ Hi, i ∈ I,

∑
i∈I

∥fi∥2 < ∞}

with pointwise operations and the following inner product is a Hilbert space

⟨(fi)i∈I , (gi)i∈I⟩ =
∑
i∈I

⟨fi, gi⟩.

A sequence L = {Li ∈ L(H,Hi) : i ∈ I} is called a g-frame for H with respect to {Hi : i ∈
I} if there exist A,B > 0 such that for every f ∈ H

A∥f∥2 ≤
∑
i∈I

∥Lif∥2 ≤ B∥f∥2,

A,B are called g-frame bounds. We call L a tight g-frame if A = B and a Parseval g-frame if

A = B = 1. If only the right hand side inequality is required, L is called a g-Bessel sequence.

If L is a g-Bessel sequence, then the synthesis operator for L is the linear operator,

TL : (
∑
i∈I

⊕
Hi)ℓ2 7→ H TL(fi)i∈I =

∑
i∈I

L
∗
i fi.

We call the adjoint of the synthesis operator, the analysis operator. The analysis operator is the

linear operator,

T ∗
L : H 7→ (

∑
i∈I

⊕
Hi)ℓ2 T ∗

Lf = (Lif)i∈I .

We call SL = TLT
∗
L
the g-frame operator of L and SLf =

∑
i∈I L

∗
iLif, (f ∈ H).

If L = (Li)i∈I is a g-frame with lower and upper g-frame bounds A,B, respectively, then the

g-frame operator of L is a bounded, positive and invertible operator on H and

A⟨f, f⟩ ≤ ⟨SLf, f⟩ ≤ B⟨f, f⟩ (f ∈ H)

so

A.I ≤ SL ≤ B.I.

The canonical dual g-frame for L = (Li)i∈I is de�ned by L̃ = (L̃i)i∈I , where L̃i = LiS
−1

L

which is also a g-frame forH with lower and upper g-frame bounds 1

B and 1

A , respectively. Also

for every f ∈ H , we have

f =
∑
i∈I

L
∗
i L̃if =

∑
i∈I

L̃i

∗
Lif.

We sayL = {Li ∈ L(H,Hi) : i ∈ I} is a g-frame sequence if it is a g-frame for span{L∗
i (Hi)}i∈I .

A sequence L = {Li ∈ L(H,Hi) : i ∈ I} is g-complete if {f : Lif = 0, ∀i ∈ I} = {0}. We

note that the g-Bessel sequence L is g-complete if and only if T ∗
L
is injective. We say that L is a

g-orthonormal basis for H, if

⟨L∗
i fi,L

∗
jfj⟩ = δi,j⟨fi, fj⟩, ∀fi ∈ Hi, fj ∈ Hj , i, j ∈ I

and ∑
i∈I

∥Lif∥2 = ∥f∥2 (f ∈ H).

A sequence L = {Li ∈ L(H,Hi) : i ∈ I} is a g-Riesz sequence if there exist A,B > 0 such

that for every �nite subset F ⊂ I and gi ∈ Hi, i ∈ F

A
∑
i∈F

∥gi∥2 ≤ ∥
∑
i∈F

L
∗
i gi∥2 ≤ B

∑
i∈F

∥gi∥2. (1.1)



DUALITY PRINCIPLE IN g-FRAMES 405

G-Riesz sequence L = {Li ∈ L(H,Hi) : i ∈ I} is called a g-Riesz basis if it is g-complete,

too. So L is a g-Riesz basis if and only if TL is a bounded invertible operator. Clearly, every

g-orthonormal basis is a g-Riesz basis.

Let L = {Li ∈ L(H,Hi) : i ∈ I} and Q = {Qi ∈ L(H,Hi) : i ∈ I} be g-Bessel sequences
with g-Bessel bounds B and C, respectively. The operator SLQ : H 7→ H de�ned by

SLQf =
∑
i∈I

L
∗
iQif, (f ∈ H)

is a bounded operator, ∥SLQ∥ ≤
√
BC, S∗

LQ
= SQL and SLL = SL.

Two g-Bessel sequences L = {Li ∈ L(H,Hi) : i ∈ I} and Q = {Qi ∈ L(H,Hi) : i ∈ I} are

called dual g-frames if

f =
∑
i∈I

L
∗
iQif =

∑
i∈I

Q
∗
iLif, (f ∈ H).

For more details about g-frames, see [6, 9].

2 Main results

In this section, �rst we consider the g-Riesz dual(g-R-dual) with respect to g-orthonormal bases

as the g-R dual of type I in [7] and we introduce alternative de�nitions of g-R-duals.

De�nition 2.1. Let L = {Li ∈ L(H,Hi) : i ∈ I} be a g-frame for H with g-frame operator S.

(i) Let G = {Gi ∈ L(H,Hi) : i ∈ I} and ¡ = {¡i ∈ L(H,Hi) : i ∈ I} be g-orthonormal

bases. The g-R-dual of type I of L with respect to G and ¡ is FL = (FLj )j∈I de�ned by

F
L

j f = GjSL¡f (f ∈ H).

(ii) Let G = {Gi ∈ L(H,Hi) : i ∈ I} and ¡ = {¡i ∈ L(H,Hi) : i ∈ I} be g-orthonormal

bases. The g-R-dual of type II of L with respect to G and ¡ is FL = (FLj )j∈I de�ned by

F
L

j f = GjS
− 1

2S
L(¡S

1

2 )
f (f ∈ H).

(iii) Let G = {Gi ∈ L(H,Hi) : i ∈ I} and ¡ = {¡i ∈ L(H,Hi) : i ∈ I} be g-orthonormal

bases andM : H → H be a bounded invertible operator with ||M || ≤
√
||S|| and ||M−1|| ≤√

||S−1||. The g-R-dual of type III of L with respect to triplet (G,¡,M) isFL = (FLj )j∈I
de�ned by

F
L

j f = GjS
(LS− 1

2 )(¡M)
f (f ∈ H).

(iv) Let G = {Gi ∈ L(H,Hi) : i ∈ I} and ¡ = {¡i ∈ L(H,Hi) : i ∈ I} be g-Riesz bases. The
g-R-dual of type IV of L with respect to G and ¡ is FL = (FLj )j∈I de�ned by

F
L

j f = GjSL¡f (f ∈ H).

In all of the above cases, it is obvious thatFLj is well-de�ned andFLj ∈ L(H,Hj), for every
j ∈ I.

Clearly, the g-R-duals of type II are contained in the class of g-R-duals of type III and the

g-R-duals of type III are contained in the class of g-R-duals of type IV . Moreover, the g-R-

duals of type I , II , and III are contained in the class of g-R-duals of type IV .

In the following proposition, we show that for tight g-frames the g-R-duals of type I , II and

III coincide.
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Proposition 2.2. Let L = {Li ∈ L(H,Hi) : i ∈ I} be a tight g-frame. Then the g-R-duals of

type I , II and III coincide.

Proof. Denote the g-frame operator for L by S. Since L is a tight g-frame, then S = AI for

some A > 0.

For every j ∈ I, GjSL¡ = GjA
− 1

2S
L(¡A

1

2 )
= GjS

− 1

2S
L(¡S

1

2 )
. Therefore the g-R-duals of type I

and II coincide.

Let G = {Gi ∈ L(H,Hi) : i ∈ I} and ¡ = {¡i ∈ L(H,Hi) : i ∈ I} be g-orthonormal

bases. Take the bounded invertible operator M : H → H such that ||M || ≤
√
||S|| =

√
A and

||M−1|| ≤
√
||S−1|| = 1√

A
. Suppose that (gi)i∈I ∈ (

∑
i∈I ⊕Hi)ℓ2 , then we have

||
∑
i∈I

(¡iM)∗gi||2 = ||
∑
i∈I

M∗
¡
∗
i gi||2 ≤ ||M∗||2||

∑
i∈I

¡
∗
i gi||2 ≤ A

∑
i∈I

||gi||2.

and

||
∑
i∈I

(¡iM)∗gi||2 = ||
∑
i∈I

M∗
¡
∗
i gi||2 ≥

1

||(M∗)−1||2
||
∑
i∈I

¡
∗
i gi||2 ≥ A

∑
i∈I

||gi||2.

Therefore (¡iM)i∈I is a tight g-Riesz basis with bound A. We can see that M√
A

is a unitary

operator. Since ¡ is a g-orthonormal basis, then ( 1√
A
¡iM)i∈I is a g-orthonormal basis, denote

it by (Yi)i∈I . Hence (
√
AYi)i∈I = (¡iM)i∈I . Now, the g-R-dual of L of type III with respect

to (G,¡,M) is

Fj = GjS
(LS− 1

2 )(¡M)
= GjS( 1√

A
L)(

√
AY) = GjS(L)(Y)

which is a g-R-dual of type I of L.
Since the g-R-duals of type II are contained in the class of g-R-duals of type III and for

tight g-frames the g-R-duals of type I and II coincide, then for tight g-frames, g-R-duals of type

I , II and III coincide.

Since the g-R-dual of type IV is the most general g-R-dual, we focus on the g-R-dual of type

IV and we give some characterizations of it. Note that all results about the g-R-dual of type IV
hold for the g-R-duals of type I , II and III.

In the following proposition, we present an algorithm which invert the process of mapping L

to its g-R dual of type IV (FL).

Proposition 2.3. Let L = {Li ∈ L(H,Hi) : i ∈ I} be a g-Bessel sequence with g-Bessel bound

A and G = {Gi ∈ L(H,Hi) : i ∈ I} and ¡ = {¡i ∈ L(H,Hi) : i ∈ I} be g-Riesz bases. Let

F
L = (FLj )j∈I be the g-R dual sequence of type IV of L with respect to G and ¡. Then FL is a

g-Bessel sequence and L is the g-R-dual sequence of type IV ofFL with respect to g-Riesz bases

(¡̃i)i∈I and (G̃i)i∈I , where (¡̃i)i∈I and (G̃i)i∈I are dual g-Riesz bases of ¡ and G, respectively.

In the sense that for every i ∈ I we have

Lif =
∑
j∈I

¡̃iF
L

j

∗
G̃jf = ¡̃iSFLG̃f (f ∈ H).

Proof. Let B and C be upper g-Riesz bounds for G and ¡, respectively. Since ¡ is a g-Riesz

basis with upper g-Riesz bound C, then it is a g-frame with upper g-frame bound C, too. On the
other hand, L is a g-Bessel sequence with g-Bessel bound A. Therefore ||SL¡|| ≤

√
AC, see [6].

Hence for every f ∈ H we have∑
j∈I

∥FLj f∥2 =
∑
j∈I

∥GjSL¡f∥2 ≤ B∥SL¡f∥2 ≤ ABC∥f∥2.

Therefore FL is a g-Bessel sequence in H .
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For every f ∈ H and gi ∈ Hi we have

⟨¡̃iSFLG̃f, gi⟩ =
∑
j∈I

⟨FLj
∗
G̃jf, ¡̃

∗
i gi⟩ =

∑
j∈I

⟨S¡LG∗
j G̃jf, ¡̃

∗
i gi⟩

= ⟨S¡L
∑
j∈I

G
∗
j G̃jf, ¡̃

∗
i gi⟩ = ⟨f, SL¡¡̃∗

i gi⟩

= ⟨f,
∑
k∈I

L
∗
k¡k¡̃

∗
i gi⟩ = ⟨f,L∗

i gi⟩ = ⟨Lif, gi⟩.

Thus for every i ∈ I

Lif =
∑
j∈I

¡̃iF
L

j

∗
G̃j = ¡̃iSFLG̃f (f ∈ H).

Corollary 2.4. Let L = {Li ∈ L(H,Hi) : i ∈ I} be a g-frame with g-frame operator S and

(Fj)j∈I be the g-R-dual of type III of L with respect to g-orthonormal bases G = {Gi ∈
L(H,Hi) : i ∈ I}, ¡ = {¡i ∈ L(H,Hi) : i ∈ I} and invertible operator M . Then for every

i ∈ I and f ∈ H ,

Lif = ¡i(M
∗)−1S

(F)(GS
1

2 )
f.

Also, if (Fj)j∈I is the g-R-dual of type II of L with respect to g-orthonormal bases G and ¡,

then for every i ∈ I and f ∈ H ,

Lif = ¡iS
− 1

2S
F(GS

1

2 )
f.

Proof. Since (Fj)j∈I is the g-R-dual of type III of L with respect to g-orthonormal bases

G and ¡ and the bounded invertible operator M , then (Fj)j∈I is the g-R-dual of type IV

of L with respect to g-Riesz bases (GjS
− 1

2 )j∈I and (¡iM)i∈I . By Proposition 2.3, we have

Lif = ˜(¡iM)i∈IS
L

˜
(GjS

− 1

2 )j∈I

f.

It is easy to check that that ˜(¡iM)i∈I = (¡i(M∗)−1)i∈I and
˜(GjS− 1

2 )j∈I = (GjS
1

2 )j∈I . There-
fore for every i ∈ I and f ∈ H , Lif = ¡i(M∗)−1S

(F)(GS
1

2 )
f.

Since the class of g-R-duals of type II is contained in the class of g-R-dual of type III, by

substituting M = S
1

2 in the above equation, we have Lif = ¡iS
− 1

2S
F(GS

1

2 )
f.

In the following theorem, we present an equivalent condition for the sequence L = {Li ∈
L(H,Hi) : i ∈ I} to be a g-frame, which can be regarded as a generalization of Ron-Shen

duality principle to g-frames.

Theorem 2.5. Let L = {Li ∈ L(H,Hi) : i ∈ I} be a g-Bessel sequence in H and FL = {FLj ∈
L(H,Hj) : j ∈ I} be the g-R-dual sequence of type IV of L with respect to g-Riesz bases

G = {Gi ∈ L(H,Hi) : i ∈ I} and ¡ = {¡i ∈ L(H,Hi) : i ∈ I}. Then L is a g-frame if and

only if FL is a g-Riesz sequence.

Proof. Let 0 < B1 ≤ B2 and 0 < C1 ≤ C2 be g-Riesz bounds for G and ¡, respectively.

Suppose that L is a g-frame with bounds 0 < A1 ≤ A2. For every �nite subset F ⊂ I we have

∥
∑
j∈F

F
L

j

∗
gj∥2 = ∥

∑
j∈F

S¡LG
∗
jgj∥2 = ∥S¡L(

∑
j∈F

G
∗
jgj)∥2

≤ A2C2∥
∑
j∈F

G
∗
jgj∥2 ≤ A2B2C2

∑
j∈F

∥gj∥2.

Similarly, we can get the following result

∥
∑
j∈F

F
L

j

∗
gj∥2 ≥ A1B1C1

∑
j∈F

∥gj∥2.
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Therefore (FLj )j∈I is a g-Riesz sequence in H .

Conversely, let (FLj )j∈I be a g-Riesz sequence with g-Riesz bounds 0 < D1 ≤ D2 in H . Sup-

pose that f ∈ spanj∈I(G∗
jHj), then there is a �nite set F ⊂ I and {gj ∈ Hj : j ∈ F} such that

f =
∑

j∈F G
∗
jgj . We have∑
i∈I

∥Lif∥2 =
∑
i∈I

∥Li(
∑
j∈F

G
∗
jgj)∥2 =

∑
i∈I

∥
∑
j∈F

Li(G
∗
jgj)∥2

≤ 1

C1

∥
∑
i∈I

∑
j∈F

¡
∗
iLiG

∗
jgj∥2 =

1

C1

∥
∑
j∈F

∑
i∈I

¡
∗
iLiG

∗
jgj∥2

=
1

C1

∥
∑
j∈F

F
L

j

∗
gj∥2 ≤

D2

C1

∑
j∈F

∥gj∥2

≤ D2

B1C1

∥
∑
j∈F

G
∗
jgj∥2 =

D2

B1C1

∥f∥2.

Similarly, we can get the following result∑
i∈I

∥Lif∥2 ≥
D1

B2C2

∥f∥2.

Since spanj∈I(G∗
jHj) = H , then L is a g-frame in H .

In the following theorem, we give a characterization of g-Riesz bases in terms of their g-R-

dual of type IV .

Theorem 2.6. Let L = {Li ∈ L(H,Hi) : i ∈ I} be a g-Bessel sequence forH andFL = {FLj ∈
L(H,Hj) : j ∈ I} be the g-R-dual sequence of type IV of L with respect to g-Riesz bases G =
{Gi ∈ L(H,Hi) : i ∈ I} and ¡ = {¡i ∈ L(H,Hi) : i ∈ I}. Then L = {Li ∈ L(H,Hi) : i ∈ I}
is a g-Riesz basis if and only if FL is a g-Riesz basis.

Proof. We know that L is a g-Bessel sequence if and only if FL is a g-Bessel sequence. For

every f ∈ H , we have

SL¡f =
∑
j∈I

G̃
∗
jGj(SL¡f) =

∑
j∈I

G̃
∗
jF

L

j f = S
G̃FL

f.

Therefore SL¡ = S
G̃FL

. Since SL¡ = TLT
∗
¡
and ¡ is a g-Riesz basis, then SL¡ is invertible if and

only if TL is invertible which is equivalent to L is a g-Riesz basis. Therefore L is a g-Riesz basis

if and only if SL¡ is invertible. Similarly FL is a g-Riesz basis if and only if S
FLG̃

is invertible.

Since S∗
G̃FL

= S
FLG̃

by the above relation, L is a g-Riesz basis if and only if FL is a g-Riesz

basis.

We note that, since every g-orthonormal basis is a g-Riesz basis, the above theorem is a gen-

eralization of Proposition 3.10 in [7].

In the following theorem, we characterize all dual g-frames of a g-frame in terms of its g-R-

dual of type IV which can be considered as a generalization of Wexler-Raz biorthogonality

relations to g-frames.

Theorem 2.7. Let L = {Li ∈ L(H,Hi) : i ∈ I}, Y = {Yi ∈ L(H,Hi) : i ∈ I} be g-frames

and G = {Gi ∈ L(H,Hi) : i ∈ I}, ¡ = {¡i ∈ L(H,Hi) : i ∈ I} be g-Riesz bases in H . Let FY

be the g-R-dual of type IV ofY with respect to g-Riesz bases G, ¡ andFL be the g-R-dual of type

IV of L with respect to g-Riesz bases G̃ and ¡̃. Then the following statements are equivalent:

(i) Y and L are dual g-frames.

(ii) SLY = SYL = I.

(iii) ⟨FYj
∗
gj ,F

L
∗

k gk⟩ = δjk⟨gj , gk⟩ ∀gj ∈ Hj , gk ∈ Hk (j, k ∈ I).
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Proof. The equivalence of (1) and (2) is obvious.
Since ¡ is a g-Riesz basis, Corollary 3.3 in [9], easily implies that SY¡S¡̃L = SYL. For every
gj ∈ Hj , gk ∈ Hk, j, k ∈ I we have

⟨FYj
∗
gj ,F

L

k

∗
gk⟩ = ⟨S¡YG∗

jgj , S¡̃LG̃
∗
kgk⟩ = ⟨G∗

jgj , SYLG̃
∗
kgk⟩.

Therefore ⟨FYj
∗
gj ,F

L
∗

k gk⟩ = δjk⟨gj , gk⟩ if and only if ⟨G∗
jgj , SYL(G̃

∗
kgk)⟩ = ⟨G∗

jgj , G̃
∗
kgk⟩which

is equivalent to SYL(G̃∗
kgk) = G̃

∗
kgk, for every k ∈ I. Since spani∈I G̃

∗
i (Hi) = H and SYL is

continuous, this is equivalent to SYL = I. Therefore (2) is equivalent to (3).

In the following lemma we prove that if L is a g-Bessel sequence, then there exists a basic

relation between its synthesis operator and spanj∈IF
L
j
∗
(Hj), see [7, Lemma 3.6].

Lemma 2.8. Let L = {Li ∈ L(H,Hi) : i ∈ I} be a g-Bessel sequence with synthesis operator

TL and FL = {FLi ∈ L(H,Hi) : i ∈ I} be the g-R-dual sequence of type IV of L with

respect to g-Riesz bases G = {Gi ∈ L(H,Hi) : i ∈ I}, ¡ = {¡i ∈ L(H,Hi) : i ∈ I}. Let

(hi)i∈I ∈ (
∑

i∈I ⊕Hi)ℓ2 and h ∈ H . Then

(i) h ∈ ker(T ∗
FL
) = spanj∈IF

L
j
∗
(Hj)

⊥
if and only if (¡ih)i∈I ∈ kerTL (equivalently SL¡h =

0).

(ii) (hi)i∈I ∈ kerTL if and only if
∑

i∈I ¡̃
∗
i hi ∈ ker(T ∗

FL
) = spanj∈IF

L
j
∗
(Hj)

⊥
.

(iii) FL is g-complete if and only if TL is injective.

Proof. (1) h ∈ ker(T ∗
FL
) = spanj∈IF

L
j
∗
(Hj)

⊥
if and only if for every j ∈ I, gj ∈ Hj ,

⟨h,FLj
∗
gj⟩ = 0. For every j ∈ I we have

⟨h,FLj
∗
gj⟩ = ⟨h, S¡LG∗

jgj⟩ = ⟨SL¡h,G∗
jgj⟩ = ⟨

∑
i∈I

L
∗
i¡ih,G

∗
jgj⟩.

Since spanG∗
j (Hj)j∈I = H , then for every j ∈ I, ⟨

∑
i∈I L

∗
i¡ih,G

∗
jgj⟩ = 0 if and only if∑

i∈I L
∗
i¡ih = 0. Therefore, h ∈ spanj∈IF

L
j
∗
(Hj)

⊥
if and only if (¡ih)i∈I ∈ kerTL.

(2) Let h =
∑

i∈I ¡̃
∗
i hi. Since (¡i)i∈I is a g-Riesz basis, then (hi)i∈I = (¡ih)i∈I . Thus

(hi)i∈I ∈ kerTL if and only if
∑

i∈I Li
∗
¡ih = 0, now by using (1) (hi)i∈I ∈ kerTL if and only

if h =
∑

i∈I ¡̃
∗
i hi ∈ spanj∈IF

L
j
∗
(Hj)

⊥
= ker(T ∗

FL
).

(3) By (2), TL is injective if and only if T ∗
FL

is injective and we know that FL is g-complete if

and only if T ∗
FL

is injective. Therefore, FL is g-complete if and only if TL is injective.

In the following theorem, we give another characterization of dual g-frames.

Theorem 2.9. Let L = {Li ∈ L(H,Hi) : i ∈ I} be a g-frame with g-frame operator SL and

F
L = {FLi ∈ L(H,Hi) : i ∈ I} be the g-R-dual sequence of type I of L with respect to g-

orthonormal bases G = {Gi ∈ L(H,Hi) : i ∈ I}, ¡ = {¡i ∈ L(H,Hi) : i ∈ I}. Then the

following statements are equivalent:

(i) Q is a dual g-frame of L.

(ii) There exists a g-Bessel sequence {M∗
j ∈ L({spanj∈IF

L
j
∗
(Hj)}⊥, Hj) : j ∈ I} such that

for every gj ∈ Hj , j ∈ I

F
Q

j

∗
gj −F

LS−1

L

j

∗
gj = Mjgj .

Proof. Let Q = (Qi)i∈I be a dual g-frame of L = (Li)i∈I . Then for every gj ∈ Hj , j ∈ I, we
have

G
∗
jgj = SLQ(G

∗
jgj) =

∑
i∈I

L
∗
iQiG

∗
jgj =

∑
i∈I

L
∗
i (Qi − LiS

−1

L
+ LiS

−1

L
)G∗

jgj

=
∑
i∈I

L
∗
i (Qi − LiS

−1

L
)G∗

jgj +
∑
i∈I

L
∗
iLiS

−1

L
G
∗
jgj

=
∑
i∈I

L
∗
i (Qi − LiS

−1

L
)G∗

jgj + S
LLS−1

L

G
∗
jgj .
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Since S
LLS−1

L

= I , then
∑

i∈I L
∗
i (Qi − LiS

−1

L
)G∗

jgj = 0 and by Lemma 2.8, we have∑
i∈I

¡
∗
i (Qi − LiS

−1

L
)G∗

jgj ∈ {spanj∈IF
L

j

∗
(Hj)}⊥.

Now, de�ne Mj : Hj → {spanj∈IF
L
j
∗
(Hj)}⊥ ⊆ H by

Mjgj =
∑
i∈I

¡
∗
iQiG

∗
jgj −

∑
i∈I

¡
∗
iLiS

−1

L
G
∗
jgj (gj ∈ Hj , j ∈ I).

ThenMjgj = F
Q

j

∗
gj −F

LS−1

L

j

∗
gj (gj ∈ Hj , j ∈ I). SoM∗

j : {spanj∈IF
L
j
∗
(Hj)}⊥ 7→ Hj and

(M∗
j )j∈I is a g-Bessel sequence for {spanj∈IF

L
j
∗
(Hj)}⊥ with respect to {Hi; i ∈ I}. Because,

let A′ be an upper g-frame bound for Q. Then for every f ∈ {spanj∈IF
L
j
∗
(Hj)}⊥, we have∑

j∈I
∥M∗

j f∥2 =
∑
j∈I

∥FQj f −FLS
−1

j f∥2 =
∑
j∈I

∥GjSQ¡f − GjSLS−1

L
¡
f∥2

=
∑
j∈I

∥GjSQ¡f − GjS
−1

L

∑
i∈I

L
∗
i¡if∥2,

since f ∈ {spanj∈IF
L
j
∗
(Hj)}⊥ by Lemma 2.8,

∑
i∈I L

∗
i¡if = 0. Therefore∑

j∈I

∥M∗
j f∥2 =

∑
j∈I

∥GjSQ¡f∥2 = ∥SQ¡f∥2 ≤ A′∥f∥2.

Conversely, suppose that (2) holds. Since for every g ∈ H, j ∈ I, Gjg ∈ Hj , then we have

MjGjg = F
Q

j

∗
Gjg −F

LS−1

L

j

∗
Gjg

Therefore by [7, Lemma 3.3], for every i ∈ I

(Qi − LiS
−1

L
)g =

∑
j∈I

¡iMjGjg.

So for every gl ∈ Hl, l ∈ I we have∑
i∈I

L
∗
iQiG

∗
l gl =

∑
i∈I

L
∗
i (LiS

−1

L
+Qi − LiS

−1

L
)G∗

l gl

= G
∗
l gl +

∑
i∈I

L
∗
i (Qi − LiS

−1

L
)G∗

l gl

= G
∗
l gl +

∑
i∈I

L
∗
i (
∑
j∈I

¡iMj(GjG
∗
l gl))

= G
∗
l gl +

∑
i∈I

L
∗
i¡i

∑
j∈I

Mj(GjG
∗
l gl)

= G
∗
l gl +

∑
i∈I

L
∗
i¡iMlgl,

sinceMlgl ∈ {spanj∈IF
L
j
∗
(Hj)}⊥, then by Lemma 2.8,

∑
i∈I L

∗
i¡iMlgl = 0. Therefore Q is a

dual g-frame of L and this implies (1).

Now, we present a characterization of the canonical dual g-frames.

Corollary 2.10. Let L = {Li ∈ L(H,Hi) : i ∈ I} be a g-frame with the canonical dual L̃ =

{L̃i ∈ L(H,Hi) : i ∈ I} and FL = {FLj ∈ L(H,Hj) : j ∈ I} be the g-R-dual sequence of

type I of L with respect to g-orthonormal bases G = {Gi ∈ L(H,Hi) : i ∈ I} and ¡ = {¡i ∈
L(H,Hi) : i ∈ I}. Let Q = {Qi ∈ L(H,Hi) : i ∈ I} be a dual g-frame of L. Then for every

gj ∈ Hj , j ∈ I
∥FQ

∗

j gj∥ ≥ ∥FL̃
∗

j gj∥,

with equality if and only if Q = L̃.
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Proof. Let TL and T
L̃
be the synthesis operators of L and L̃, respectively. Easily we can see that

kerTL = kerT
L̃
, then by Lemma 2.8, spanj∈IF

L
j
∗
(Hj) = spanj∈IF

L̃
j

∗
(Hj), so RanFL̃

∗

j ⊆
spanj∈IF

L∗
j (Hj). On the other hand by the above theorem, for every gj ∈ Hj , j ∈ I we have

F
Q

∗

j gj = F
L̃
∗

j gj + Mjgj , where RanMj ⊆ spanj∈IF
L
∗

j (Hj)
⊥
. But spanj∈IF

L
j
∗
(Hj)

⊥
=

spanj∈IF
L
j
∗
(Hj)

⊥
, so RanMj ⊆ spanj∈IF

L∗
j (Hj)

⊥
. Then for every gj ∈ Hj , j ∈ I we have

∥FQ
∗

j gj∥2 = ∥FL̃
∗

j gj∥2 + ∥Mjgj∥2 ≥ ∥FL̃
∗

j gj∥2.

By the above theorem, the equality holds if and only if Q = L̃.
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