DUALITY PRINCIPLE IN *g***-FRAMES**

Amir Khosravi and Farkhondeh Takhteh

Communicated by Akram Aldroubi

MSC 2010 Classifications: Primary 42C15; Secondary 42A38, 41A58.

Keywords and phrases: g-Orthonormal basis, g-Riesz basis, g-Riesz dual sequence.

The authors express their gratitude to the referee for very valuable suggestions.

Abstract. The concept of Riesz dual sequences (R-dual sequences) was introduced by Casazza et al. in 2004. Recently, for generalizing this concept to g-frames the concept of g-Riesz dual sequences has been introduced and various definitions of R-duals for frames are in the literature. In this paper, we generalize these concepts for g-frame and introduce g-Riesz duals (g-R-duals) of type II, III and IV. Since the g-R-dual of type IV is the most general g-R-dual, we focus on the g-R-dual of type IV. We give characterizations of g-frames and g-Riesz bases in terms of their g-R-dual of type IV. We characterize all dual g-frames of a g-frame in terms of its g-R-dual of type IV which can be considered as Wexler-Raz biorthogonality relations for g-frames. Also, we present a generalization of Ron-Shen duality principle to g-frames. In addition, we investigate the construction of dual g-frames in more details and we give another characterization of dual g-frames with respect to its g-R-dual sequence.

1 Introduction and preliminaries

The concept of R-duality of a Bessel sequence in a separable Hilbert space was introduced by Casazza, Kutyniok and Lammers in [1], in order to obtain a generalization of duality principles in Gabor frames to abstract frame theory.

Let $(e_i)_{i \in \mathcal{I}}, (h_i)_{i \in \mathcal{I}}$ be orthonormal bases and $(f_i)_{i \in \mathcal{I}}$ be a Bessel sequence. The R-dual sequence of $(f_i)_{i \in \mathcal{I}}$ with respect to the orthonormal bases $(e_i)_{i \in \mathcal{I}}$ and $(h_i)_{i \in \mathcal{I}}$ is the sequence $(w_i^f)_{j \in \mathcal{I}}$, such that for every $j \in \mathcal{I}$

$$w_j^f = \sum_{i \in \mathcal{I}} \langle f_i, e_j \rangle h_i.$$

The R-duality has been favored by many authors. The R-duality with respect to orthonormal bases has been discussed in [2] and [3]. In [8], the authors introduced various alternative R-duals and showed their relation with Gabor frames. In [11], the authors generalized the R-duality in Banach spaces. In [4] the authors, proved that the duality principle extends to any pair of projective unitary representation of countable groups. Recently, for generalizing this concept to g-frames the concept of g-Riesz dual sequences has been introduced [7]. Various definitions of R-duals for frames are in the literature.

In this paper, we generalize these concepts to g-frame and introduce g-Riesz duals (g-Rduals) of type II, III and IV. Since the g-R-dual of type IV is the most general g-R-dual, we focus on the g-R-dual of type IV. We give characterizations of g-frames and g-Riesz bases in terms of their g-R-dual of type IV. We characterize all dual g-frames of a g-frame in terms of its g-R-dual of type IV, which can be considered as Wexler-Raz biorthogonality relations for g-frames. Also, we present a generalization of Ron-Shen duality principle to g-frames. In addition, we investigate the construction of dual g-frames in more details and we give another characterization of dual g-frames with respect to its g-R-dual sequence.

Throughout this paper H denotes a separable Hilbert space with inner product $\langle ., . \rangle$ and \mathcal{I} is a subset of \mathbb{Z} , and $\{H_i : i \in \mathcal{I}\}$ is a sequence of separable Hilbert spaces. Also, for every $i \in \mathcal{I}$, $L(H, H_i)$ is the set of all bounded, linear operators from H to H_i .

In the rest of this section we review several well-known definitions and results. The new results are stated in Section 2.

For every sequence $\{H_i\}_{i \in \mathcal{I}}$, the space

$$\left(\sum_{i\in\mathcal{I}}\bigoplus H_i\right)_{\ell^2} = \{(f_i)_{i\in\mathcal{I}} : f_i\in H_i, i\in\mathcal{I}, \sum_{i\in\mathcal{I}}\|f_i\|^2 < \infty\}$$

with pointwise operations and the following inner product is a Hilbert space

$$\langle (f_i)_{i \in \mathcal{I}}, (g_i)_{i \in \mathcal{I}} \rangle = \sum_{i \in \mathcal{I}} \langle f_i, g_i \rangle.$$

A sequence $\Lambda = \{\Lambda_i \in L(H, H_i) : i \in \mathcal{I}\}$ is called a *g*-frame for H with respect to $\{H_i : i \in \mathcal{I}\}$ if there exist A, B > 0 such that for every $f \in H$

$$A\|f\|^2 \le \sum_{i \in \mathcal{I}} \|\Lambda_i f\|^2 \le B\|f\|^2$$

A, B are called g-frame bounds. We call Λ a *tight g-frame* if A = B and a *Parseval g-frame* if A = B = 1. If only the right hand side inequality is required, Λ is called a *g-Bessel sequence*. If Λ is a g-Bessel sequence, then *the synthesis operator* for Λ is the linear operator,

$$T_{\Lambda}: (\sum_{i \in \mathcal{I}} \bigoplus H_i)_{\ell^2} \mapsto H \qquad T_{\Lambda}(f_i)_{i \in \mathcal{I}} = \sum_{i \in \mathcal{I}} \Lambda_i^* f_i.$$

We call the adjoint of the synthesis operator, *the analysis operator*. The analysis operator is the linear operator,

$$T^*_{\Lambda} : H \mapsto (\sum_{i \in \mathcal{I}} \bigoplus H_i)_{\ell^2} \qquad T^*_{\Lambda} f = (\Lambda_i f)_{i \in \mathcal{I}}.$$

We call $S_{\Lambda} = T_{\Lambda}T_{\Lambda}^*$ the *g*-frame operator of Λ and $S_{\Lambda}f = \sum_{i \in \mathcal{I}} \Lambda_i^* \Lambda_i f$, $(f \in H)$. If $\Lambda = (\Lambda_i)_{i \in \mathcal{I}}$ is a g-frame with lower and upper g-frame bounds A, B, respectively, then the g-frame operator of Λ is a bounded, positive and invertible operator on H and

$$A\langle f, f \rangle \le \langle S_{\Lambda}f, f \rangle \le B\langle f, f \rangle \quad (f \in H)$$

so

$$4.I \le S_{\Lambda} \le B.I.$$

The canonical dual g-frame for $\Lambda = (\Lambda_i)_{i \in \mathcal{I}}$ is defined by $\widetilde{\Lambda} = (\widetilde{\Lambda_i})_{i \in \mathcal{I}}$, where $\widetilde{\Lambda_i} = \Lambda_i S_{\Lambda}^{-1}$ which is also a g-frame for H with lower and upper g-frame bounds $\frac{1}{B}$ and $\frac{1}{A}$, respectively. Also for every $f \in H$, we have

$$f = \sum_{i \in \mathcal{I}} \Lambda_i^* \widetilde{\Lambda_i} f = \sum_{i \in \mathcal{I}} \widetilde{\Lambda_i}^* \Lambda_i f.$$

We say $\Lambda = {\Lambda_i \in L(H, H_i) : i \in \mathcal{I}}$ is a *g*-frame sequence if it is a g-frame for $span{\Lambda_i^*(H_i)}_{i\in\mathcal{I}}$. A sequence $\Lambda = {\Lambda_i \in L(H, H_i) : i \in \mathcal{I}}$ is *g*-complete if ${f : \Lambda_i f = 0, \forall i \in \mathcal{I}} = {0}$. We note that the g-Bessel sequence Λ is g-complete if and only if T_{Λ}^* is injective. We say that Λ is a *g*-orthonormal basis for H, if

$$\langle \Lambda_i^* f_i, \Lambda_j^* f_j \rangle = \delta_{i,j} \langle f_i, f_j \rangle, \quad \forall f_i \in H_i, f_j \in H_j, i, j \in \mathcal{I}$$

and

$$\sum_{i\in\mathcal{I}}\|\Lambda_i f\|^2 = \|f\|^2 \quad (f\in H).$$

A sequence $\Lambda = \{\Lambda_i \in L(H, H_i) : i \in \mathcal{I}\}$ is a *g*-Riesz sequence if there exist A, B > 0 such that for every finite subset $F \subset \mathcal{I}$ and $g_i \in H_i, i \in F$

$$A\sum_{i\in F} \|g_i\|^2 \le \|\sum_{i\in F} \Lambda_i^* g_i\|^2 \le B\sum_{i\in F} \|g_i\|^2.$$
(1.1)

G-Riesz sequence $\Lambda = \{\Lambda_i \in L(H, H_i) : i \in \mathcal{I}\}$ is called a *g*-Riesz basis if it is g-complete, too. So Λ is a g-Riesz basis if and only if T_{Λ} is a bounded invertible operator. Clearly, every g-orthonormal basis is a g-Riesz basis.

Let $\Lambda = \{\Lambda_i \in L(H, H_i) : i \in \mathcal{I}\}$ and $\Theta = \{\Theta_i \in L(H, H_i) : i \in \mathcal{I}\}$ be g-Bessel sequences with g-Bessel bounds B and C, respectively. The operator $S_{\Lambda\Theta} : H \mapsto H$ defined by

$$S_{\Lambda \Theta}f = \sum_{i \in \mathcal{I}} \Lambda_i^* \Theta_i f, \quad (f \in H)$$

is a bounded operator, $||S_{\Lambda\Theta}|| \leq \sqrt{BC}$, $S^*_{\Lambda\Theta} = S_{\Theta\Lambda}$ and $S_{\Lambda\Lambda} = S_{\Lambda}$. Two g-Bessel sequences $\Lambda = \{\Lambda_i \in L(H, H_i) : i \in \mathcal{I}\}$ and $\Theta = \{\Theta_i \in L(H, H_i) : i \in \mathcal{I}\}$ are called *dual g-frames* if

$$f = \sum_{i \in \mathcal{I}} \Lambda_i^* \Theta_i f = \sum_{i \in \mathcal{I}} \Theta_i^* \Lambda_i f, \quad (f \in H).$$

For more details about g-frames, see [6, 9].

2 Main results

In this section, first we consider the g-Riesz dual(g-R-dual) with respect to g-orthonormal bases as the g-R dual of type I in [7] and we introduce alternative definitions of g-R-duals.

Definition 2.1. Let $\Lambda = {\Lambda_i \in L(H, H_i) : i \in \mathcal{I}}$ be a g-frame for H with g-frame operator S.

(i) Let $\Gamma = \{\Gamma_i \in L(H, H_i) : i \in \mathcal{I}\}$ and $\Upsilon = \{\Upsilon_i \in L(H, H_i) : i \in \mathcal{I}\}$ be g-orthonormal bases. The g-R-dual of type I of Λ with respect to Γ and Υ is $\Phi^{\Lambda} = (\Phi_j^{\Lambda})_{j \in \mathcal{I}}$ defined by

$$\Phi_i^{\Lambda} f = \Gamma_j S_{\Lambda \Upsilon} f \quad (f \in H).$$

(ii) Let $\Gamma = {\Gamma_i \in L(H, H_i) : i \in \mathcal{I}}$ and $\Upsilon = {\Upsilon_i \in L(H, H_i) : i \in \mathcal{I}}$ be g-orthonormal bases. The g-R-dual of type II of Λ with respect to Γ and Υ is $\Phi^{\Lambda} = (\Phi_j^{\Lambda})_{j \in \mathcal{I}}$ defined by

$$\Phi_j^{\Lambda} f = \Gamma_j S^{-\frac{1}{2}} S_{\Lambda(\Upsilon S^{\frac{1}{2}})} f \quad (f \in H).$$

(iii) Let $\Gamma = \{\Gamma_i \in L(H, H_i) : i \in \mathcal{I}\}$ and $\Upsilon = \{\Upsilon_i \in L(H, H_i) : i \in \mathcal{I}\}$ be g-orthonormal bases and $M : H \to H$ be a bounded invertible operator with $||M|| \leq \sqrt{||S||}$ and $||M^{-1}|| \leq \sqrt{||S^{-1}||}$. The g-R-dual of type *III* of Λ with respect to triplet (Γ, Υ, M) is $\Phi^{\Lambda} = (\Phi_j^{\Lambda})_{j \in \mathcal{I}}$ defined by

$$\Phi_j^{\Lambda} f = \Gamma_j S_{(\Lambda S^{-\frac{1}{2}})(\Upsilon M)} f \quad (f \in H).$$

(iv) Let $\Gamma = \{\Gamma_i \in L(H, H_i) : i \in \mathcal{I}\}$ and $\Upsilon = \{\Upsilon_i \in L(H, H_i) : i \in \mathcal{I}\}$ be g-Riesz bases. The g-R-dual of type IV of Λ with respect to Γ and Υ is $\Phi^{\Lambda} = (\Phi_i^{\Lambda})_{j \in \mathcal{I}}$ defined by

$$\Phi_j^{\Lambda} f = \Gamma_j S_{\Lambda\Upsilon} f \quad (f \in H).$$

In all of the above cases, it is obvious that Φ_j^{Λ} is well-defined and $\Phi_j^{\Lambda} \in L(H, H_j)$, for every $j \in \mathcal{I}$.

Clearly, the g-R-duals of type II are contained in the class of g-R-duals of type III and the g-R-duals of type III are contained in the class of g-R-duals of type IV. Moreover, the g-R-duals of type I, II, and III are contained in the class of g-R-duals of type IV.

In the following proposition, we show that for tight g-frames the g-R-duals of type *I*, *II* and *III* coincide.

Proposition 2.2. Let $\Lambda = {\Lambda_i \in L(H, H_i) : i \in \mathcal{I}}$ be a tight g-frame. Then the g-R-duals of type I, II and III coincide.

Proof. Denote the g-frame operator for Λ by S. Since Λ is a tight g-frame, then S = AI for some A > 0. For every $j \in \mathcal{I}$, $\Gamma_j S_{\Lambda \Upsilon} = \Gamma_j A^{-\frac{1}{2}} S_{\Lambda(\Upsilon A^{\frac{1}{2}})} = \Gamma_j S^{-\frac{1}{2}} S_{\Lambda(\Upsilon S^{\frac{1}{2}})}$. Therefore the g-R-duals of type I and II coincide.

Let $\Gamma = \{\Gamma_i \in L(H, H_i) : i \in \mathcal{I}\}$ and $\Upsilon = \{\Upsilon_i \in L(H, H_i) : i \in \mathcal{I}\}$ be g-orthonormal bases. Take the bounded invertible operator $M : H \to H$ such that $||M|| \leq \sqrt{||S||} = \sqrt{A}$ and $||M^{-1}|| \leq \sqrt{||S^{-1}||} = \frac{1}{\sqrt{A}}$. Suppose that $(g_i)_{i \in \mathcal{I}} \in (\sum_{i \in \mathcal{I}} \oplus H_i)_{\ell^2}$, then we have

$$||\sum_{i \in \mathcal{I}} (\Upsilon_i M)^* g_i||^2 = ||\sum_{i \in \mathcal{I}} M^* \Upsilon_i^* g_i||^2 \le ||M^*||^2 ||\sum_{i \in \mathcal{I}} \Upsilon_i^* g_i||^2 \le A \sum_{i \in \mathcal{I}} ||g_i||^2 \le A \sum_{i \in \mathcal{I}} |$$

and

$$||\sum_{i\in\mathcal{I}} (\Upsilon_i M)^* g_i||^2 = ||\sum_{i\in\mathcal{I}} M^* \Upsilon_i^* g_i||^2 \ge \frac{1}{||(M^*)^{-1}||^2} ||\sum_{i\in\mathcal{I}} \Upsilon_i^* g_i||^2 \ge A \sum_{i\in\mathcal{I}} ||g_i||^2.$$

Therefore $(\Upsilon_i M)_{i \in \mathcal{I}}$ is a tight g-Riesz basis with bound A. We can see that $\frac{M}{\sqrt{A}}$ is a unitary operator. Since Υ is a g-orthonormal basis, then $(\frac{1}{\sqrt{A}}\Upsilon_i M)_{i \in \mathcal{I}}$ is a g-orthonormal basis, denote it by $(\Psi_i)_{i \in \mathcal{I}}$. Hence $(\sqrt{A}\Psi_i)_{i \in \mathcal{I}} = (\Upsilon_i M)_{i \in \mathcal{I}}$. Now, the g-R-dual of Λ of type *III* with respect to (Γ, Υ, M) is

$$\Phi_j = \Gamma_j S_{(\Lambda S^{-\frac{1}{2}})(\Upsilon M)} = \Gamma_j S_{(\frac{1}{\sqrt{A}}\Lambda)(\sqrt{A}\Psi)} = \Gamma_j S_{(\Lambda)(\Psi)}$$

which is a g-R-dual of type I of Λ .

Since the g-R-duals of type II are contained in the class of g-R-duals of type III and for tight g-frames the g-R-duals of type I and II coincide, then for tight g-frames, g-R-duals of type I, II and III coincide. \Box

Since the g-R-dual of type IV is the most general g-R-dual, we focus on the g-R-dual of type IV and we give some characterizations of it. Note that all results about the g-R-dual of type IV hold for the g-R-duals of type I, II and III.

In the following proposition, we present an algorithm which invert the process of mapping Λ to its g-R dual of type $IV(\Phi^{\Lambda})$.

Proposition 2.3. Let $\Lambda = \{\Lambda_i \in L(H, H_i) : i \in \mathcal{I}\}$ be a g-Bessel sequence with g-Bessel bound A and $\Gamma = \{\Gamma_i \in L(H, H_i) : i \in \mathcal{I}\}$ and $\Upsilon = \{\Upsilon_i \in L(H, H_i) : i \in \mathcal{I}\}$ be g-Riesz bases. Let $\Phi^{\Lambda} = (\Phi_j^{\Lambda})_{j \in \mathcal{I}}$ be the g-R dual sequence of type IV of Λ with respect to Γ and Υ . Then Φ^{Λ} is a g-Bessel sequence and Λ is the g-R-dual sequence of type IV of Φ^{Λ} with respect to g-Riesz bases $(\widetilde{\Upsilon}_i)_{i \in \mathcal{I}}$ and $(\widetilde{\Gamma}_i)_{i \in \mathcal{I}}$ and $(\widetilde{\Gamma}_i)_{i \in \mathcal{I}}$ and $(\widetilde{\Gamma}_i)_{i \in \mathcal{I}}$ are dual g-Riesz bases of Υ and Γ , respectively. In the sense that for every $i \in \mathcal{I}$ we have

$$\Lambda_i f = \sum_{j \in \mathcal{I}} \widetilde{\Upsilon}_i \Phi_j^{\Lambda^*} \widetilde{\Gamma}_j f = \widetilde{\Upsilon}_i S_{\Phi^{\Lambda} \widetilde{\Gamma}} f \quad (f \in H).$$

Proof. Let B and C be upper g-Riesz bounds for Γ and Υ , respectively. Since Υ is a g-Riesz basis with upper g-Riesz bound C, then it is a g-frame with upper g-frame bound C, too. On the other hand, Λ is a g-Bessel sequence with g-Bessel bound A. Therefore $||S_{\Lambda\Upsilon}|| \leq \sqrt{AC}$, see [6]. Hence for every $f \in H$ we have

$$\sum_{j \in \mathcal{I}} \|\Phi_j^{\Lambda} f\|^2 = \sum_{j \in \mathcal{I}} \|\Gamma_j S_{\Lambda \Upsilon} f\|^2 \le B \|S_{\Lambda \Upsilon} f\|^2 \le ABC \|f\|^2.$$

Therefore Φ^{Λ} is a g-Bessel sequence in H.

For every $f \in H$ and $g_i \in H_i$ we have

$$\begin{split} \langle \widetilde{\Upsilon_i} S_{\Phi^{\Lambda} \widetilde{\Gamma}} f, g_i \rangle &= \sum_{j \in \mathcal{I}} \langle \Phi_j^{\Lambda^*} \widetilde{\Gamma}_j f, \widetilde{\Upsilon_i}^* g_i \rangle = \sum_{j \in \mathcal{I}} \langle S_{\Upsilon\Lambda} \Gamma_j^* \widetilde{\Gamma}_j f, \widetilde{\Upsilon_i}^* g_i \rangle \\ &= \langle S_{\Upsilon\Lambda} \sum_{j \in \mathcal{I}} \Gamma_j^* \widetilde{\Gamma}_j f, \widetilde{\Upsilon_i}^* g_i \rangle = \langle f, S_{\Lambda\Upsilon} \widetilde{\Upsilon_i}^* g_i \rangle \\ &= \langle f, \sum_{k \in \mathcal{I}} \Lambda_k^* \Upsilon_k \widetilde{\Upsilon_i}^* g_i \rangle = \langle f, \Lambda_i^* g_i \rangle = \langle \Lambda_i f, g_i \rangle. \end{split}$$

Thus for every $i \in \mathcal{I}$

$$\Lambda_i f = \sum_{j \in \mathcal{I}} \widetilde{\Upsilon}_i \Phi_j^{\Lambda^*} \widetilde{\Gamma}_j = \widetilde{\Upsilon}_i S_{\Phi^{\Lambda} \widetilde{\Gamma}} f \qquad (f \in H).$$

Corollary 2.4. Let $\Lambda = \{\Lambda_i \in L(H, H_i) : i \in \mathcal{I}\}$ be a g-frame with g-frame operator S and $(\Phi_j)_{j\in\mathcal{I}}$ be the g-R-dual of type III of Λ with respect to g-orthonormal bases $\Gamma = \{\Gamma_i \in L(H, H_i) : i \in \mathcal{I}\}$, $\Upsilon = \{\Upsilon_i \in L(H, H_i) : i \in \mathcal{I}\}$ and invertible operator M. Then for every $i \in \mathcal{I}$ and $f \in H$,

$$\Lambda_i f = \Upsilon_i(M^*)^{-1} S_{(\Phi)(\Gamma S^{\frac{1}{2}})} f.$$

Also, if $(\Phi_j)_{j \in \mathcal{I}}$ is the g-R-dual of type II of Λ with respect to g-orthonormal bases Γ and Υ , then for every $i \in \mathcal{I}$ and $f \in H$,

$$\Lambda_i f = \Upsilon_i S^{-\frac{1}{2}} S_{\Phi(\Gamma S^{\frac{1}{2}})} f.$$

Proof. Since $(\Phi_j)_{j \in \mathcal{I}}$ is the g-R-dual of type *III* of Λ with respect to g-orthonormal bases Γ and Υ and the bounded invertible operator M, then $(\Phi_j)_{j \in \mathcal{I}}$ is the g-R-dual of type *IV* of Λ with respect to g-Riesz bases $(\Gamma_j S^{-\frac{1}{2}})_{j \in \mathcal{I}}$ and $(\Upsilon_i M)_{i \in \mathcal{I}}$. By Proposition 2.3, we have $\Lambda_i f = (\Upsilon_i M)_{i \in \mathcal{I}} S_{\Lambda(\Gamma_i S^{-\frac{1}{2}})_{i \in \mathcal{I}}} f.$

It is easy to check that that $(\widetilde{\Upsilon_i M})_{i \in \mathcal{I}} = (\Upsilon_i (M^*)^{-1})_{i \in \mathcal{I}}$ and $(\widetilde{\Gamma_j S^{-\frac{1}{2}}})_{j \in \mathcal{I}} = (\Gamma_j S^{\frac{1}{2}})_{j \in \mathcal{I}}$. Therefore for every $i \in \mathcal{I}$ and $f \in H$, $\Lambda_i f = \Upsilon_i (M^*)^{-1} S_{(\Phi)(\Gamma S^{\frac{1}{2}})} f$.

Since the class of g-R-duals of type II is contained in the class of g-R-dual of type III, by substituting $M = S^{\frac{1}{2}}$ in the above equation, we have $\Lambda_i f = \Upsilon_i S^{-\frac{1}{2}} S_{\Phi(\Gamma S^{\frac{1}{2}})} f$.

In the following theorem, we present an equivalent condition for the sequence $\Lambda = \{\Lambda_i \in L(H, H_i) : i \in \mathcal{I}\}$ to be a g-frame, which can be regarded as a generalization of Ron-Shen duality principle to g-frames.

Theorem 2.5. Let $\Lambda = \{\Lambda_i \in L(H, H_i) : i \in \mathcal{I}\}$ be a g-Bessel sequence in H and $\Phi^{\Lambda} = \{\Phi_j^{\Lambda} \in L(H, H_j) : j \in \mathcal{I}\}$ be the g-R-dual sequence of type IV of Λ with respect to g-Riesz bases $\Gamma = \{\Gamma_i \in L(H, H_i) : i \in \mathcal{I}\}$ and $\Upsilon = \{\Upsilon_i \in L(H, H_i) : i \in \mathcal{I}\}$. Then Λ is a g-frame if and only if Φ^{Λ} is a g-Riesz sequence.

Proof. Let $0 < B_1 \le B_2$ and $0 < C_1 \le C_2$ be g-Riesz bounds for Γ and Υ , respectively. Suppose that Λ is a g-frame with bounds $0 < A_1 \le A_2$. For every finite subset $F \subset \mathcal{I}$ we have

$$\begin{aligned} \|\sum_{j\in F} \Phi_{j}^{\Lambda^{*}} g_{j}\|^{2} &= \|\sum_{j\in F} S_{\Gamma\Lambda} \Gamma_{j}^{*} g_{j}\|^{2} = \|S_{\Gamma\Lambda} (\sum_{j\in F} \Gamma_{j}^{*} g_{j})\|^{2} \\ &\leq A_{2}C_{2} \|\sum_{j\in F} \Gamma_{j}^{*} g_{j}\|^{2} \leq A_{2}B_{2}C_{2} \sum_{j\in F} \|g_{j}\|^{2} \end{aligned}$$

Similarly, we can get the following result

$$\|\sum_{j\in F} \Phi_j^{\Lambda^*} g_j\|^2 \ge A_1 B_1 C_1 \sum_{j\in F} \|g_j\|^2.$$

Therefore $(\Phi_i^{\Lambda})_{j \in \mathcal{I}}$ is a g-Riesz sequence in H.

Conversely, let $(\Phi_j^{\Lambda})_{j \in \mathcal{I}}$ be a g-Riesz sequence with g-Riesz bounds $0 < D_1 \leq D_2$ in H. Suppose that $f \in span_{j \in \mathcal{I}}(\Gamma_j^*H_j)$, then there is a finite set $F \subset I$ and $\{g_j \in H_j : j \in F\}$ such that $f = \sum_{j \in F} \Gamma_j^*g_j$. We have

$$\begin{split} \sum_{i \in \mathcal{I}} \|\Lambda_i f\|^2 &= \sum_{i \in \mathcal{I}} \|\Lambda_i (\sum_{j \in F} \Gamma_j^* g_j)\|^2 = \sum_{i \in \mathcal{I}} \|\sum_{j \in F} \Lambda_i (\Gamma_j^* g_j)\|^2 \\ &\leq \frac{1}{C_1} \|\sum_{i \in \mathcal{I}} \sum_{j \in F} \Upsilon_i^* \Lambda_i \Gamma_j^* g_j\|^2 = \frac{1}{C_1} \|\sum_{j \in F} \sum_{i \in \mathcal{I}} \Upsilon_i^* \Lambda_i \Gamma_j^* g_j\|^2 \\ &= \frac{1}{C_1} \|\sum_{j \in F} \Phi_j^{\Lambda^*} g_j\|^2 \leq \frac{D_2}{C_1} \sum_{j \in F} \|g_j\|^2 \\ &\leq \frac{D_2}{B_1 C_1} \|\sum_{j \in F} \Gamma_j^* g_j\|^2 = \frac{D_2}{B_1 C_1} \|f\|^2. \end{split}$$

Similarly, we can get the following result

$$\sum_{i \in \mathcal{I}} \|\Lambda_i f\|^2 \ge \frac{D_1}{B_2 C_2} \|f\|^2.$$

Since $\overline{span_{j\in\mathcal{I}}(\Gamma_j^*H_j)} = H$, then Λ is a g-frame in H.

In the following theorem, we give a characterization of g-Riesz bases in terms of their g-Rdual of type IV.

Theorem 2.6. Let $\Lambda = \{\Lambda_i \in L(H, H_i) : i \in \mathcal{I}\}$ be a g-Bessel sequence for H and $\Phi^{\Lambda} = \{\Phi_j^{\Lambda} \in L(H, H_j) : j \in \mathcal{I}\}$ be the g-R-dual sequence of type IV of Λ with respect to g-Riesz bases $\Gamma = \{\Gamma_i \in L(H, H_i) : i \in \mathcal{I}\}$ and $\Upsilon = \{\Upsilon_i \in L(H, H_i) : i \in \mathcal{I}\}$. Then $\Lambda = \{\Lambda_i \in L(H, H_i) : i \in \mathcal{I}\}$ is a g-Riesz basis if and only if Φ^{Λ} is a g-Riesz basis.

Proof. We know that Λ is a g-Bessel sequence if and only if Φ^{Λ} is a g-Bessel sequence. For every $f \in H$, we have

$$S_{\Lambda\Upsilon}f = \sum_{j\in\mathcal{I}}\widetilde{\Gamma}_{j}^{*}\Gamma_{j}(S_{\Lambda\Upsilon}f) = \sum_{j\in\mathcal{I}}\widetilde{\Gamma}_{j}^{*}\Phi_{j}^{\Lambda}f = S_{\widetilde{\Gamma}\Phi^{\Lambda}}f.$$

Therefore $S_{\Lambda\Upsilon} = S_{\tilde{\Gamma}\Phi^{\Lambda}}$. Since $S_{\Lambda\Upsilon} = T_{\Lambda}T_{\Upsilon}^*$ and Υ is a g-Riesz basis, then $S_{\Lambda\Upsilon}$ is invertible if and only if T_{Λ} is invertible which is equivalent to Λ is a g-Riesz basis. Therefore Λ is a g-Riesz basis if and only if $S_{\Lambda\Upsilon}$ is invertible. Similarly Φ^{Λ} is a g-Riesz basis if and only if $S_{\Phi^{\Lambda}\tilde{\Gamma}}$ is invertible. Since $S_{\tilde{\Gamma}\Phi^{\Lambda}}^* = S_{\Phi^{\Lambda}\tilde{\Gamma}}$ by the above relation, Λ is a g-Riesz basis if and only if Φ^{Λ} is a g-Riesz basis.

We note that, since every g-orthonormal basis is a g-Riesz basis, the above theorem is a generalization of Proposition 3.10 in [7].

In the following theorem, we characterize all dual g-frames of a g-frame in terms of its g-Rdual of type IV which can be considered as a generalization of Wexler-Raz biorthogonality relations to g-frames.

Theorem 2.7. Let $\Lambda = \{\Lambda_i \in L(H, H_i) : i \in \mathcal{I}\}, \Psi = \{\Psi_i \in L(H, H_i) : i \in \mathcal{I}\}\$ be g-frames and $\Gamma = \{\Gamma_i \in L(H, H_i) : i \in \mathcal{I}\}, \Upsilon = \{\Upsilon_i \in L(H, H_i) : i \in \mathcal{I}\}\$ be g-Riesz bases in H. Let Φ^{Ψ} be the g-R-dual of type IV of Ψ with respect to g-Riesz bases Γ , Υ and Φ^{Λ} be the g-R-dual of type IV of Λ with respect to g-Riesz bases $\widetilde{\Gamma}$ and $\widetilde{\Upsilon}$. Then the following statements are equivalent:

(i) Ψ and Λ are dual g-frames.

(*ii*)
$$S_{\Lambda\Psi} = S_{\Psi\Lambda} = I$$
.

(iii) $\langle \Phi_j^{\Psi^*} g_j, \Phi_k^{\Lambda^*} g_k \rangle = \delta_{jk} \langle g_j, g_k \rangle \quad \forall g_j \in H_j, g_k \in H_k \quad (j, k \in \mathcal{I}).$

Proof. The equivalence of (1) and (2) is obvious.

Since Υ is a g-Riesz basis, Corollary 3.3 in [9], easily implies that $S_{\Psi\Upsilon}S_{\widetilde{\Upsilon}\Lambda} = S_{\Psi\Lambda}$. For every $g_j \in H_j, g_k \in H_k, j, k \in \mathcal{I}$ we have

$$\langle \Phi_j^{\Psi^*} g_j, \Phi_k^{\Lambda^*} g_k \rangle = \langle S_{\Upsilon \Psi} \Gamma_j^* g_j, S_{\widetilde{\Upsilon} \Lambda} \widetilde{\Gamma}_k^* g_k \rangle = \langle \Gamma_j^* g_j, S_{\Psi \Lambda} \widetilde{\Gamma}_k^* g_k \rangle.$$

Therefore $\langle \Phi_j^{\Psi^*}g_j, \Phi_k^{\Lambda^*}g_k \rangle = \delta_{jk}\langle g_j, g_k \rangle$ if and only if $\langle \Gamma_j^*g_j, S_{\Psi\Lambda}(\widetilde{\Gamma}_k^*g_k) \rangle = \langle \Gamma_j^*g_j, \widetilde{\Gamma}_k^*g_k \rangle$ which is equivalent to $S_{\Psi\Lambda}(\widetilde{\Gamma}_k^*g_k) = \widetilde{\Gamma}_k^*g_k$, for every $k \in \mathcal{I}$. Since $\overline{span_{i\in\mathcal{I}}}\widetilde{\Gamma}_i^*(H_i) = H$ and $S_{\Psi\Lambda}$ is continuous, this is equivalent to $S_{\Psi\Lambda} = I$. Therefore (2) is equivalent to (3).

In the following lemma we prove that if Λ is a g-Bessel sequence, then there exists a basic relation between its synthesis operator and $span_{j\in\mathcal{I}}\Phi_j^{\Lambda^*}(H_j)$, see [7, Lemma 3.6].

Lemma 2.8. Let $\Lambda = \{\Lambda_i \in L(H, H_i) : i \in \mathcal{I}\}$ be a g-Bessel sequence with synthesis operator T_{Λ} and $\Phi^{\Lambda} = \{\Phi_i^{\Lambda} \in L(H, H_i) : i \in \mathcal{I}\}$ be the g-R-dual sequence of type IV of Λ with respect to g-Riesz bases $\Gamma = \{\Gamma_i \in L(H, H_i) : i \in \mathcal{I}\}, \Upsilon = \{\Upsilon_i \in L(H, H_i) : i \in \mathcal{I}\}$. Let $(h_i)_{i \in \mathcal{I}} \in (\sum_{i \in \mathcal{I}} \oplus H_i)_{\ell^2}$ and $h \in H$. Then

- (i) $h \in ker(T^*_{\Phi^{\Lambda}}) = span_{j \in \mathcal{I}} \Phi^{\Lambda^*}_{j}(H_j)^{\perp}$ if and only if $(\Upsilon_i h)_{i \in \mathcal{I}} \in kerT_{\Lambda}$ (equivalently $S_{\Lambda \Upsilon} h = 0$).
- (ii) $(h_i)_{i \in \mathcal{I}} \in kerT_{\Lambda}$ if and only if $\sum_{i \in \mathcal{I}} \widetilde{\Upsilon}_i^* h_i \in ker(T_{\Phi^{\Lambda}}^*) = span_{j \in \mathcal{I}} \Phi_j^{\Lambda^*}(H_j)^{\perp}$.
- (iii) Φ^{Λ} is g-complete if and only if T_{Λ} is injective.

Proof. (1) $h \in ker(T_{\Phi^{\Lambda}}^*) = span_{j \in \mathcal{I}} \Phi_j^{\Lambda^*}(H_j)^{\perp}$ if and only if for every $j \in \mathcal{I}, g_j \in H_j$, $\langle h, \Phi_j^{\Lambda^*}g_j \rangle = 0$. For every $j \in \mathcal{I}$ we have

$$\langle h, \Phi_j^{\Lambda^*} g_j \rangle = \langle h, S_{\Upsilon\Lambda} \Gamma_j^* g_j \rangle = \langle S_{\Lambda\Upsilon} h, \Gamma_j^* g_j \rangle = \langle \sum_{i \in \mathcal{I}} \Lambda_i^* \Upsilon_i h, \Gamma_j^* g_j \rangle.$$

Since $\overline{span\Gamma_{j}^{*}(H_{j})_{j\in\mathcal{I}}} = H$, then for every $j \in \mathcal{I}$, $\langle \sum_{i\in\mathcal{I}} \Lambda_{i}^{*} \Upsilon_{i}h, \Gamma_{j}^{*}g_{j} \rangle = 0$ if and only if $\sum_{i\in\mathcal{I}} \Lambda_{i}^{*} \Upsilon_{i}h = 0$. Therefore, $h \in span_{j\in\mathcal{I}} \Phi_{j}^{\Lambda^{*}}(H_{j})^{\perp}$ if and only if $(\Upsilon_{i}h)_{i\in\mathcal{I}} \in kerT_{\Lambda}$.

 $\begin{array}{l} (2) \text{ Let } h = \sum_{i \in \mathcal{I}} \widetilde{\Upsilon}_i^* h_i. \text{ Since } (\Upsilon_i)_{i \in \mathcal{I}} \text{ is a g-Riesz basis, then } (h_i)_{i \in \mathcal{I}} = (\Upsilon_i h)_{i \in \mathcal{I}}. \text{ Thus } \\ (h_i)_{i \in \mathcal{I}} \in kerT_{\Lambda} \text{ if and only if } \sum_{i \in \mathcal{I}} \Lambda_i^* \Upsilon_i h = 0, \text{ now by using } (1) \ (h_i)_{i \in \mathcal{I}} \in kerT_{\Lambda} \text{ if and only } \\ \text{ if } h = \sum_{i \in \mathcal{I}} \widetilde{\Upsilon}_i^* h_i \in span_{j \in \mathcal{I}} \Phi_j^{\Lambda^*} (H_j)^{\perp} = ker(T_{\Phi^{\Lambda}}^*). \end{array}$

(3) By (2), T_{Λ} is injective if and only if $T_{\Phi^{\Lambda}}^*$ is injective and we know that Φ^{Λ} is g-complete if and only if $T_{\Phi^{\Lambda}}^*$ is injective. Therefore, Φ^{Λ} is g-complete if and only if T_{Λ} is injective.

In the following theorem, we give another characterization of dual g-frames.

Theorem 2.9. Let $\Lambda = \{\Lambda_i \in L(H, H_i) : i \in \mathcal{I}\}$ be a g-frame with g-frame operator S_Λ and $\Phi^{\Lambda} = \{\Phi_i^{\Lambda} \in L(H, H_i) : i \in \mathcal{I}\}$ be the g-*R*-dual sequence of type I of Λ with respect to gorthonormal bases $\Gamma = \{\Gamma_i \in L(H, H_i) : i \in \mathcal{I}\}, \Upsilon = \{\Upsilon_i \in L(H, H_i) : i \in \mathcal{I}\}$. Then the following statements are equivalent:

- (i) Θ is a dual g-frame of Λ .
- (ii) There exists a g-Bessel sequence $\{M_j^* \in L(\{span_{j \in \mathcal{I}} \Phi_j^{\Lambda^*}(H_j)\}^{\perp}, H_j) : j \in \mathcal{I}\}$ such that for every $g_j \in H_j, j \in \mathcal{I}$

$$\Phi_j^{\Theta^*} g_j - \Phi_j^{\Lambda S_\Lambda^{-1}*} g_j = M_j g_j.$$

Proof. Let $\Theta = (\Theta_i)_{i \in \mathcal{I}}$ be a dual g-frame of $\Lambda = (\Lambda_i)_{i \in \mathcal{I}}$. Then for every $g_j \in H_j, j \in \mathcal{I}$, we have

$$\begin{split} \Gamma_{j}^{*}g_{j} &= S_{\Lambda\Theta}(\Gamma_{j}^{*}g_{j}) = \sum_{i\in\mathcal{I}}\Lambda_{i}^{*}\Theta_{i}\Gamma_{j}^{*}g_{j} = \sum_{i\in\mathcal{I}}\Lambda_{i}^{*}(\Theta_{i}-\Lambda_{i}S_{\Lambda}^{-1}+\Lambda_{i}S_{\Lambda}^{-1})\Gamma_{j}^{*}g_{j} \\ &= \sum_{i\in\mathcal{I}}\Lambda_{i}^{*}(\Theta_{i}-\Lambda_{i}S_{\Lambda}^{-1})\Gamma_{j}^{*}g_{j} + \sum_{i\in\mathcal{I}}\Lambda_{i}^{*}\Lambda_{i}S_{\Lambda}^{-1}\Gamma_{j}^{*}g_{j} \\ &= \sum_{i\in\mathcal{I}}\Lambda_{i}^{*}(\Theta_{i}-\Lambda_{i}S_{\Lambda}^{-1})\Gamma_{j}^{*}g_{j} + S_{\Lambda\Lambda S_{\Lambda}^{-1}}\Gamma_{j}^{*}g_{j}. \end{split}$$

Since $S_{\Lambda\Lambda S_{\Lambda}^{-1}} = I$, then $\sum_{i \in \mathcal{I}} \Lambda_i^* (\Theta_i - \Lambda_i S_{\Lambda}^{-1}) \Gamma_j^* g_j = 0$ and by Lemma 2.8, we have

$$\sum_{i\in\mathcal{I}}\Upsilon_i^*(\Theta_i-\Lambda_iS_\Lambda^{-1})\Gamma_j^*g_j\in\{span_{j\in\mathcal{I}}\Phi_j^{\Lambda^*}(H_j)\}^{\perp}.$$

Now, define $M_j : H_j \to \{span_{j \in \mathcal{I}} \Phi_j^{\Lambda^*}(H_j)\}^{\perp} \subseteq H$ by

$$M_j g_j = \sum_{i \in \mathcal{I}} \Upsilon_i^* \Theta_i \Gamma_j^* g_j - \sum_{i \in \mathcal{I}} \Upsilon_i^* \Lambda_i S_{\Lambda}^{-1} \Gamma_j^* g_j \quad (g_j \in H_j, j \in \mathcal{I}).$$

Then $M_j g_j = \Phi_j^{\Theta^*} g_j - \Phi_j^{\Lambda S_{\Lambda}^{-1}} g_j$ $(g_j \in H_j, j \in \mathcal{I})$. So $M_j^* : \{span_{j \in \mathcal{I}} \Phi_j^{\Lambda^*}(H_j)\}^{\perp} \mapsto H_j$ and $(M_j^*)_{j \in \mathcal{I}}$ is a g-Bessel sequence for $\{span_{j \in \mathcal{I}} \Phi_j^{\Lambda^*}(H_j)\}^{\perp}$ with respect to $\{H_i; i \in \mathcal{I}\}$. Because, let A' be an upper g-frame bound for Θ . Then for every $f \in \{span_{j \in \mathcal{I}} \Phi_j^{\Lambda^*}(H_j)\}^{\perp}$, we have

$$\begin{split} \sum_{j\in\mathcal{I}} \|M_j^*f\|^2 &= \sum_{j\in\mathcal{I}} \|\Phi_j^{\Theta}f - \Phi_j^{\Lambda S^{-1}}f\|^2 = \sum_{j\in\mathcal{I}} \|\Gamma_j S_{\Theta \Gamma}f - \Gamma_j S_{\Lambda S_{\Lambda^{-1}\Upsilon}}^{-1}f\|^2 \\ &= \sum_{j\in\mathcal{I}} \|\Gamma_j S_{\Theta \Gamma}f - \Gamma_j S_{\Lambda}^{-1} \sum_{i\in\mathcal{I}} \Lambda_i^* \Upsilon_i f\|^2, \end{split}$$

since $f \in \{span_{j \in \mathcal{I}} \Phi_j^{\Lambda^*}(H_j)\}^{\perp}$ by Lemma 2.8, $\sum_{i \in \mathcal{I}} \Lambda_i^* \Upsilon_i f = 0$. Therefore

$$\sum_{j \in \mathcal{I}} \|M_j^* f\|^2 = \sum_{j \in \mathcal{I}} \|\Gamma_j S_{\Theta \Gamma} f\|^2 = \|S_{\Theta \Gamma} f\|^2 \le A' \|f\|^2.$$

Conversely, suppose that (2) holds. Since for every $g \in H, j \in \mathcal{I}, \Gamma_j g \in H_j$, then we have

$$M_j \Gamma_j g = \Phi_j^{\Theta^*} \Gamma_j g - \Phi_j^{\Lambda S_{\Lambda}^{-1}^*} \Gamma_j g$$

Therefore by [7, Lemma 3.3], for every $i \in \mathcal{I}$

$$(\Theta_i - \Lambda_i S_{\Lambda}^{-1})g = \sum_{j \in \mathcal{I}} \Upsilon_i M_j \Gamma_j g$$

So for every $g_l \in H_l, l \in \mathcal{I}$ we have

$$\begin{split} \sum_{i\in\mathcal{I}}\Lambda_i^*\Theta_i\Gamma_l^*g_l &= \sum_{i\in\mathcal{I}}\Lambda_i^*(\Lambda_iS_\Lambda^{-1}+\Theta_i-\Lambda_iS_\Lambda^{-1})\Gamma_l^*g_l\\ &= \Gamma_l^*g_l+\sum_{i\in\mathcal{I}}\Lambda_i^*(\Theta_i-\Lambda_iS_\Lambda^{-1})\Gamma_l^*g_l\\ &= \Gamma_l^*g_l+\sum_{i\in\mathcal{I}}\Lambda_i^*(\sum_{j\in\mathcal{I}}\Upsilon_iM_j(\Gamma_j\Gamma_l^*g_l))\\ &= \Gamma_l^*g_l+\sum_{i\in\mathcal{I}}\Lambda_i^*\Upsilon_i\sum_{j\in\mathcal{I}}M_j(\Gamma_j\Gamma_l^*g_l)\\ &= \Gamma_l^*g_l+\sum_{i\in\mathcal{I}}\Lambda_i^*\Upsilon_iM_lg_l, \end{split}$$

since $M_l g_l \in \{span_{j \in \mathcal{I}} \Phi_j^{\Lambda^*}(H_j)\}^{\perp}$, then by Lemma 2.8, $\sum_{i \in \mathcal{I}} \Lambda_i^* \Upsilon_i M_l g_l = 0$. Therefore Θ is a dual g-frame of Λ and this implies (1).

Now, we present a characterization of the canonical dual g-frames.

Corollary 2.10. Let $\Lambda = \{\Lambda_i \in L(H, H_i) : i \in \mathcal{I}\}$ be a g-frame with the canonical dual $\widetilde{\Lambda} = \{\widetilde{\Lambda}_i \in L(H, H_i) : i \in \mathcal{I}\}$ and $\Phi^{\Lambda} = \{\Phi_j^{\Lambda} \in L(H, H_j) : j \in \mathcal{I}\}$ be the g-R-dual sequence of type I of Λ with respect to g-orthonormal bases $\Gamma = \{\Gamma_i \in L(H, H_i) : i \in \mathcal{I}\}$ and $\Upsilon = \{\Upsilon_i \in L(H, H_i) : i \in \mathcal{I}\}$ and $\Upsilon = \{\Upsilon_i \in L(H, H_i) : i \in \mathcal{I}\}$. Let $\Theta = \{\Theta_i \in L(H, H_i) : i \in \mathcal{I}\}$ be a dual g-frame of Λ . Then for every $g_j \in H_j, j \in \mathcal{I}$

$$\|\Phi_j^{\Theta^*}g_j\| \ge \|\Phi_j^{\Lambda^*}g_j\|,$$

with equality if and only if $\Theta = \widetilde{\Lambda}$.

Proof. Let T_{Λ} and $T_{\tilde{\Lambda}}$ be the synthesis operators of Λ and $\tilde{\Lambda}$, respectively. Easily we can see that $\frac{kerT_{\Lambda} = kerT_{\tilde{\Lambda}}}{span_{j\in\mathcal{I}}\Phi_{j}^{\Lambda^{*}}(H_{j})} = \overline{span_{j\in\mathcal{I}}\Phi_{j}^{\tilde{\Lambda}^{*}}(H_{j})}, \text{ so } Ran\Phi_{j}^{\tilde{\Lambda}^{*}} \subseteq \overline{span_{j\in\mathcal{I}}\Phi_{j}^{\Lambda^{*}}(H_{j})}, \text{ so } Ran\Phi_{j}^{\tilde{\Lambda}^{*}} \subseteq \overline{span_{j\in\mathcal{I}}\Phi_{j}^{\Lambda^{*}}(H_{j})}.$ On the other hand by the above theorem, for every $g_{j} \in H_{j}, j \in \mathcal{I}$ we have $\Phi_{j}^{\Theta^{*}}g_{j} = \Phi_{j}^{\tilde{\Lambda}^{*}}g_{j} + M_{j}g_{j}, \text{ where } RanM_{j} \subseteq span_{j\in\mathcal{I}}\Phi_{j}^{\Lambda^{*}}(H_{j})^{\perp}. \text{ But } \overline{span_{j\in\mathcal{I}}\Phi_{j}^{\Lambda^{*}}(H_{j})}^{\perp} = span_{j\in\mathcal{I}}\Phi_{j}^{\Lambda^{*}}(H_{j})^{\perp}, \text{ so } RanM_{j} \subseteq \overline{span_{j\in\mathcal{I}}\Phi_{j}^{\Lambda^{*}}(H_{j})}^{\perp}.$ Then for every $g_{j} \in H_{j}, j \in \mathcal{I}$ we have

$$\|\Phi_{j}^{\Theta^{*}}g_{j}\|^{2} = \|\Phi_{j}^{\tilde{\Lambda}^{*}}g_{j}\|^{2} + \|M_{j}g_{j}\|^{2} \ge \|\Phi_{j}^{\tilde{\Lambda}^{*}}g_{j}\|^{2}.$$

By the above theorem, the equality holds if and only if $\Theta = \tilde{\Lambda}$.

References

- P. Casazza, G. Kutyniok, and M.C. Lammers, Duality principles in frame theory, J. Fourier Anal. Appl., 10, no. 4, 383–408 (2004).
- [2] P. Casazza, G. Kutyniok, and M.C. Lammers, Duality principle, localization of frames, and Gabor theory, Wavelets XI. Proceeding of the SPIE., 5914, 389–397 (2005).
- [3] O. Christensen, H. O. Kim, and R. Y. Kim, On the duality principle by Casazza, Kutyniok, and Lammers, J. Fourier Anal. Appl., 17, no. 4, 640–655 (2011).
- [4] D. Dutkay, D. Han, D. Larson, A duality principle for groups, J. Funct. Anal., 257, no. 4, 1133–1143 (2009).
- [5] G. B. Folland, A Course in Abstract Harmonic Analysis, CRC Press, 1994.
- [6] A. Khosravi, K. Musazadeh, Fusion frames and g-frames, J. Math. Anal. Appl., 342, no. 2, 1068–1083 (2008).
- [7] E. Osgooei, A. Najati, M. H. Faroughi, G-Riesz dual sequences for g-Bessel sequences, Asian-Eur. J. Math., 7 no. 3, (15 pages) (2014).
- [8] D. T. Stoeva, O. Christensen., On R-duals and the duality principle in Gabor analysis, J. Fourier Anal. Appl., 21, no. 2, 383–400 (2014).
- [9] W. Sun, G-frames and g-Riesz bases, J. Math. Anal. Appl., 322, no. 1, 437–452 (2006).
- [10] Y. C. Zhu, Characterization of g-frames and g-bases in Hilbert spaces, Acta Math. Sin., 24, no. 10, 1727– 1736 (2008).
- [11] X. M. Xiao, Y. C. Zhu, Duality principles of frames in Banach spaces, Acta. Math. Sci. Ser. A. Chin., 29, 94–102 (2009).

Author information

Amir Khosravi and Farkhondeh Takhteh, Faculty of Mathematical Sciences and Computer, Kharazmi University, 599 Taleghani Ave., Tehran 15618, IRAN. E-mail: khosravi_amir@yahoo.com, khosravi@khu.ac.ir, ftakhteh@yahoo.com

Received: July 7, 2016. Accepted: October 5, 2016.