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Abstract The state of a rotating Bose-Einstein condensate in a harmonic trap is modeled

by a wave function that minimizes the Gross-Pitaevskii functional. The resulting minimiza-

tion problem has two new features compared to other similar functionals arising in condensed

matter physics, such as the Ginzburg-Landau functional. Namely, the wave function is de�ned

in all the plane and is normalized relative to the L2-norm. This paper deals with the situation

when the coupling constant tends to 0 (Thomas-Fermi regime) and the rotation speed is large

compared with the �rst critical speed. It is given the leading order estimate of the ground state

energy together with the location of the vortices of the minimizing wave function in the bulk

of the condensate. When the rotation speed is inversely proportional to the coupling constant,

the condensate is con�ned in an elliptical region whose conjugate diameter shrinks and whose

transverse diameter expands as the rotation speed increases.

1 Introduction

The analysis of energy functionals modeling rotating Bose-Einstein condensation is currently an

important �eld of mathematical physics. A lot of mathematical papers addressed several ques-

tions related to this physical phenomenon. In [14, 7], it is proved that the Gross-Pitaevskii frame

work is a valid approximation of theN -body model of rotating Bose-Einstein condensation. The

monograph [1] contains original results as well as many open questions regarding various mod-

els in the subject (see also the papers [2, 3, 4] and the references therein). A series of important

contributions ([10, 16] and references therein) contain a deep analysis that describes the various

critical speeds of rotating Bose-Einstein condensates in anharmonic traps.

When the atoms of the condensate are con�ned in a harmonic trap, the Gross-Pitaevskii

functional to study is:

Fε(u) =

∫
R2

(
|(∇− iWA0)u|2 +

1

2ε2

(
[a(x)− |u|2]2 − [a−(x)]

2
)
− W

2

4
|x|2|u|2

)
dx . (1.1)

The functional in (1.1) is de�ned for functions satisfying the mass constraint,∫
R2

|u|2 dx = 1 . (1.2)

The parameter ε > 0 is the coupling constant; ε is the ratio of two characteristic lengths. The

parameter W measures the rotational speed, A0(x) = x⊥/2 = (−x2/2, x1/2), a(x) = a0 − |x|2
L
,

a0 =
√
2L/π, |x|L =

√
x2
1 + L

2x2
2 .

The parameter L ∈ (0, 1] is �xed as well as the term a0 in the function a. The choice of the

term a0 forces the function a to satisfy the normalization condition

∫
R2

(
a(x))− dx = 1.
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The form of the functional given in (1.1) is adequate to apply the techniques developed for

the Ginzburg-Landau functional. In non-dimensional units, the functional that appears in the

physical literature is actually the sum of three terms: the kinetic energy, the potential energy and

the non-linear interaction term (see e.g. [15]),

Fε(u) =

∫
R2

(
|∇u|2 + 1

2ε2

(
[a(x)− |u|2]2 − [a−(x)]

2
)
−Wx⊥ · (iu,∇u)

)
dx . (1.3)

In the regime ε ≪ 1 and εW≪ 1, the condensate is con�ned in the region

D = {x ∈ R2 : a(x) > 0} . (1.4)

The ground state energy is:

Egs(ε,W) = inf {Fε(u) : u ∈ H1(R2) , |x|2u ∈ L2(R2) &

∫
R2

|u|2 dx = 1 } . (1.5)

The minimization problem in (1.5) is studied in [11] when ε → 0+ and W ≈ | ln ε|. Among

other things, it is found a critical speed Wc = ωc| ln ε| such that minimizers start to have zeros

when W > Wc. In this paper, the focus will be on the regime when ε → 0+ and W ≫ Wc. Part

of the results of this paper are qualitatively very similar to those of [10, 9, 8] where �at and

anharmonic traps are treated. However, a regime in the harmonic trap discussed in this paper

seems to display a new behavior of the concentration of the condensate's wave function. This is

explicitly discussed in Remark 1.3 below.

It is established in [11, Prop. 3.1] that there is a minimizer of the problem (1.5) when W <
2L/ε. The functional in (1.5) is not bounded from below when W > 2L/ε.

Setting W = 0 into the magnetic term in Fε, it is obtained the reduced functional:

Eε,W(u) =

∫
R2

(
|∇u|2 + 1

2ε2

(
[a(x)− |u|2]2 − [a−(x)]

2
)
−W2 |x|2

4
|u|2
)

dx . (1.6)

The ground state energy of this functional is:

eε,W = inf {Eε(u) : u ∈ H1(R2) , |x|2u ∈ L2(R2) &

∫
R2

|u|2 dx = 1 } . (1.7)

The reduced functional in (1.6) is studied in [11, Thm. 2.2] when W = 0, where it is established

that (1.7) has a positive minimizer η̃ε. In Section 2, it will be constructed a positive minimizer

η̃ε,W of the functional in (1.6). Following an idea of [13] and writing u = η̃ε,Wv, there holds the
following decomposition:

Fε(u) = Eε(η̃ε) + Gε(v) , (1.8)

with

Gε(v) =

∫
R2

(
η̃2ε,W|(∇− iWA0)v|2 +

η̃4ε,W
2ε2

(1− |v|2)2
)

dx . (1.9)

Also, if u is selected as a minimizer of (1.5), then v will be a minimizer of Gε under the weighted

mass constraint, ∫
R2

η̃2ε,W|v|2 dx = 1 . (1.10)

More precisely, the minimization problem (1.5) is equivalent to

C0(ε,W) = inf {Gε(v) : v ∈ H1(R2) , η̃ε,W|x|v ∈ L2(R2) &

∫
R2

η̃2ε,W|v|2 dx = 1 } . (1.11)

The main theorem of this paper is:

Theorem 1.1. Let M ∈ (0, 2L) and b : (0, 1) → (0,∞) satis�es lim
ε→0+

b(ε) = ∞. Suppose that

the rotational speed satis�es:

b(ε)| ln ε| ≤ W ≤ M

ε
,
(
ε ∈ (0, 1)

)
.
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There exist a constant ε0 > 0 and a function err : (0, ε0] → R such that,

lim
ε→0+

err(ε) = 0 ,

and

Egs = eε,W +W

[
ln

1

ε
√
W

](
1+ err(ε)

)
,
(
ε ∈ (0, ε0)

)
. (1.12)

Here Egs is introduced in (1.5) and eε,W in (1.7).

Remark 1.2. In light of the decomposition in (1.8), the proof of Theorem 1.1 is done by estab-

lishing that:

C0(ε,W) = W

[
ln

1

ε
√
W

](
1+ err(ε)

)
.

Remark 1.3. (Bulk of the condensate)

In Section 2, it will be shown that the function η̃ε,W is concentrated in the region

DεW = {x ∈ R2 : αεW − |x|2
L̃εW

> 0} ,

where

αεW = a0

(
1− ε2W2

4L2

1− ε2W2

4

)1/4

and L̃εW = L

(
1− ε2W2

4L2

1− ε2W2

4

)1/2

.

It is worthy to discuss the form of the regionDεW in the various existing regimes. In the isotropic

case L = 1, the region DεW is independent of εW,

DεW = D = {x ∈ R2 : a(x) > 0} .

In the non-isotropic case, 0 < L < 1, one observes an interesting behavior. If εW≪ 1, then the

region DεW occupies D.

This region shrinks along the x1-axis and expands along the x2-axis as εW increases. If

W = M/ε and M ∈ (0, 2L), then as M → 2L, the region DεW approaches the following region

D2L = {0} ×R .

It seems that this kind of bahavior of the `bulk' of the condensate is new comapred to the existing

behavior for anharmonic and �at traps.

Remark 1.4. (Concentration of the condensate's wave function)

Let δ > 0 and Nδ = {x ∈ DεW : αεW − |x|2
L̃εW

> δ}. A simple consequence of the energy

asymptotics in Remark 1.2 and the discussion in Remark 1.3 is that any minimizer u = η̃ε,W v of
the functional in (1.1) satis�es,

|v| =
∣∣∣∣ u

η̃ε,W

∣∣∣∣→ 1 in L2
(
Nδ

)
.

Since the functions u and η̃ε,W are normalized in L2, then the function u satis�es∫
Nδ

|u|2 dx = 1+O(δ) and

∫
R2\Nδ

|u|2 dx = O(δ) ,

for suf�ciently small values of δ. Note that the behavior of η̃εW described in Theorem 2.2 is used.

Remark 1.5. Along the proof of Theorem 1.1, one gets information about the qualitative behavior

of the minimizers. More precisely, it is possible to get information about the arrangement of

vortices. This is discussed in Section 6.

Remark 1.6. The letter C denotes a positive constant independent of ε andW, and whose value is
not the same when seen in different formulas. The quantity O(B) is any expression that remains

in the interval (−C|B|, C|B|). Writing A ≪ B means that A = δB and δ → 0. The meaning of

A ≈ B is that A is bounded between c1B and c2B with c1 and c2 being positive constants.
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2 Preliminaries

Some basic properties of the positive minimizer η̃ε,W of (1.7) as well as of minimizers of the

modi�ed problem (1.11) will be used along the proof of Theorem 1.1. These properties are

recalled here.

2.1 The unconstrained problem

The �rst step is to study the minimization of (1.6) without the mass constraint. The results here

are given in [11] but for a slightly more particular case on the potential ã(x) de�ned below. The
proofs here are identically the same as in [11] and are not repeated.

Consider the potential

ã(x) = ã0 − |x|2
L̃
= ã0 − x2

1 − L̃2x2
2 ,

(
x = (x1, x2) ∈ R2

)
,

where ã0 and L̃ are positive parameters. The parameters ã0 and L̃ may depend on ε and W but

they should remain bounded between two positive constants c1 and c2 that are independent of ε
and W. The results in this section are valid under this last assumption.

Consider the functional

Ẽε(u) =

∫
R2

(
|∇u|2 + 1

2ε2

(
[ã(x)− |u|2]2 − [ã−(x)]

2
))

dx . (2.1)

The functional in (2.1) will be minimized over con�gurations in the space

H = {u ∈ H1(R2) : |x|2u ∈ L2(R2)} .

The proof of Theorem 2.1 below is given in [11, Proposition 2.1].

Theorem 2.1. There exist two positive constants ε0 > 0 and C > 0 such that, if ε ∈ (0, ε0), then
there is a real-valued minimizer ηε = ηε,ã ∈ H of (2.1) satisfying:

(i) Eε(ηε) ≤ C| ln ε| and ηε > 0 in R2 ;

(ii) ηε is the unique solution of

−Dηε =
1

ε2
(
ã− η2ε)ηε and ηε > 0 in R2 .

(iii) ηε(x) ≤ Cε1/3 exp
(
ã(x)/(4ε2/3)

)
if |x|

L̃
≥
√
ã0 ;

(iv) (1− Cε1/3)
√
ã(x) ≤ ηε(x) ≤

√
ã(x) if |x|

L̃
≤
√

ã0 − ε1/3 .

(v) ηε(x) ≤ Cε1/3 if
√
ã0 − ε1/3 ≤ |x|

L̃
≤
√
ã0 .

2.2 The constrained problem

This section is devoted to the construction of a positive minimizer of the constrained problem in

(1.7).

A standard compactness argument shows the existence of a minimizer uε,W of (1.7). The

details are given in [11]. Since
∣∣∇|uε,W|

∣∣ ≤ |∇uε,W|, then |uε,W| is a minimizer of (1.7) too.

This discussion leads to the existence of a positive minimizer η̃ε,W = |uε,W| of (1.7). The Euler-
Lagrange equation satis�ed by η̃ε,W is,

−Dη̃ε,W =
1

ε2
(
kεε

2 + VεW − η̃2ε,W
)
η̃ε,W ,

where kε ∈ R is the Lagrange multiplier and VεW(x) = a0 − |x|2
L
+ ε2W2

4
|x|2.
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Multiplying both sides of the Euler-Lagrange equation by η̃ε,W, integrating by parts and using∫
R2

η̃2ε,W dx = 1 yield that a0+kεε
2 > µε > 0, where µε is the �rst eigenvalue of the Schrödinger

operator

−D+
1

ε2

(
|x|2

L̃
− ε2W2

4
|x|2
)

in L2(R2) .

Note that, by the assumption on W and L, the potential of the operator is positive and goes to ∞
when |x| → ∞.

De�ne

ε̃ =

(
1− ε2W2

4

)−1/2
a0

a0 + kεε2
ε , νε(x) =

√
a0

a0 + kεε2
η̃ε,W

√a0 + kεε2

a0
x

 .

The function νε satis�es,

−Dνε =
1

ε̃2
(
ã− ν2ε

)
νε , νε > 0 in R2 ,

where

ã(x) = ãεW = ã0 − |x|2
L̃
, ã0 =

a0

1− ε2W2

4

, L̃
2 =

L
2 − ε2W2

4

1− ε2W2

4

.

The conclusion (2) in Theorem 2.1 asserts that,

νε(x) = ηε̃,ã(x) (x ∈ R2) ,

where ηε̃,ã is the solution of the unconstrained problem. As a consequence, there holds,

η̃ε,W(x) =

√
a0 + kεε2

a0
ηε̃,ã

(√
a0

a0 + kεε2
x

)
.

Thanks to the conclusions (3)-(5) in Theorem 2.1 and the mass constraint

∫
R2

η̃2ε,W dx = 1,

there holds,(
a0

a0 + kεε2

)2

=

(∫
ã(x)>0

ã(x) dx

)(
1+O(ε1/3)

)
= L

(
L

2 − ε2W2

4

)−1/2(
1− ε2W2

4

)−3/2 (
1+O(ε1/3)

)
.

In the sequel, let,

αεW = a0

(
1− ε2W2

4L2

1− ε2W2

4

)1/4

, L̃εW = L

(
1− ε2W2

4L2

1− ε2W2

4

)1/2

pεW(x) =
(
αεW − |x|2

L̃εW

)
=

√
a0 + kεε2

a0
ã

(√
a0

a0 + kεε2
x

)(
1+O(ε1/3)

)
. (2.2)

Now, an immediate application of Theorem 2.1 leads to:

Theorem 2.2. Let M ∈ (0, 2L). There exist positive constants ε0, C and δ0 such that, if ε ∈
(0, ε0) and W ∈ [0,M), then there is a real-valued minimizer η̃ε,W of the constrained problem

(2.1) satisfying:

(i) Eε(η̃ε,W) ≤ CW2 and η̃ε,W > 0 in R2 ;

(ii) η̃ε,W(x) ≤ Cε1/3 exp
(
δ0pεW(x)/(ε2/3)

)
if pεW(x) ≤ −δ0ε

1/3 ;

(iii) (1− Cε1/3)
√
pεW(x) ≤ η̃ε,W(x) ≤

√
pεW(x) if pεW(x) ≥ δ0ε

1/3 ;

(iv) ηε(x) ≤ Cε1/3 if −δ0ε
1/3 ≤ pεW(x) ≤ δ0ε

1/3 .
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2.3 A uniform bound of the ground states

Theorem 2.3. Let M ∈ (0, 2L). There exist positive constants C, δ, λ and ε0 such that, if

ε ∈ (0, ε0) and 0 < W ≤ M/ε, then every minimizer vε of (1.11) satis�es:

|η̃εvε(x)| ≤ C

(√
1

2L−M
+ 1

)
in R2 .

Proof. Under the assumption on the rotational speed, Proposition 3.2 in [11] implies that the

problem (1.5) has a minimizer uε. In light of the decomposition in (1.8), it follows that vε =
uε/η̃ε is a minimizer of the problem (1.11). Theorem 2.3 will be proved by establishing proper-

ties of uε. The function uε satis�es

−(∇− iWA0)uε =
1

ε2
(
a(x) +

1

4
ε2W2|x|2 + ε2ℓε − |uε|2

)
uε in R2 , (2.3)

where ℓε ∈ R is the lagrange multiplier. Furthermore, it holds (see the derivation of [11,

(3.7)&(3.11)]):

Fε(uε) ≤ CW2 , |ℓε| ≤ Cε−1
W ,

∫
R2\D

|uε|4 dx ≤ Cε2W2 . (2.4)

Let Uε = |uε|2 and b(x) = a(x) + 1
4
ε2W2|x|2 + ε2ℓε. In light of the identity,

Re
[
uε (∇− iWA0)

2uε

]
=

1

2
DUε − |(∇− iWA0)uε|2 ,

the function Uε satis�es,

1

2
DUε ≥ − 1

ε2
(b(x)− Uε)Uε in R2 . (2.5)

Let λ >
√
a0 , E = {x ∈ R2 : |x| ≥ 2λ } and Q = {x ∈ R2 : |x| > λ}. The condition on λ

ensures that Q ⊂ R2 \ D. In the set Q, there holds,

b(x) ≤ a0 − λ2(L2 −M2) + ε2ℓε ≤ −λ2

(
L

2 − M2

4

)
+ C .

As a consequence, it is possible to select the constant λ ≥
√

2C

L2−M2

2

such that the function Uε is

subharmonic in the open set Q.

Consider an arbitrary point x0 ∈ E. The de�nition of the set Q yields that B(x0, λ) ⊂ Q and

Q ⊂ R2 \ D. Since the function Uε is subharmonic and its L2-norm is estimated in (2.4), then

there exists a constant C∗ > 0 such that,

0 ≤ Uε(x0) ≤
1

|B(x0, λ)|

∫
B(x0,λ)

U2
ε (x) dx ≤ O

(
1

λ
εW

)
≤ C∗

λ
.

The next step is to prove that Uε is bounded in the set

Br = {x ∈ R2 \ D : |x| ≤ r}

where r = 3λ . Select a positive constant C such that b(x) ≤ Cλ + C∗
λ in Br. Notice that

∂Br ⊂ E and consequently, Uε ≤ C∗ ≤ Cλ + C∗
λ in ∂Br. Thus, if the maximum of Uε in Br

is greater than Cλ + C∗
λ , then the point of maximum is an interior point in Br. It is impossible

that such a point of maximum exists. In fact, if there exists a point of maximum x0 satisfying

Cλ+ C∗
λ −Uε(x0) < 0, then DUε(x0) ≤ 0. This leads to a contradiction in light of the following

inequality,
1

2
DUε +

1

ε2

(
Cλ+

C∗

λ
− Uε

)
Uε ≥ 0 ,

which results from (2.5) and the choice of the constant C.

Remark 2.4. There is a simple consequence of Theorem 2.3 and (3) in Theorem 2.2. LetK be a

compact set and δ > 0. If K ⊂ {x ∈ R2 : pεW(x) > δ} for suf�ciently small values of ε, then
there exist constants εK,δ and CK,δ such that, for all ε ∈ (0, εK,δ), |vε(x)| ≤ CK,δ in K.

Here, the function pεW(x) is introduced in (2.2).
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3 Reduced Ginzburg-Landau energy

Let K = (−1/2, 1/2) × (−1/2, 1/2) be a square of unit side length, λ, hex and ε be positive

parameters. Consider the functional de�ned for all u ∈ H1(K;C),

E2D
λ (u) =

∫
K

(
|(∇− ihexA0)u|2 +

λ

2ε2
(1− |u|2)2

)
dx . (3.1)

Here A0 is the vector potential whose curl is equal to 1,

A0(x1, x2) =
1

2
(−x2, x1) , (x1, x2) ∈ R2 . (3.2)

Notice that the functional E2D
λ is a simpli�ed version of the full Ginzburg-Landau functional

considered in [18], as the magnetic potential in (3.1) is given and not an unknown of the problem.

Minimization of the functional E2D
λ arises naturally over `magnetic periodic' functions. Let

us introduce the following space,

Ehex
= {u ∈ H1

loc(R2;C) : u(x1 + 1, x2) = eihexx2/2u(x1, x2) ,

u(x1, x2 + 1) = e−ihexx1/2u(x1, x2)} , (3.3)

together with the ground state energy,

mp(hex, ε) = inf{E2D
λ (u) : u ∈ Ehex

} . (3.4)

Minimization of E2D
λ over con�gurations without prescribed boundary conditions will be needed

as well. The ground state energy of this problem is,

m0(hex, ε) = inf{E2D
λ (u) : u ∈ H1(K)} . (3.5)

The ground state energies m0(hex, ε) and mp(hex, ε) are estimated in [12] by borrowing tools

from [17] and [18]. This is recalled in the next theorem.

Theorem 3.1. Assume that λ2 > λ1 > 0 are given constants, λ ∈ (λ1, λ2) and hex is a function

of ε such that

| ln ε| ≪ hex ≪
1

ε2
, as ε → 0 .

As ε → 0, the ground state energies m0(hex, ε) and mp(hex, ε) satisfy,

m0(hex, ε) = hex ln
1

ε
√
hex

(
1+ o(1)

)
and mp(hex, ε) = hex ln

1

ε
√
hex

(
1+ o(1)

)
.

Here, the expression o(1) tends to 0 as ε → 0 uniformly with respect to λ.

In the forthcoming section, it will be needed a trial state satisfying the mass constraint (L2-

norm equal to 1) and having an energy close to mp(hex, ε). The next Lemma provides one with

a useful trial state whose L2-norm is close to 1.

Lemma 3.2. Suppose that λ > 0, hex and ε are as in Theorem 3.1. There exists a function fε in
H1(K) such that

|fε| ≤ 1 in K ,

{x ∈ K : |fε(x)| < 1} ⊂
n∪

i=1

B(ai, ε) and n = O(hex) ,

1−O(ε2hex) ≤
∫
K

|fε(x)|2 dx ≤ 1 ,

and

E2D
λ (fε) ≤ hex ln

1

ε
√
hex

(
1+ o(1)

)
,

as ε → 0+. Furthermore, fε is independent of λ, and O is uniform with respect to λ.
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Proof. For the convenience of the reader, the construction of fε is outlined. Details can be found
in [6]. LetN be the largest positive integer satisfyingN ≤

√
hex/2π < N+1. Divide the square

K into N2 disjoint squares (Kj)0≤j≤N2−1 each of side length equal to 1/N and center aj . Let h
be the unique solution of the problem,

−Dh+ hex = 2πδa0
in K0

∂h

∂ν
= 0 on ∂K0∫

K0

h dx = 0.

Here ν is the unit outward normal vector of K0. The function h satis�es periodic conditions on

the boundary of K0, and∫
K0\B(a0,ε)

|∇h|2 dx ≤ 2π ln
1

εN
+O(1) = 2π ln

1

ε
√
hex

+O(1) , as ε → 0+ .

The function h is extended by periodicity in the square K. Let ϕ be a function (de�ned modulo

2π) satisfying in K \ {aj : 0 ≤ j ≤ N2 − 1},

∇ϕ = −∇⊥h+ hexA0 ,
(
∇⊥ = (−∂x2

, ∂x1
)
)
.

HereA0 is the magnetic potential in (3.2). If x ∈ K0, let ρ(x) = min(1, |x−a0|/ε). The function
ρ is extended by periodicity in the squareK. Put fε(x) = ρ(x)eiϕ(x) for all x ∈ K. The function

fε can be extended as a function in the space Ehex
in (3.3), see [5, Lemma 5.11] for details.

The energy of fε is easily computed, since fε is `magnetic periodic' and N =
√
hex/2π

(
1+

o(1)
)
. Clearly, in the squareK0, |fε(x)| < 1 if and only if |x− a0| < ε. Thus, it is easy to check

that fε satis�es the requirements in Lemma 3.2.

4 Upper Bound

4.1 The test con�guration

Recall the de�nition of the ground state energy C0(ε,W) in (1.11). The assumption on the rota-

tional speed W is | ln ε| ≪ W ≤ M/ε with M ∈ (0, 2L). Let

L >

√
a0

(
1− M2

4

)−1/4

and 0 < δ < min

(√
a0

(
1− M 2

4L2

)
,
L

2

)
.

Recall the de�nition of αεW in (2.2). The constants δ and L are selected so that

δ <
√
αεW < L and

√
αεW + δ < L .

De�ne,

UL = {x ∈ D : |x|
L̃εW

< L} .

Thanks to the assumption on W, if ε is suf�ciently small, then there holds the inclusion,

DεW = {x ∈ R2 : pεW(x) > 0} ⊂ UL ,

where L̃εW and pεW are introduced in (2.2) and

∫
pεW(x)>0

pεW(x) dx = 1.

De�ne

ℓ =

(
W

| ln ε|

)1/4
1√
W

, hex =
1

ℓ2
. (4.1)

Recall the ground state energy mp(hex, ε) and the space Ehex
introduced in (3.4) and (3.3) re-

spectively. Let fε ∈ Ehex
be the test function de�ned in Lemma 3.2. In particular, fε satis�es

E2D
λ (fε) ≤ hex ln

1

ε
√
hex

(
1+ o(1)

)
for any λ varying between two positive constants λ1 and λ2.
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De�ne,

v(x) = χ(x) fε
(
ℓ
√
Wx
)

(x ∈ R2) ,

where χ is a cut-off function satisfying,

0 ≤ χ ≤ 1 in R2 , χ(x) = 0 when |x|
L̃εW

≥ 2L , χ(x) = 1 when |x|
L̃εW

≤ L ,

and

|∇χ| ≤ C

L
in R2 .

Let (Kj) be the lattice of R2 generated by the cube,

K =

(
− 1

2ℓ
√
W
,

1

2ℓ
√
W

)
×
(
− 1

2ℓ
√
W
,

1

2ℓ
√
W

)
.

Let J = {Kj : Kj ∩ U2L ̸= ∅} and N = CardJ . As ε → 0+, the number N satis�es,

N = |U2L| ×
(
ℓ
√
W
)2 (

1+ o(1)
)
.

In light of Lemma 3.2 and the exponential decay of η̃ε,W in Lemma 2.1, the function v satis�es,

1−O(ε2W) ≤
∫
R2

η̃2ε,W|v|2 dx ≤ 1 . (4.2)

De�ne the test function,

ṽ(x) =
v(x)√∫

R2

η̃2ε|v|2 dx
. (4.3)

Clearly, the function ṽ satis�es the weighted mass constraint,∫
R2

η̃2ε|ṽ|2 dx = 1 , (4.4)

and consequently, there holds the upper bound C0(ε,W) ≤ Gε(ṽ). The rest of the section will be
devoted to estimating the energy Gε(ṽ). It will be established that:

lim sup
ε→0+

 Gε(ṽ)

2W
[
ln 1

ε
√
W

] − 1

 ≤ 0 . (4.5)

The next estimate (4.6) is a consequence of (??),

C0(ε,W) ≤ W

[
ln

1

ε
√
W

] (
1+ err(ε)

)
. (4.6)

4.2 Energy of the test con�guration: Proof of (4.5)

It will be shown that the term

Cε = Gε(ṽ) =

∫
R2

(
η̃2ε|(∇− iWA0)ṽ|2 +

η̃4ε
2ε2

(1− |ṽ|2)2
)

dx

is of leading order equal to Lε = W

[
ln

1

ε
√
W

]
. It is useful to write Cε as the sum of four terms,

Cε = Cε,1 + Cε,2 + Cε,3 + Cε,4 , (4.7)
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where

Cε,1 =

∫
|x|̃

LεW
≤√

αεW −δ

(
η̃2ε|(∇− iWA0)ṽ|2 +

η̃4ε
2ε2

(1− |ṽ|2)2
)

dx , (4.8)

Cε,2 =

∫
√
αεW −δ≤|x|̃

LεW
≤√

αεW +δ

(
η̃2ε|(∇− iWA0)ṽ|2 +

η̃4ε
2ε2

(1− |ṽ|2)2
)

dx , (4.9)

Cε,3 =

∫
√
αεW +δ≤|x|̃

LεW
≤2L

(
η̃2ε|(∇− iWA0)ṽ|2 +

η̃4ε
2ε2

(1− |ṽ|2)2
)

dx , (4.10)

Cε,4 =

∫
|x|̃

LεW
≥2L

(
η̃2ε|(∇− iWA0)ṽ|2 +

η̃4ε
2ε2

(1− |ṽ|2)2
)

dx , (4.11)

and αεW is as in (2.2).

The term Cε,1:

Let J0 = {j ∈ J : Kj ∩ {x : |x|
L̃εW

≤ √
αεW − δ} ≠ ∅}. Since δ is selected independently of

ε, then in light of Theorem 2.2, there holds in every square Kj with j ∈ J0,

η̃2ε(x) ≤ pεW(x) .

The mean value theorem applied to the function pεW yields,

pεW(x) ≤ pεW(xj) +
C

ℓ
√
W

,

where xj is an arbitrary point in Kj and j ∈ J0. The above two estimates applied successively

yield an upper bound of the term Cε,1 as follows:

Cε,1 ≤
∑
j∈J0

[
pεW(xj) +

C

ℓ
√
W

] ∫
Kj

(
|(∇− iWA0)ṽ|2 +

λε

2ε2
(1− |ṽ|2)2

)
dx ,

where

λε = max
j∈J0

(
pεW(xj)

pεW(xj) +
C

ℓ
√
W

)
.

In the domain UL, the function χ is equal to 1 and v(x) = fε(ℓ
√
Wx). By using successively

the estimate in (4.2), the `magnetic' periodicity of v over the lattice (Kj)j and the bound |v| ≤ 1,

one gets the following upper bound,∫
Kj

(
|(∇− iWA0)ṽ|2 +

λε

2ε2
(1− |ṽ|2)2

)
dx

≤ (1+ Cε2W)

∫
Kj

(
|(∇− iWA0)v|2 +

λε

2ε2
(1− |v|2)2

)
dx+ CW

∫
Kj

|v|4 dx

≤ (1+ Cε2W)

∫
K

(
|(∇− iWA0)v|2 +

λε

2ε2
(1− |v|2)2

)
dx+ CW|Kj | .

(4.12)

The integral term in (4.12) is computed by the change of variable y = ℓ
√
Wx that transforms it

to ∫
K

(
|(∇− ihexA0)fε|2 +

λε

2 �ε2
(1− |fε|2)2

)
dx , (4.13)

where �ε = εℓ
√
W and hex =

1
ℓ2
. As ε → 0+, �ε ≫ ε and hex satis�es | ln ε| ≪ hex ≪ ε−2. Also,

λε remains inside a �xed interval [λ1, λ2]. Consequently, it is possible to use Lemma 3.2 and
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get that
(
1+ o(1)

)
hex ln

1

ε
√
hex

is an upper bound of the term in (4.13). As a consequence, it is

obtained the following upper bound of Cε,1,

Cε,1 ≤ (1+Cε2W)
∑
j∈J0

[
pεW(xj) +Cε2| ln ε|+ C

ℓ
√
W

]((
1+ o(1)

)
hex ln

1

ε
√
hex

+ CW|Kj |
)

.

(4.14)

Recall that, as ε → 0+, the number of squares Kj satis�es N = |U2L| × ℓ2W
(
1 + o(1)

)
. Since

|Kj | =
1

ℓ2W
for every j, then

∑
j∈J

|Kj | = |U2L|
(
1+ o(1)

)
. Also, all the extra terms appearing in

(4.14) are o(1) as ε → 0+, and this leads one to,

Cε,1 ≤
(
1+ o(1)

) ∑
j∈J0

1

|Kj |
pεW(xj)ℓ

2
Whex ln

1

ε
√
hex

=
(
1+ o(1)

)
W ln

1

ε
√
W

∑
j∈J0

1

|Kj |
a(xj) .

Since each point xj is arbitrarily selected in the squareKj , then the sum
∑

j
1

|Kj |pεW(xj) becomes

a Riemann sum. Select the points (xj) such that the sum is a lower Riemann sum. That way,∑
j∈J ′

1

|Kj |
pεW(xj) ≤

∫
|x|̃

LεW
≤√

αεW −δ

pεW(x) dx ≤
∫
pεW(x)>0

pεW(x) dx = 1 .

As a consequence, the term Cε,1 satis�es,

Cε,1 ≤
(
1+ o(1)

)
W ln

1

ε
√
W

as ε → 0+ . (4.15)

The term Cε,2:

To estimate the term Cε,2, it is used the result of Theorem 2.2 that the function η̃ε is bounded

independently of ε to get that,

Cε,2 ≤ C

∫
√
αεW −δ≤|x|̃

LεW
≤√

αεW +δ

(
|(∇− iWA0)ṽ|2 +

1

2ε2
(1− |ṽ|2)2

)
dx .

The de�nition of ṽ and the estimate in (4.2) together yield,

Cε,2 ≤ C(1+ Cε2W)

∫
√
αεW −δ≤|x|̃

LεW
≤√

αεW +δ

(
|(∇− iWA0)v|2 +

1

2ε2
(1− |v|2)2

)
dx

+ CW

∫
√
αεW −δ≤|x|̃

LεW
≤√

αεW +δ

|v|2 dx .

The function χ is equal to 1 in {√αεW − δ ≤ |x|
L̃εW

≤ √
αεW + δ} ⊂ UL. As a consequence

v(x) = fε(ℓ
√
Wx). As is done for the term Cε,1, one gets that,

Cε,2 ≤ C
(
1+ o(1)

)(∫
√
αεW −δ≤|x|̃

LεW
≤√

αεW +δ

dx

)
W ln

1

ε
√
W

≤ CδW ln
1

ε
√
W

. (4.16)

The term Cε,3:

When
√
αεW + δ ≤ |x|

L̃εW
≤ 2L, the function χ is no more constant and the function v is small.

As a consequence, it is not useful to estimate the `Ginzburg-Landau' energy of v along the same

procedure as done before. However, as Theorem 2.1 states, the function η̃ε decays exponentially,
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and this will be the key to estimate the term Cε,3. Thanks to (4.2), the function ṽ satis�es the

uniform inequality |1−|ṽ|2| ≤ 1+O(ε2W). This and the exponential decay of η̃ε in Theorem 2.1

together yield when ε → 0+,

1

2ε2

∫
√
αεW +δ≤|x|̃

LεW
≤2L

η̃4ε(1− |ṽ|2)2 dx ≤ C
1

ε2
exp

(
− δ

ε1/2

)∫
√
a0+1/2≤|x|L≤

√
a0+1

dx = o(1) .

Using a similar reasoning, the kinetic energy term is estimated as follows,∫
√
αεW +δ≤|x|̃

LεW
≤2L

η̃2ε|(∇− iWA0)ṽ|2 dx

≤ C exp

(
− δ

ε1/2

)∫
√
αεW +δ≤|x|̃

LεW
≤2L

(
|(∇− iWA0)v|2 + |∇χ|2|v|2

)
dx

≤ C exp

(
− δ

ε1/2

)
W ln

1

ε
√
W

= o(1) ,

thereby obtaining that Cε,3 = o(1) as ε → 0+.

The term Cε,4:

Recall the de�nition of this term in (4.11) and that the function ṽ = 0 here. As a consequence,

Cε,4 =

∫
|x|L≥

√
a0+1

η̃4ε
2ε2

dx and this is equal to o(1) as ε → 0+ after using the exponential decay

of η̃ε stated in Theorem 2.2.

Conclusion:

Collecting the estimates Cε,4 = o(1), Cε,3 = o(1), (4.16) and (4.14) and inserting them into

(4.7) yields an upper bound of Cε. Inserting this bound into the expression of Gε(ṽ) yields the
upper bound

C0(ε,W) ≤ (1+ Cδ + o(1))W ln
1

ε
√
W

+ o(1) ,

as ε → 0+. This yields (4.6) by taking the successive limits as ε → 0+ and then as δ → 0+.

5 Lower Bound

Suppose that v is a minimizer of the functional Gε introduced in (1.9), and that the rotational

speed W satis�es the assumption of Theorem 1.1. The aim of this section is to write a lower

bound of Gε(v).
The assumption on the rotational speed is still | ln ε| ≪ W ≤ M/ε with 0 < M < 2L.

Consider a positive constant

0 < δ <

√
a0

(
1− M2

4L2

)1/4

and the following subset of DεW,

Uδ = {x ∈ R2 : |x|
L̃εW

≤
√
αεW − δ} ,

where αεW and L̃εW are introduced in (2.2).

Recall the lattice of squares Kj introduced in Section 4. The parameters ℓ and hex are still as

in (4.1). Put

J ′ = {j : Kj ⊂ Uδ} . (5.1)
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There holds the obvious lower bound,∫
R2

(
η̃2ε|(∇− iWA0)v|2 +

η̃4ε
ε2
(1− |v|2)2

)
dx

≥
∫
Uδ

(
η̃2ε|(∇− iWA0)v|2 +

η̃4ε
2ε2

(1− |v|2)2
)

dx

≥
∑
j∈J ′

∫
Kj

(
η̃2ε|(∇− iWA0)v|2 +

η̃4ε
2ε2

(1− |v|2)2
)

dx .

(5.2)

Lower bound of the `Ginzburg-Landau' energy:

For each j ∈ J ′, it will be obtained a lower bound of the term,

Gε(v,Kj) =

∫
Kj

(
η̃2ε|(∇− iWA0)v|2 +

η̃2ε
2ε2

(1− |v|2)2
)

dx . (5.3)

By Theorem 2.2, one can write for an arbitrary point xj in Kj ,

η̃2ε(x) ≥ (1− Cε1/3)pεW(x) ≥
(
1− Cε1/3 − C

ℓ
√
W

)
pεW(xj) in Kj ,

and consequently,

Gε(v,Kj) ≥
(
1− Cε1/3 − C

ℓ
√
W

)∫
Kj

(
pεW(xj)|(∇− iWA0)v|2 +

pεW(xj)2

2ε2
(1− |v|2)2

)
dx .

(5.4)

Let yj be the center of the square Kj , K = (−1/2, 1/2)2, �ε = ℓ
√
W ε and hex = 1/ℓ2. Using

the re-scaled function f(x) = v(yj + ℓ
√
Wx) , (x ∈ K) , it is possible to express (5.4) in the

following form,

Gε(v,Kj) ≥
(
1− Cε1/3 − C

ℓ
√
W

)
pεW(xj)

∫
K

(
|(∇− ihexA0)f |2 +

pεW(xj)

2 �ε2
(1− |f |2)2

)
dx .

(5.5)

Notice that the term pεW(xj) remains in a constant interval [λ1, λ2] as j ∈ J ′ and ε vary. Also,
as ε → 0, �ε and hex satisfy | ln �ε| ≪ hex ≪ �ε−2. Thus, it is possible to bound the integral on the

right side of (5.5) by the ground state energy m0(hex, �ε) in (3.5), which is estimated from below

in Theorem 3.1. Therefore, it is inferred from (5.5),

Gε(v,Kj) ≥
(
1+ o(1)

)
pεW(xj)hex ln

1

�ε
√
hex

=
(
1+ o(1)

)
pεW(xj)

1

ℓ2
ln

1

ε
√
W

. (5.6)

Inserting this into (5.3) and then into (5.2) yields,∫
R2

(
η̃2ε|(∇− iWA0)v|2 +

η̃2ε
2ε2

(1− |v|)2
)

dx ≥
(
1+o(1)

)
W ln

1

ε
√
W

∑
j∈J ′

1

ℓ2W
pεW(xj). (5.7)

The sum on the right side of (5.7) is estimated as follows. As ε → 0+, the term
∑
j∈J ′

1

ℓ2W
a(xj)

is a Riemann sum. Select the points (xj) such that the sum is an upper Riemann sum. As a

consequence, there holds,∑
j∈J ′

pεW(xj)hex ln
1

�ε
√
hex

= W ln
1

ε
√
W

∑
j∈J ′

1

ℓ2W
pεW(xj)

= W ln
1

ε
√
W

∫
U2δ

pεW(x) dx .
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Therefore, it results from (5.7),∫
R2

(
η̃2ε|(∇− iWA0)v|2 +

η̃2ε
2ε2

(1− |v|)2
)

dx ≥ W ln
1

ε
√
W

(∫
U2δ

pεW(x) dx

)
. (5.8)

Recall that the function pεW in (2.2) satis�es

∫
pεW(x)>0

pεW(x) dx = 1. Thus,

∫
U2δ

pεW(x) dx =

∫
pεW(x)>0

pεW(x) dx−
∫
pεW(x)>2δ

pεW(x) dx ≥ 1− Cδ .

That way, (5.8) becomes,∫
R2

(
η̃2ε|(∇− iWA0)v|2 +

η̃2ε
2ε2

(1− |v|)2
)

dx ≥ W ln
1

ε
√
W

(1− Cδ) . (5.9)

Conclusion:

It is obtained by collecting the estimate in (5.9),

C0(ε,W) ≥ W ln
1

ε
√
W

(1− Cδ) .

As a consequence, it is obtained by taking the limit as ε → 0+,

lim inf
ε→0+

C0(ε,W)

W ln 1

ε
√
W

≥ 1− Cδ .

By Taking δ → 0+, it results the lower bound:

lim inf
ε→0+

C0(ε,W)

W ln 1

ε
√
W

≥ 1 .

The conclusion of this section and Section 4 �nishes the proof of Theorem 1.1.

Remark 5.1. If U ⊂ DεW and u ∈ H1(U), de�ne the local energy:

Eε(u;U) =

∫
U

(
η̃2ε|(∇− iA0)u|2 +

η̃4ε
2ε2

(1− |u|2)2
)

dx .

The analysis of this section allows one to prove the following. If v is a minimizer of (1.11),

U ⊂ DεW is an open set, U ⊂ DεW, |∂U | = 0, and U is independent of ε and W, then,

Eε(v;U) ≥ W ln
1

ε
√
W

(∫
U

pεW(x) dx+ o(1)

)
as ε → 0+ .

Combine this lower bound with the upper bound (4.6) to obtain the `local' energy asymptotics:

Eε(v;U) = W ln
1

ε
√
W

(∫
U

pεW(x) dx+ o(1)

)
as ε → 0+ .

6 Vortices and their density

The assumption on the rotational speed is as in Theorem 1.1. Recall the de�nition of the domain

D in (1.4). Let β > 0. Suppose that U is an open set inR2 satisfying the properties in Remark 5.1

and

dist(U, ∂DεW) ≥ β .

According to Theorem 2.2, the function η̃ε satis�es the pointwise bound η̃ε ≥ c0(U) > 0 in U .

The constant c0(U) depends only on U .
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Let v be a minimizer of (1.11). By borrowing the results of [17, 18], it will be given some

details regarding the location and `density' of the zeros of the minimizer v inside U .

Consider the lattice of squares (Kj) generated by the square K = (−δ, δ) × (−δ, δ), where

δ = 1
2

(
| ln ε|/W

)−1/4
. Suppose that xj is the center of the square Kj .

By Theorem 3.1, there exists a positive function g(ε) such that, as ε → 0+, g(ε) ≪ 1 and

GLε(v;Kj) :=

∫
Kj

(
|(∇− iWA0)v|2 +

η̃2ε(xj)

2ε2
(1− |v|2)2

)
dx ≥

(
1− g(ε)

)
Wδ2 ln

1

ε
√
W

.

One distinguishes between good squares and bad squares in U ; good squares are those satisfying

that

GLε(v;Kj) :=

∫
Kj

(
|(∇− iWA0)v|2 +

η̃2ε(xj)

2ε2
(1− |v|2)2

)
dx ≤

(
1+

√
g(ε)

)
Wδ2 ln

1

ε
√
W

,

while bad squares satisfy the reverse condition that GLε(v;Kj) > Wδ2
(
1 +

√
g(ε)

)
ln 1

ε
√
W
.

The number of bad squares Nb is small compared to the number of good squares Ng, namely

Nb ≪ Ng as ε → 0+. Proposition 5.1 in [18] gives one the following. There exists a constant

C > 0 and a positive function �g(ε) such that, if Kj is a good square then there exists a �nite

family of discs
(
B(ai,j , ri,j)

)
i
with the following properties,

(i)
∑
i

ri,j ≤ CW−1/2 ;

(ii) {x ∈ Kj : |v(x)| < 1
2
} ⊂

∪
i

B(ai,j , ri,j) ;

(iii) If di,j is the winding number of v/|v| when B(ai,j , ri,j) ⊂ Kj and 0 otherwise, then,∑
i

di,j ≥ Wδ2
(
1− �g(ε)

)
and

∑
i

|di,j | ≤ Wδ2
(
1+ �g(ε)

)
.

(iv) �g(ε) ≪ 1 as ε → 0+.

Let Jg be the collection of all indices j such that Kj is a good square and Kj ⊂ U . De�ne the

measure

µε =
∑
i,j

j∈Jg

di,jδai,j , (6.1)

where δai,j is the dirac measure supported at ai. The measure µε is called the vorticity measure

in U : It indicates the existence of vortices (when µε ̸= 0), its support indicates the location of

vortices, and its norm indicates their density.

Notice that the aforementioned construction indicates the location and density of vortices for

minimizers of (1.5), since v = u/η̃ε and u is a minimizer of (1.5). Thus, v and u have the same

zeros (vortices).

It is possible to prove that:

Theorem 6.1. Under the assumption of Theorem 1.1, the vorticity measure in U ful�lls the weak

convergence:

1

W
µε ⇀ 1U dx as ε → 0+,

where dx is the Lebesuge measure in R2 and 1U the characteristic function of U .

Proof. Notice that the upper bound in (3) and the fact that the number of indices j is asymptot-

ically proportional to δ−2 together yield that W−1
∑

i,j |di,j | is bounded independently of ε and

W. Consequently, by passing to a subsequence, one can suppose that W−1µε converges weakly

to a measure µ. It suf�ces to prove that µ = 1U dx.
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Since the number of good squares satis�es Ng × δ2 = |U | + o(1) as ε → 0+, then the two-

sided estimate of
∑

i,j di,j in (3) above leads to the following. If S is an open set in U and

|∂S| = 0, then

W|S|
(
1+ o(1)

)
≤
∑
i,j

di,j ≤
(
1+ o(1)

)
µε(S)

≤
(
1+ o(1)

)∑
i,j

|di,j | ≤ W|S|
(
1+ o(1)

)
, as ε → 0+ .

This proves that W−1µε converges weakly to the Lebesgue measure restricted to U .
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