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Abstract. The antipodal graph of a graph G, denoted by A(G), is the graph on the same

vertices as ofG, two vertices being adjacent if the distance between them is equal to the diameter

of G. A graph is said to be antipodal if it is the antipodal graph A(H) of some graph H . In

this paper, we consider four kinds of graph products and introduce the antipodal graph of each

product with respect to the antipodal of their factors.

1 Introduction

Let G be a simple graph with vertex set V = V (G) and edge set E = E(G). The order and size

of the graph G are n(G) = |V | and m(G) = |E|, respectively. If E = ∅ then G is called empty

graph. The open neighborhood of a vertex v ∈ V (G) is NG(v) = {u ∈ V |uv ∈ E}. The degree
of a vertex v ∈ V (G) is degG(v) = |NG(v)|. The minimum and maximum degree of a graph G

are denoted by δ(G) and D(G), respectively. Let u and v be two vertices of G. If there exists a

uv-path in G, then the distance dG(u, v) between u and v is the length of the shortest uv-path
in G. If there is no uv-path in G, then we de�ne dG(u, v) = ∞. The eccentricity of a vertex u
is ecc(u) = max{dG(u, v)|v ∈ V (G)}, and the diameter of G is diam(G) = max{ecc(v)|v ∈
V (G)}. We use [15] for terminology and notation not de�ned here.

In 1971 Smith [13] initiated the concept of antipodal graph of a graph G as the graph A(G)
having the same vertex set as that of G and such that vertices are adjacent if they are at the

distance of diam(G) in G. A graph is antipodal if it is the antipodal graph A(H) of some graph

H . The conditions on G for A(G) = G and A(G) = G and many other results are discussed in

[3] and [2]. Acharya et. al. have studied self-antipodal graphs in [1].

There is a signi�cant number of graph operations like complement of a graph as a unary

operation and graph products as a binary operation. As stated in many references, for example

in [5], there are four kinds of fundamental graph products: the Cartesian product, the direct

product, the strong product, and the lexicographic product. In each case, the product of graphs

G and H is a graph G(V,E) whose vertex set is the Cartesian product V (G) × V (H) of sets.
However, each product has different rules for adjacency. The Cartesian product of G and H is

the graph G�H for which two vertices (g, h) and (g′, h′) are adjacent precisely if g = g′ and
hh′ ∈ E(H), or gg′ ∈ E(G) and h = h′. The graphs G and H are called factors of the product

G�H . The direct product of G and H is the graph G × H for which two vertices (g, h) and
(g′, h′) are adjacent precisely if gg′ ∈ E(G) and hh′ ∈ E(H). The strong product of G and H
is the graph G �H for which the edge set is de�ned as E(G �H) = E(G�H) ∪ E(G ×H).
Finally, the lexicographic product of G and H is the graph G ◦H for which two vertices (g, h)
and (g′, h′) are adjacent if gg′ ∈ E(G), or g = g′ and hh′ ∈ E(H). As shown in [6] there are

256 different possibilities to de�ne a graph product based on different rules for adjacency. For

instance, the co-normal product of G and H , denoted by G ⊙H , is that one of them for which

vertices (g, h) and (g′, h′) are adjacent if gg′ ∈ E(G) or hh′ ∈ E(H).
In the literature it is well known how many of the important graph invariants propagate under

product formations. These salient structural features have been studied extensively. For example,

Specapan [14] has carried out research in connectivity of Cartesian product of graphs, and Li et.
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al [11] have shown that the lexicographic product of vertex transitive graphs is vertex transitive,

and the lexicographic product of edge transitive graphs is edge transitive. For more information

the reader may also consult [4, 5, 8, 9, 12].

Motivated by the above results, in this paper we are concerned with antipodal graphs and their

different types of products with respect to the antipodal graphs of their factors. Besides, in some

cases we will prove that the antipodal property can be transferred from two factors to their prod-

uct.

The following theorem has been proved by Aravamudhan et. al in [3].

Theorem 1.1. A graph G is an antipodal graph if and only if it is the antipodal graph of its

complement.

It is easily seen that the next two corollaries could be deduced by Theorem 1.1.

Corollary 1.2. A graphG is an antipodal graph if and only if diam(G) = 2 orG is disconnected

and its components are complete graphs.

Corollary 1.3. If G is disconnected, then A(G) is of diameter not bigger than 2 and the compo-

nents of A(G) are complete graphs.

The proof of the following four theorems can be found in [5], [7] and [10].

Theorem 1.4. If (g, h) and (g′, h′) are two vertices of a Cartesian product G = G�H , then

dG((g, h), (g′, h′)) = dG(g, g′) + dH(h, h′).

Theorem 1.5. Suppose (g, h) and (g′, h′) are two vertices of a direct product G = G × H ,

and n is an integer for which G has a gg′-walk of length n and H has a hh′-walk of length n.
Then G has a walk of length n from (g, h) to (g′, h′). The smallest such n (if it exists) equals

dG((g, h), (g′, h′)). If no such n exists, then dG((g, h), (g′, h′)) = ∞.

Theorem 1.6. If (g, h) and (g′, h′) are two vertices of a strong product G = G � H , then

dG((g, h), (g′, h′)) = max{dG(g, g′), dH(h, h′)}.

Theorem 1.7. If (g, h) and (g′, h′) are two vertices of a lexicographic product G = G ◦H , then

dG((g, h), (g
′, h′)) =


dG(g, g′) if g ̸= g′,

dH(h, h′) if g = g′ and degG(g) = 0,

min{2, dH(h, h′)} if g = g′and degG(g) ̸= 0.

2 Cartesian Product

LetG andH be two simple graphs and G = G�H . In this section we present the antipodal graph

of G by the antipodal graphs of G andH and then we will prove that G is an antipodal graph. By

Theorem 1.4 the proof of the following proposition is straightforward.

Proposition 2.1. If both graphs G and H are connected and G = G�H , then diam(G) =
diam(G) + diam(H); otherwise, diam(G) = ∞.

Our next aim is to characterize the antipodal of the Cartesian product of two graphs.

Theorem 2.2. Let A(G) and A(H) be the antipodal of the graphs G and H , respectively, and

let A(G) be the antipodal of the graph G = G�H . If both graphs G and H are connected, then

A(G) = A(G)× A(H). If only one of the factors of G is connected, then A(G) is the co-normal

product of the antipodal of the disconnected factor and the empty graph with the same order of

the connected factor. Finally, if both of the factors are disconnected, thenA(G) = A(G)⊙A(H).

Proof. If both G and H are connected, then they have �nite diameters and by Proposition 2.1,

diam(G) < ∞. Obviously, two vertices (g, h) and (g′, h′) of G are adjacent in A(G) if and only

if dG((g, h), (g′, h′)) = diam(G) + diam(H). By Theorem 1.4,

dG((g, h), (g
′, h′)) = dG(g, g

′) + dH(h, h′) ≤ diam(G) + diam(H).
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Therefore, two vertices (g, h) and (g′, h′) are adjacent in A(G) if and only if dG(g, g′) =
diam(G) and dH(h, h′) = diam(H). Hence, gg′ ∈ E(A(G)) and hh′ ∈ E(A(H)). Thus,

(g, h)(g′, h′) ∈ E(A(G)×A(H)).
Now, suppose that only one of the graphs is connected. Without loss of generality, let G be a

disconnected and H be a connected graph. By Proposition 2.1, diam(G) = ∞ and two vertices

(g, h) and (g′, h′) of G are adjacent in A(G) if and only if (g, h)(g′, h′)-path in G does not exist.

On the other hand, for all h, h′ ∈ V (H), dH(h, h′) is �nite. Therefore, for any two disjoint

vertices g and g′ in V (G), we have dG(g, g′) = ∞ and gg′ ∈ E(A(G)). By the de�nition of the

co-normal product, it is easy to verify that (g, h)(g′, h′) ∈ E(A(G)⊙KV (H)).
Finally, let both G and H be disconnected. Clearly, two vertices (g, h) and (g′, h′) of G are

adjacent in A(G) if and only if g and g′ are adjacent in A(G) or h and h′ are adjacent in A(H).
Thus, (g, h)(g′, h′) ∈ E(A(G)⊙A(H)).

In the next theorem we give a necessary and suf�cient condition when the Cartesian product

of two non-empty connected graphs is an antipodal graph.

Theorem 2.3. LetG andH be two non-empty connected graphs. Then G = G�H is an antipodal

graph if and only if n(G) = n(H) = 2 or n(G), n(H) ≥ 3.

Proof. If n(G) = n(H) = 2, then G ≃ C4 and G ≃ 2P2. It is clear that G = A(G). Now, let
n(G), n(H) ≥ 3. If two vertices (g, h) and (g′, h′) are adjacent in G, then

d
G
((g, h), (g′, h′)) ≥ 2.

Hence, diam(G) ≥ 2. By the assumption, since both G and H are graphs of order at least three,

there exists a vertex (g′′, h′′) in V (G) that is not adjacent to neither (g, h) nor (g′, h′). Hence,
(g′′, h′′) is a common neighbor of (g, h) and (g′, h′) in G, and diam(G) ≤ 2. Thus, diam(G) = 2

and Theorem 1.1 completes the proof of this part.

Now, we prove the converse. Let G be an antipodal graph. By Theorem 1.1, G = A(G). Since
G and H are non-empty graphs, n(G), n(H) ≥ 2. So, it is enough to show that n(G) = 2 if and

only if n(H) = 2. Let n(H) = 2 and on the contrary suppose that n(G) > 2. Without loss of

generality we may suppose that n(G) = 3 i.e. V (G) = {g, g′, g′′} and V (H) = {h, h′}. There
are two general cases:

Case I. G ≃ P3 and g ∼ g′ ∼ g′′. Then G is a connected graph and diam(G) = 3. This is a

contradiction by Corollary 1.2.

Case II. G ≃ K3. Then G ≃ C6 and so diam(G) = 3. Again this is a contradiction by Corollary 1.2.

3 Strong Product

Let G and H be two simple graphs and G = G � H be the strong product of G and H . In this

section we present the antipodal graph of G by the antipodal graphs of G and H . For avoiding

triviality one can assume that the diameters of G and H are not less than two.

Proposition 3.1. For two connected graphs G and H ,

diam(G�H) = max{diam(G), diam(H)}.

Proof. By Theorem 1.6 the proof is straightforward.

In the next theorem we characterize the antipodal graph of the strong product of two graphs.

Theorem 3.2. Let A(G) and A(H) be the antipodal of the graphs G and H , respectively, and

let A(G) be the antipodal of the graph G = G � H . If diam(G) = diam(H), then A(G) =
A(G) ⊙ A(H); otherwise, the antipodal of G is the co-normal product of the antipodal of the

factor of G with the larger diameter and the empty graph with the same order of the other factor.



ANTIPODAL OF GRAPH PRODUCTS 415

Proof. First, suppose that diam(G) = diam(H) = d. Clearly by Proposition 3.1, diam(G) = d.
Let (g, h) and (g′, h′) be two vertices of V (G). Obviously, (g, h)(g′, h′) ∈ E(A(G)) if and only

if g is adjacent to g′ in A(G) or h is adjacent to h′ in A(H). In other words, by the de�nition of

co-normal product, (g, h)(g′, h′) ∈ E(A(G)⊙A(H)). Now, let diam(G) ̸= diam(H). Without

loss of generality, suppose that diam(G) > diam(H). Clearly, by Proposition 3.1, diam(G) =
diam(G), and it is easy to verify that two vertices (g, h) and (g′, h′) of V (G) are adjacent in

A(G) if and only if dG((g, h), (g′, h′)) = dG(g, g′). Hence, A(G) = A(G)⊙KV (H).

Theorem 3.3. Let G and H be two connected graphs and G = G�H . If both of the factors of

G have diameter greater than two, then G is an antipodal graph.

Proof. One can check that if diam(G) ≥ 3, then for each a ∈ V (G), there is b ∈ V (G) such that
dG(a, b) ≥ 2. Let (x, y) ̸∼ (u, v) in G. Then there is (α, β) ∈ V (G) such that dG(x, α) ≥ 2 and

dH(v, β) ≥ 2. So, (x, y) ̸∼ (α, β) ̸∼ (u, v) in G. Thus, (x, y) ∼ (α, β) ∼ (u, v) in G and hence,

diam(G) = 2. Therefore, G is an antipodal graph.

Remark 3.4. For each (g, h) ∈ V (G�H),

degG�H((g, h)) = degG(g) + degH(h) + degG(g)degH(h).

Theorem 3.5. If G = G�H is an antipodal graph, then G or H has no universal vertex.

Proof. On the contrary, suppose that deg(g) = |G| − 1 and deg(h) = |H| − 1. By Remark 3.4,

deg((g, h)) = |G| − 1, thus (g, h) is an isolated vertex in G. Hence, diam(G) = ∞. Now, let

g′ ∈ V (G) and h′, h′′ ∈ V (H) be such that dH(h′, h′′) = 2. Then h′ ∼ h ∼ h′′ in H . Thus,

(g′, h′) ∼ (g, h′) and (g, h′) ̸∼ (g′, h′′) ̸∼ (g′, h′) in G. Hence, (g, h′) ∼ (g′, h′′) ∼ (g′, h′) in G.
Thus, d

G
((g, h′), (g′, h′)) = 2 ̸= ∞. This is a contradiction since G is an antipodal graph.

4 Lexicographic Product

Let G and H be two simple graphs and G = G ◦ H be the lexicographic product of G and H .

In this section we present the antipodal graph of G by the antipodal graphs of G and H . For

avoiding triviality one can assume that the diameters of G and H are not less than two. By

Theorem 1.7 we have the following proposition.

Proposition 4.1. If G and H are two simple graphs and G = G ◦H is the lexicographic product

of G and H , then

diam(G) =

{
diam(G) if diam(G) ≥ diam(H) or δ(G) ≥ 1,

diam(H) otherwise.

The next theorem describes the antipodal graph of the lexicographic product of two graphs.

Theorem 4.2. If G = G ◦H , then

A(G) =


A(G)⊙KV (H) if diam(G) > diam(H) ≥ 2 or δ(G) ≥ 1,

G[S]×A(H) if diam(H) > diam(G) ≥ 2 and δ(G) = 0,

(A(G)⊙KV (H)) ∪ (G[S]×A(H)) diam(G) = diam(H) > 2,

where S ⊆ V (G) is the set of isolated vertices in V (G), and G[S] is the induced subgraph by S.

Proof. Let (g, h) and (g′, h′) be two vertices of V (G). If diam(G) > diam(H), then by

Proposition 4.1, (g, h)(g′, h′) ∈ E(A(G)) if and only if two vertices g and g′ are adjacent

in A(G), and h and h′ can be any two arbitrary vertices in V (H). Hence, by the de�nition

of co-normal product, (g, h)(g′, h′) ∈ E(A(G) ⊙ KV (H)). If δ(G) ≥ 1, then, by Proposi-

tion 4.1, (g, h)(g′, h′) ∈ E(A(G)) if and only if dG((g, h), (g′, h′)) = diam(G). In this case,

g ̸= g′ because if g = g′, then the distance between (g, h) and (g′, h′) would not be more than

two and could not be equal to diam(G), which is a contradiction. Thus, dG((g, h), (g′, h′)) =
dG(g, g′) = diam(G) if and only if g ̸= g′ and hence, (g, h)(g′, h′) ∈ E(A(G)⊙KV (H)). Now,



416 Amir Assari, Mehdi Rahimi and Fatemeh Ramezani

let diam(G) < diam(H) and let the graph G have some isolated vertices, i.e. S ̸= ∅. Then,

by Proposition 4.1, two vertices (g, h) and (g′, h′) of V (G) are adjacent in A(G) if and only if

g = g′ is an isolated vertex and dH(h, h′) = diam(H). Hence, (g, h)(g′, h′) ∈ E(G[S]×A(H)).
Finally, if diam(G) = diam(H), then by Proposition 4.1, (g, h)(g′, h′) ∈ E(A(G)) if and

only if g = g′ is an isolated vertex in V (G) and dH(h, h′) = diam(H), or g ̸= g′ and
dG(g, g′) = diam(G). Hence, (g, h)(g′, h′) ∈ E((A(G) ⊙ KV (H)) ∪ (G[S] × A(H))). This

completes the proof.

Theorem 4.3. Let G and H be two connected graphs and G = G ◦ H . If diam(G) is greater

than three, then G is an antipodal graph.

Proof. First, we show that diam(G) = 2. Let (a, b) ̸∼ (u, v) be two vertices in G. Then (a, b) ∼
(u, v) in G. According to the de�nition of lexicographic product, there are two cases:

Case I. Let a = u and b ∼ v in H . Since diam(G) > 3, for any vertex a ∈ V (G) there is some

vertex α ∈ V (G) such that d(a, α) ≥ 2. Hence, u = a ̸∼ α. Also, (a, b) ̸∼ (α, b) ̸∼ (a, v) =
(u, v) in G. Thus (a, b) ∼ (α, b) ∼ (a, v) = (u, v) in G and therefore d

G
((a, b), (u, v)) = 2.

Case II. Let a ∼ u in G. If there is vertex α ∈ V (G) such that dG(a, α), dG(u, α) ≥ 2, then

(a, b) ̸∼ (α, b) ̸∼ (u, v) in G and our claim follows. Otherwise, for each β ∈ V (G) \
{a, u}, β ∈ NG(a) ∪ NG(u). Hence, diam(G) ≤ 3, which is a contradiction. Thus,

d
G
((a, b), (u, v)) = 2.

Therefore, diam(G) = 2. Hence, the distance between any two non-adjacent vertices in G is

equal to the diameter of G and the same two vertices are adjacent in G. Thus, by Theorem 1.1, G

is an antipodal graph.

Theorem 4.4. LetG be a connected graph. If G = G◦H is an antipodal graph, then diam(G) ̸=
3 or G has at least one cycle.

Proof. Let G be an antipodal graph. Then, by Theorem 1.2, diam(G) = 2 or G is a disconnected

graph. If G is not a connected graph, then by Theorem 1.3, diam(A(G)) ≤ 2, hence diam(G) ≤
2. By Proposition 4.1, diam(G) = diam(G) = 2. Let diam(G) = 2. If G has at least one

cycle, then then there is nothing to prove. So, let us assume that diam(G) = 3 and let a ∼ b
in G. Then for each h ∈ H , (a, h) ̸∼ (b, h) in G. Since diam(G) = 2, there is a vertex

(x, y) ∈ N
G
((a, h), (b, h)). Hence, (a, h) ̸∼ (x, y) ̸∼ (b, h) in G. As a consequence, a ̸∼ x ̸∼ b

in G. Since G is a tree of diameter 3, there is a path of length two between a, x or b, x. Let

a ∼ b ∼ u ∼ x in G. Then (b, h) ∼ (x, h) ∼ (a, h) ∼ (u, h) in G. Since diam(G) = 2,

there is (g, l) ∈ N
G
((b, h), (u, h)). Again we have g ̸∈ NG(b) ∪ NG(u). Thus, there is just one

path of length at least two between b, g or u, g. Therefore, dG(a, g) ≥ 4 or dG(x, g) ≥ 4. This

contradiction completes the proof.

5 Co-normal Product

Throughout this section, we assume that G and H are two simple fnite graphs and we are going

to describe the antipodal graph of G = G⊙H .

Proposition 5.1. If G is the co-normal product of two connected graphs G and H , then

diam(G) =

{
1 if G and H are complete graphs,

2 otherwise.

Proof. First, suppose that G and H are complete graphs. Then for each g ̸= g′ ∈ V (G) and
h ̸= h′ ∈ V (H), (g, h) ∼ (g′, h′) and (g, h) ∼ (g, h′). Hence, G is a complete graph. If G ≃ Kn

and H is not a complete graph, then for each g ̸= g′ ∈ V (G) and h ̸∼ h′ ∈ V (H), we have

(g, h) ̸∼ (g, h′). But (g, h) ∼ (g′, h) ∼ (g, h′) in G. So diam(G) = 2. Now, let G ̸≃ Kn and

H ̸≃ Km. Let also g ̸= g′ ∈ V (G) and h ̸= h′ ∈ V (H) be such that g ̸∼ g′ and h ̸∼ h′. If

d = dG(g, g′) and d′ = dH(h, h′), then the following two paths exist respectively in G and H:

g ∼ x1 ∼ x2 ∼ . . . ∼ xd ∼ g′
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h ∼ y1 ∼ y2 ∼ . . . ∼ yd′ ∼ h′

As a consequence, (g, h) ∼ (x1, yd′) ∼ (g′, h′) and (g, h) ∼ (x1, yd′) ∼ (g, h′) in G. Hence,

diam(G) = 2.

Now, we are ready to prove the following theorem.

Theorem 5.2. LetG andH be two non-complete graphs. If G = G⊙H andA(G) is the antipodal
graph of G, then

A(G) = G×H.

Proof. Let (g, h) and (g′, h′) be two vertices of V (G). By Proposition 5.1, we have diam(G) =
d((g, h), (g′, h′)) if and only if (g, h) is not adjacent to (g′, h′) in G. By the de�nition of the

co-normal product, (g, h) is not adjacent to (g′, h′) in G if and only if g ̸∼ g′ in G and h ̸∼ h′ in

H , equivalently g ∼ g′ in G and h ∼ h′ in H . Therefore dG((g, h), (g′, h′)) = diam(G) if and
only if (g, h) ∼ (g′, h′) in G×H.

Lemma 5.3. For any graphs G and H , G⊙H ≃ G�H .

Proof. As we know, for each g, g′ ∈ V (G) and h, h′ ∈ H , (g, h) ∼ (g′, h′) in G⊙H if and

only if (g, h) ̸∼ (g′, h′) in G ⊙ H . Hence, (g, h) ∼ (g′, h′) in G⊙H if and only if one of the

following statements is true:

• g = g′ and h ̸∼ h′ in H;

• h = h′ and g ̸∼ g′ in G;

• g ̸∼ g′ and h ̸∼ h′ in G and H , respectively.

Hence, (g, h) ∼ (g′, h′) in G⊙H if and only if one of the following is true:

• g = g′ and h ∼ h′ in H;

• h = h′ and g ∼ g′ in G;

• g ∼ g′ and h ∼ h′ in G and H , respectively.

Therefore, (g, h) ∼ (g′, h′) in G⊙H if and only if (g, h) ∼ (g′, h′) in G�H .

Corollary 5.4. For any graphs G and H , diam(G⊙H) = max{diam(G) , diam(H)}.

Proof. If G and H are two connected graphs, then the result follows from Proposition 3.1 and

Lemma 5.3. Let G be a disconnected graph. Then there are g, g′ ∈ V (G) such that dG(g, g
′) =

∞. Hence, for each h ∈ H , dG⊙H((g, h), (g′, h)) = ∞. Thus, diam(G⊙H) = ∞. This

completes the proof.

Theorem 5.5. The graph G⊙H is an antipodal graph if and only if G and H are two antipodal

graphs and diam(G) = diam(H).

Proof. Let G = G ⊙H and G and H be two antipodal graphs such that diam(G) = diam(H).
Then, by Corollary 5.4, daim(G) = diam(G) = diam(H). Let (g, h) ∼ (g′, h′) in G. There are
two cases:

Case I. g ∼ g′ in G and h ̸∼ h′ in H or g ̸∼ g′ in G and h ∼ h′ in H . Without loss of generality

suppose that g ∼ g′ in G and h ̸∼ h′ in H . Hence, dG(g, g
′) = diam(G). By Lemmas 1.6

and 5.3,

d
G
((g, h), (g′, h′)) = max{diam(G) , 1} = diam(G) = daim(G).

Case II. g ∼ g′ in G and h ∼ h′ inH . Then dG(g, g
′) = diam(G) and dH(h, h′) = diam(H). Thus

d
G
((g, h), (g′, h′)) = max{diam(G) , diam(H)} = daim(G).
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Therefore, G is an antipodal graph.

Now, let G be an antipodal graph. We will show that diam(G) = diam(H) and that both factors
of G are antipodal graphs. Let g ∼ g′ in G. Then for each h ∈ V (H), (g, h) ∼ (g′, h) in G. Since
G is an antipodal graph,

diam(G) = d
G
((g, h), (g′, h)) = max{dG(g, g

′) , 0} = dG(g, g
′).

With similar argument for each h1 ∼ h2 in H and u ∈ G we have

diam(G) = d
G
((u, h1), (u, h2)) = max{0 , dH(h1, h2)} = dH(h1, h1).

Let diam(G) = diam(G). Then diam(H) ≤ diam(G) and diam(G) = dH(h1, h1) ≤ diam(H).
Hence, diam(H) = diam(G) = diam(G). Also, dG(g, g

′) = diam(G) and dH(h1, h2) =
diam(H). Therefore, G and H are two antipodal graphs.
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