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Abstract By using umbral calculus and umbral algebra methods, we derive several interest-

ing identities and relations related to the modi�ed and uni�cation of the Bernoulli, Euler and

Genocchi polynomials and numbers and the generalized (β-) Stirling numbers of the second

kind. Finally, we give some applications and remarks related to these numbers and polynomials.

Introduction, de�nitions and preliminaries

Throughout this paper, we use the following standard notations: LetN, Z,Q,R,R+ andC denote

the sets of positive integers, integers, rational numbers, real numbers, positive real numbers and

complex numbers, respectively, and N0 := N ∪ {0}. We also assume that log z denotes the

principal branch of the multi-valued function log z with the imaginary part ℑ(log z) constrained
by −π < ℑ(log z) < π. For all 0 ≤ k ≤ n, let (n)k = k!(nk) (cf. [17]).

The uni�cation of the Bernoulli, Euler and Genocchi polynomials is de�ned by Ozden [6]:

gβ(x, t; k, a, l) :=
21−ktketx

βlet − al
=

∞∑
n=0

Yn,β(x; k, a, l)
tn

n!
, (0.1)

where if β = a, then |t| < 2π and if β ̸= a, k ∈ N0, a, l ∈ C\{0}, then |t| < l log
(

β
a

)
.

Remark 0.1. Note that Equation (0.1) with x = 1 reduces to the generating functions for the

uni�cation of the Bernoulli, Euler and Genocchi numbers.

Remark 0.2. Using the special values of a, l, k and β in (0.1), the polynomials Yn,β(x; k, a, l)
provide us with a generalization and uni�cation of the Apostol-Bernoulli polynomials, Apostol-

Euler polynomials and Apostol-Genocchi polynomials, respectively:

Bn(x, β) = Yn,β(x; 1, 1, 1),

En(x, β) = Yn,β(x; 0,−1, 1)

and

Gn(x, β) = 2Yn,β(x; 1,−1, 1)

(cf. [1]-[19] and the references cited in each of these earlier works). Moreover, for the classical

Bernoulli polynomials Bn(x), the classical Euler polynomials En(x) and the classical Genocchi
polynomials Gn(x), one easily has

Bn(x) = Bn(x, 1),

En(x) = En(x, 1)
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and

Gn(x) = Gn(x, 1).

Substituting x = 0, one also has the classical Bernoulli numbers Bn, the classical Euler numbers

En and the classical Genocchi numbers Gn:

Bn = Bn(0),

En = 2nEn(
1

2
),

and

Gn = Gn(0)

(cf. [1]-[19] and the references cited in each of these earlier works).

In [9], Ozden and Simsek modi�ed the polynomials Yn,β(x; k, a, l) as follows:

f(t; k, a, b, β) =

(
tk21−k

βbt − at

)v

bxt =
∞∑
n=0

Y
(v)
n,β(x, k, a, b)

tn

n!
, (0.2)

where the polynomials Y
(v)
n,β(x, k, a, b) are called modi�cation and uni�cation of the Apostol-type

polynomials of order v. One easily sees that

Y
(v)
n,β(0, k, a, b) = Y

(v)
n,β(k, a, b),

which denotes modi�cation and uni�cation of the Apostol-type numbers of order v, and

Y(v)
n,β(x; k, 1, 1) = Y

(v)
n,β(x, k, 1, e)

which denotes Apostol-type polynomials (cf. [6], [8]).

Ozden and Simsek [9] gave an explicit formula for the polynomials Y
(v)
n,β(x, k, a, b) as follows:

Y
(v)
n,β(x, k, a, b) =

n∑
j=0

(
n

j

)
xn−j (x ln b)

n−j
Y

(v)
j,β (k, a, b).

Ozden and Simsek [9] also gave the following recurrence relation for the numbers Yβ(k, a, b) as
follows:

β (Yβ(k, a, b) + ln b)
n − (Yβ(k, a, b) + ln a)

n
=

{
21−kk! n = k,

0 n ̸= k.

where (Yβ(k, a, b))
m
is replaced by Ym,β(k, a, b).

Remark 0.3. If we substitute k = a = β = v = 1 and b = e into (0.2), we have

Y
(1)
n,1(1, 1, e) = Bn,

where Bn denotes the classical Bernoulli numbers. If we substitute k = 0, a = v = 1, β = −1
and b = e into (0.2), we have

Y
(1)
n,−1

(0, 1, e) = −En,

where En denotes the classical Euler numbers. If we substitute k = a = v = 1, β = −1 and

b = e into (0.2), we have

Y
(1)
n,−1

(1, 1, e) = −1

2
Gn,

where Gn denotes the classical Genocchi numbers.

The generalized β-Stirling type numbers of the second kind are given by the following de�-

nition:
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74 Takao Komatsu and Yilmaz Simsek

De�nition 0.4. (see [13]) Let a, b ∈ R+ (a ̸= b), β ∈ C and v ∈ N0. The generalized λ-Stirling
type numbers of the second kind S(n, v; a, b;β) are de�ned by means of the following generating

function:

fS,v(t; a, b;β) =
(βbt − at)

v

v!
=

∞∑
n=0

S(n, v; a, b;β) t
n

n!
. (0.3)

Substituting a = 1 and b = e into (0.3), we have the β-Stirling numbers of the second kind

S(n, v; 1, e;β) = S(n, v;β)

(cf. [5], [16], [17]). If β = 1, then we get the classical Stirling numbers of the second kind as

follows:

S(n, v; 1) = S(n, v)

(cf. [1]-[19]).

Proof of the following theorem was given by Simsek [15].

Theorem 0.5. We have

S(n, v; a, b;β) = 1

v!

v∑
j=0

(−1)j
(

v

j

)
βv−j (j ln a+ (v − j) ln b)

n
(0.4)

and

S(n, v; a, b;β) = 1

v!

v∑
j=0

(−1)v−j

(
v

j

)
βj (j ln b+ (v − j) ln a)

n
. (0.5)

Remark 0.6. Note that by setting a = 1 and b = e in the assertions (0.4) of Theorem 0.5, we

have the following result:

S(n, v;β) =
1

v!

v∑
j=0

(
v

j

)
βv−j(−1)j (v − j)

n
.

The above relation has been studied by Srivastava [16] and Luo [5]. For β = 1, we have

S(n, v) =
1

v!

v∑
j=0

(
v

j

)
(−1)j (v − j)

n

(cf. [1]-[19]).

De�nition 0.7. ([15]) Let a, b ∈ R+ (a ̸= b), x ∈ R, β ∈ C and v ∈ N0. The generalized array

type polynomials Sn
v (x; a, b;β) are de�ned by means of the following generating function:

gv(x, t; a, b;β) =
1

v!

(
βbt − at

)v
bxt =

∞∑
n=0

Sn
v (x; a, b;β)

tn

n!
. (0.6)

By using (0.6), we have

Sn
v (x; a, b;β) =

1

v!

v∑
j=0

(−1)v−j

(
v

j

)
βj
(
ln
(
av−jbx+j

))n
(0.7)

(cf. [15]).

We here note that the polynomials Sn
v (x; a, b;β) are called the generalized λ-array type poly-

nomials.

Substituting x = 0 into (0.7), we arrive at (0.5):

Sn
v (0; a, b;β) = S(n, v; a, b;β).
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Setting a = β = 1 and b = e in (0.7), we have

Sn
v (x) =

1

v!

v∑
j=0

(−1)v−j

(
v

j

)
(x+ j)

n
,

a result due to Chang and Ha [2, Eq-(3.1)] and Simsek [13]. It is easy to see that S0

0
(x) =

Sn
n(x) = 1, Sn

0
(x) = xn, and for v > n, Sn

v (x) = 0 (cf. [2, Eq-(3.1)]).

Theorem 0.8. ([15]) We have

Sn
v (x; a, b;λ) =

n∑
j=0

(
n

j

)
S(j, v; a, b;λ) (ln bx)n−j

. (0.8)

In this paper, by using umbral calculus and umbral algebra methods, we derive many in-

teresting identities and relations related to the modi�ed and uni�cation of the Bernoulli, Euler

and Genocchi polynomials and numbers and the generalized (β-) Stirling numbers of the second

kind. We also give some applications and remarks related to these numbers and polynomials.

1 Identities on Umbral Calculus and Umbral Algebra

In this section, we give relation between the modi�cation and uni�cation of the Apostol-type

polynomials of order v and the Stirling numbers of the second kind on the umbral calculus and

umbral algebra.

We need some identities of the umbral algebra and calculus. Here we note that the following

formulas and notations are given in work of Roman [11]:

Let P be the algebra of polynomials in the single variable x over the complex number �eld.

Let P ∗ be the vector space of all linear functionals on P . Let ⟨L | p(x)⟩ be the action of a linear
functional L on a polynomial p(x). Let F denote the algebra of formal power series

f (t) =
∞∑
k=0

a
k

k!
tk. (1.1)

Let f ∈ F de�ne a linear functional on P and for all k ∈ N0,

ak =
⟨
f (t) | xk

⟩
. (1.2)

The order o (f (t)) of a power series f (t) is the smallest integer k for which the coef�cient of tk

does not vanish. A series f (t) for which o (f (t)) = 1 is called a delta series. And a series f (t)
for which o (f (t)) = 0 is called a invertible series.

Let f(t), g(t) be in F . Then we have

⟨f(t)g(t) | p (x)⟩ = ⟨f(t) | g(t)p (x)⟩ . (1.3)

For all p (x) in P , we have ⟨
eyt | p (x)

⟩
= p (y) (1.4)

and

eytp (x) = p (x+ y) . (1.5)

The Appell polynomials are de�ned by means of the following generating function

∞∑
k=0

sk (x)

k!
tk =

1

g(t)
ext. (1.6)

(cf. [11]).

Theorem 1.1. ([11, p. 20, Theorem 2.3.6]) Let f (t) be a delta series and let g (t) be an invertible
series. Then there exist a unique sequence sn (x) of polynomials satisfying the orthogonality

conditions ⟨
g(t)f(t)k | sn(x)

⟩
= n!δn,k (1.7)

for all n, k ∈ N0.
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76 Takao Komatsu and Yilmaz Simsek

Let

sn (x) = g(t)−1xn, (1.8)

derivative formula

tsn (x) = s
′

n (x) = nsn−1 (x) . (1.9)

Proofs of (1.8)-(1.9) were given by Roman [11, p. 20, Theorem 2.3.6].

By (1.8), we easily obtain the following lemma.

Lemma 1.2. Let n ∈ N0. The following relationship holds true:

Y
(v)
n,β(x; k, a, b) =

(
21−ktk

βbt − at

)v

(ln b)nxn.

Lemma 1.3. Let n ∈ N0. The following relationship holds true:

⟨
(βbt − at)j | Yn,β(x; k, a, b)

⟩
=

j∑
m=0

(
j

m

)
(−1)(j−m)

βmYn,β(m ln b+ (j −m) ln a, k, a, b).

Proof. ⟨
(βbt − at)j | Yn,β(x; k, a, b)

⟩
=

⟨
j∑

m=0

(−1)j−m

(
j

m

)
βmet(m ln b+(j−m) ln a) | Yn,β(x; k, a, b)

⟩

=
j∑

m=0

(−1)j−m

(
j

m

)
βm
⟨
et(m ln b+(j−m) ln a) | Yn,β(x; k, a, b)

⟩
.

Substituting Equation (1.4) into the above equation, we arrive at the desired result.

Remark 1.4. ⟨
(βbt − 1)j | Yn,β(x; k, 1, e)

⟩
=
⟨
(βet − 1)j | Yn,β(x, k, 1, 1)

⟩
(cf. [4, Lemm 2. Eq- (3.1)]).

Lemma 1.5. Then the following identity holds:

vnS (n, l) =
1

l!

⟨(
evt − 1

)l | xn
⟩

where S (n, l) is the Stirling numbers of the second kind.

Proof. We set

1

l!

(
evt − 1

)l
=

∞∑
j=0

vnS (n, l)
tn

n!
.

By using (1.1) and (1.2), we get the desired result.

Remark 1.6. Substituting v = 1 into Lemma 1.5, we have

S (n, l) =
1

l!

⟨(
et − 1

)l | xn
⟩

(cf. [11]).

Theorem 1.7. The following identity holds true:

j∑
m=0

(
j

m

)
(−1)(j−m)

βmYn,β(m ln b+ (j −m) ln a, k, a, b)

= 21−k(ln b)nβj−1k!

(
n

k

) j−1∑
l=0

l!

(
j − 1

l

)(
1− 1

β

)j−l−1

×
n−k∑
v=0

(
n− k

v

)
((j − 1) ln a)

n−k−v

(
ln

b

a

)v

S (v, l) .

where S(u, v) denote the Stirling numbers of the second kind.
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Proof. Using Lemma 1.2 , we get

⟨
(βbt − at)j | Yn,β(x; k, a, b)

⟩
=

⟨
(βbt − at)j | 21−ktk

βbt − at
(ln b)nxn

⟩
.

Substituting (1.3) and (1.9) into the above equation after applying Lemma 1.3, we �nd that

⟨
(βbt − at)j | Yn,β(x; k, a, b)

⟩
= 21−k(ln b)n

⟨
(βbt − at)j−1 | k!

(
n

k

)
xn−k

⟩
.

After some elementary calculations in the above equation, we obtain⟨
(βbt − at)j | Yn,β(x; k, a, b)

⟩
= 21−k(ln b)nk!

(
n

k

)
βj−1

j−1∑
l=0

(
j − 1

l

)(
1− 1

β

)j−l−1

et((j−1) ln a)

×
⟨(

et(ln
b
a) − 1

)l
| xn−k

⟩
.

By applying Lemma 1.5 with (1.3) in the above equation, after some calculation, we obtain the

desired result.

Remark 1.8. Substituting a = 1 and b = e into Theorem 1.7, we arrive at the work of Dere et

al. [4, Thorem 3, p. 3253 and Corollary 2, p. 3254]

j∑
m=0

(
j

m

)
(−1)(j−m)

βmYn,β(m; k, 1, 1)

=
βj−1

2k−1
k!

(
n

k

) j−1∑
l=0

(j − 1)!

(j − l − 1)!

(
1− 1

β

)j−l−1

S (n− k, l) .

Remark 1.9. By setting β = k = a = 1 and b = e in Theorem 1.7, we arrive at the following

well-known results which was proved by Roman [11, P. 94]:⟨
(et − 1)j | Bn(x)

⟩
= n (j − 1)!S (n− 1, j − 1)

or
j∑

m=0

(
j

m

)
(−1)j−m

Bn(m) = n (j − 1)!S (n− 1, j − 1) .

Substituting a = 1, k = 0, β = −1 and b = e into Theorem 1.7, we arrive at the following

corollary:

Corollary 1.10.
j∑

m=0

(
j

m

)
En(m) =

j−1∑
l=0

(
j − l

l

)
2j−ll!S (n, l) .

Substituting a = 1, k = 1, β = −1 and b = e into Theorem 1.7, we arrive at the following

corollary:

Corollary 1.11.

j∑
m=0

(
j

m

)
Gn(m) = n

j−1∑
l=0

(
j − l

l

)
2j−l−2l!S (n− 1, l) .

Corollary 1.12. ⟨
(et + 1)j | Gn(x)

⟩
=

j∑
m=0

(
j

m

)
Gn(m).
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Proof. In the work of Dere et al. [4, p. 3255 ], we have the following identity:⟨
(et − 1)j | yn,−1(x, 1,−1, e)

⟩
=

⟨
(et + 1)j | Gn(x)

⟩
= n

j−1∑
l=0

(
j − l

l

)
2j−ll!S (n− 1, l) .

Combining this equation with Corollary 1.11, we easily arrive at the desired result.

Theorem 1.13. (Recurrence relation) Let v ≥ 2. Then we have

βY
(v)
n,β(x+ ln b; k, a, b) = Y

(v)
n,β(x+ ln a; k, a, b)

+21−k(n)k(ln b)
kY

(v−1)
n−k,β(x; k, a, b).

Proof. By using Lemma 1.2, we get

(βbt − at)Y
(v)
n,β(x; k, a, b) = 21−k(n)k(ln b)

kY
(v−1)
n−k,β(x; k, a, b). (1.10)

We also use (1.5), we obtain

(βbt − at)Y
(v)
n,β(x; k, a, b) = βY

(v)
n,β(x+ ln b; k, a, b)− Y

(v)
n,β(x+ ln a; k, a, b). (1.11)

By combining (1.10) and (1.11), we get the desired result.

Remark 1.14. If we set a = 1 and b = e in Theorem 1.13, we obtain [4, p. 3256, Theorem 6]

βY(v)
n,β(x+ 1; k, 1, 1) = Y(v)

n,β(x; k, 1, 1) + 21−k(n)kY(v−1)
n−k,β(x; k, 1, 1)

Remark 1.15. By substituting a = 1, k = 0, b = e and β = −1 into Theorem 1.13, we arrive

at the recurrence relations for the Euler polynomials of higher-order as follows: let v ≥ 2 and

n ∈ N. Then we have
E(v)

n (x+ 1) = −E(v)
n (x) + 2E(v−1)

n (x)

(cf. [4], [11, p.103]).

Remark 1.16. By substituting a = k = 1, b = e and β = −1 into Theorem 1.13, we have

recurrence relations for the Genocchi polynomials of higher-order as follows: let v ≥ 2 and

n ∈ N.
(et + 1)G(v)

n (x) = 2nG
(v−1)
n−1

(x)

(cf. [3, p. 760, Theorem7]).

Remark 1.17. By substituting a = k = 1, b = e and β = 1 into Theorem 1.13, Dere et al [4]

and Roman [11, p. 95, Eq. (4.2.6)] gave recurrence relations for the Bernoulli polynomials of

higher-order as follows: Let v ≥ 2 and n ∈ N. Then we have

B(v)
n (x+ 1) = B(v)

n (x) + nB
(v−1)
n−1

(x).

By using Lemma 1.2 with (1.10), for v = 1, we get the following theorem, which is very

useful in the theory of the Diophantine equation:

Theorem 1.18. Let n, k ∈ N0 with n ≥ k. Then we have(
βbt − at

)
Yn,β(x; k, a, b) = 21−k(n)k(ln b)

nxn−k. (1.12)

Remark 1.19. Substituting a = 1 and b = e into (1.12), we have

βYn,β(x+ 1; k, 1, 1)− Yn,β(x; k, 1, 1) = 21−k(n)kx
n−k

(cf. [10]). By substituting a = k = 1, b = e and β = 1 into (1.12), we have

Bn(x+ 1)−Bn(x) = nxn−1

(cf. [10], [11, p. 95], [17]). By substituting a = 1, k = 0, b = e and β = −1 into (1.12), we have

En(x+ 1) + En(x) = 2xn

(cf. [10], [11, p. 95], [17]). By substituting a = k = 1, b = e and β = −1 into (1.12), we have

Gn(x+ 1) +Gn(x) = 2nxn−1

(cf. [3, p. 760, Corollary 1], [10]).
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