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Abstract. In this article, we study coupled �xed point theorems in partially ordered metric

spaces for non linear contraction condition related to a pair of altering distance functions. To

illustrate our results, an example and an application to integral equations have also been given.

1 Introduction

The Banach Contraction Principle is the pivotal results of analysis. Generalizations of this prin-

ciple have been obtained in several directions. Its signi�cance lies in its vast applicability in a

number of branches of mathematics.

One of the most interesting �xed point theorems in partially ordered metric spaces was inves-

tigated by Ran and Reurings [13] applied their result to linear and nonlinear matrix equations.

Then, many authors obtained several interesting results in partially ordered metric spaces, eg., in

[7, 11, 12].

In 1984, Khan et. al [9] initiated the use of a control function that alters distance between

two points in a metric space. Such mappings are called an altering distances. Altering distance

has been used in metric �xed point theory in a number of papers (see [5, 6, 10]). It has also been

extended in the context of multivalued and fuzzy mappings. The concept of altering distance

function has also been introduced in Menger spaces. Recently, Harjani and Sadarangani [8] used

these functions where they proved some �xed point theorems in partially ordered metric spaces

with applications to ordinary differential equations.

Bhaskar and Lakshmikantham [1] initiated the study of a coupled �xed point theorem in or-

dered metric spaces and applied their results to prove the existence and uniqueness of a solutions

for a periodic boundary value problem. Many researchers have obtained coupled �xed point re-

sults for mappings under various contractive conditions in the framework of partial metric spaces

[2, 3, 4, 14, 15].

At �rst we need the following de�nitions and results.

De�nition 1.1. [9]. An altering distance function is a function Y : [0,∞) → [0,∞) satisfying:

(i) Y is continuous and nondecreasing.

(ii) Y(t) = 0 if and only if t = 0.

De�nition 1.2. [1]. An element (x, y) ∈ X ×X is said to be coupled �xed point of the mapping

F : X ×X → X if

F (x, y) = x and F (y, x) = y.

De�nition 1.3. [1]. Let (X,≤) be a partially ordered set and F : X ×X → X . We say that F
has the mixed monotone property if F (x, y) is monotone non-decreasing in x and is monotone

non-increasing in y, that is, for any x, y ∈ X ,

x1, x2 ∈ X,x1 ≤ x2 =⇒ F (x1, y) ≤ F (x2, y)
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and

y1, y2 ∈ X, y1 ≤ y2 =⇒ F (x, y1) ≥ F (x, y2).

Theorem 1.4. [1]. Let (X,≤) be a partially ordered set and suppose there exits a metric d on

X such that (X, d) is a complete metric space. Let F : X ×X → X be a continuous mapping

having the mixed monotone property on X . Assume that there exists a k ∈ [0, 1) with

d(F (x, y), F (u, v)) ≤ k

2
[d(x, u) + d(y, v)] (1.1)

∀ x, y, u, v ∈ X with x ≥ u and y ≤ v. If there exists two elements x0, y0 ∈ X with x0 ≤
F (x0, y0) and y0 ≥ F (y0, x0), then F has a coupled �xed point.

Theorem 1.5. [1]. Let (X,≤) be a partially ordered set and suppose that there is a metric d in

X such that (X, d) is a complete metric space. Assume that X has the following properties:

(i) if a nondecreasing sequence xn → x, then xn ≤ x, ∀n,

(ii) if a nonincreasing sequence yn → y , then yn ≥ y, ∀n.

Let F : X ×X → X be a mapping having the mixed monotone property on X. Assume that

there exists a k ∈ [0, 1) with

d(F (x, y), F (u, v)) ≤ k

2
[d(x, u) + d(y, v)] (1.2)

∀ x ≥ u and y ≤ v. If there exists x0, y0 ∈ X with x0 ≤ F (x0, y0) and y0 ≥ F (y0, x0), then F
has a coupled �xed point.

The aim of this paper is to prove some unique coupled �xed point theorems for mappings hav-

ing the mixed monotone property in partially ordered metric spaces involving altering distance

functions. Lastly, we present an application to integral equations.

2 Main Theorem

Theorem 2.1. Let (X,≤) be a partially ordered set and suppose that there exists a metric d in

X such that (X, d) is a complete metric space. Let F : X ×X → X be a continuous mapping

on X having the mixed monotone property such that

φ(d(F (x, y), F (u, v))) ≤ φ(M((x, y), (u, v)))− ϕ(M((x, y), (u, v))) (2.1)

where

M((x, y), (u, v)) = max{d(x, u), d(y, v), d(F (x, y), x), d(F (u, v), u)}

∀ x, y, u, v ∈ X with x ≥ u and y ≤ v, where φ and ϕ are altering distance functions. Suppose

that there exists x0, y0 ∈ X such that x0 ≤ F (x0, y0) and y0 ≥ F (y0, x0), then F has a coupled

�xed point.

Proof. Choose x0, y0 ∈ X and set x1 = F (x0, y0) and y1 = F (y0, x0). Repeating this process,

set xn+1 = F (xn, yn) and yn+1 = F (yn, xn). Then by (2.1), we have

φ(d(xn+1, xn)) = φ(d(F (xn, yn), F (xn−1, yn−1)))

≤ φ(M((xn, yn), (xn−1, yn−1)))− ϕ(M((xn, yn), (xn−1, yn−1))),

and

φ(d(yn+1, yn)) = φ(d(F (yn, xn), F (yn−1, xn−1)))

≤ φ(M((yn, xn), (yn−1, xn−1)))− ϕ(M((yn, xn), (yn−1, xn−1))),
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where,

M((xn, yn), (xn−1, yn−1)) = max{d(xn, xn−1), d(yn, yn−1),

d(F (xn, yn), xn), d(F (xn−1, yn−1), xn−1)}
= max{d(xn, xn−1), d(yn, yn−1), d(xn+1, xn), d(xn, xn−1)}
= max{d(xn, xn−1), d(yn, yn−1), d(xn+1, xn)}.

Now, let us consider two cases.

Case I: If

M((xn, yn), (xn−1, yn−1)) = max{d(xn, xn−1), d(yn, yn−1)}.

We have

φ(d(xn+1, xn)) ≤ φ(max{d(xn, xn−1), d(yn, yn−1)})− ϕ(max{d(xn, xn−1), d(yn, yn−1)}),
(2.2)

and

φ(d(yn+1, yn)) ≤ φ(max{d(yn, yn−1), d(xn, xn−1)})− ϕ(max{d(yn, yn−1), d(xn, xn−1)}).
(2.3)

Case II: If

M((xn, yn), (xn−1, yn−1)) = d(xn+1, xn).

We claim that

M((xn, yn), (xn−1, yn−1)) = d(xn+1, xn) = 0.

In fact if d(xn+1, xn) ̸= 0, then

φ(d(xn+1, xn)) ≤ φ(d(xn+1, xn))− ϕ(d(xn+1, xn)) < φ(d(xn+1, xn)) as ϕ ≥ 0.

This implies

d(xn+1, xn) < d(xn+1, xn),

which is a contradiction. SinceM((xn, yn), (xn−1, yn−1)) = 0. Then it is obvious that (2.2) and

(2.3) hold.

Now, by (2.2) and (2.3), we have

φ(d(xn+1, xn)) ≤ φ(max{d(xn, xn−1), d(yn, yn−1)})− ϕ(max{d(xn, xn−1), d(yn, yn−1)}).
(2.4)

As ϕ ≥ 0.

φ(d(xn+1, xn)) ≤ φ(max{d(xn, xn−1), d(yn, yn−1)}),

and using the fact that φ is nondecreasing, we have

d(xn+1, xn) ≤ max{d(xn, xn−1), d(yn, yn−1)}. (2.5)

Similarly,

φ(d(yn+1, yn)) ≤ φ(max{d(yn, yn−1), d(xn, xn−1)})− ϕ(max{d(yn, yn−1), d(xn, xn−1)})
≤ φ(max{d(yn, yn−1), d(xn, xn−1)}),

(2.6)

and consequently

d(yn+1, yn) ≤ max{d(yn, yn−1), d(xn, xn−1)}, (2.7)
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by (2.5) and (2.7), we have

max{d(xn+1, xn), d(yn+1, yn)} ≤ max{d(xn, xn−1), d(yn, yn−1)},

and thus, the sequence max{d(xn+1, xn), d(yn+1, yn)} is nonnegative decreasing. This implies

that there exists r ≥ 0 such that

lim
n→∞

max{d(xn+1, xn), d(yn+1, yn)} = r. (2.8)

It is easily seen that if φ : [0,∞) → [0,∞) is nondecreasing, φ(max(a, b)) = max(φ(a), φ(b))
for a, b ∈ [0,∞). Taking into account this and (2.4) and (2.6), we get

max{φ(d(xn+1, xn)), φ(d(yn+1, yn))} = φ(max{d(xn+1, xn), d(yn+1, yn)})
≤ φ(max{d(xn, xn−1), d(yn, yn−1)})

− ϕ(max{d(xn, xn−1), d(yn, yn−1)}).
(2.9)

Letting n → ∞ in (2.9) and taking into account (2.8), we get

φ(r) ≤ φ(r)− ϕ(r) ≤ φ(r),

and this implies ϕ(r) = 0. Since ϕ is an altering distance function, r = 0 and this implies

lim
n→∞

max{d(xn+1, xn), d(yn+1, yn)} = 0.

Thus

lim
n→∞

d(xn+1, xn) = lim
n→∞

d(yn+1, yn) = 0. (2.10)

Next, we claim that {xn}, {yn} are Cauchy sequences.
We will show that for every ε > 0, there exists k ∈ N such that if n,m ≥ k,

max{d(xm(k), xn(k)), d(ym(k), yn(k))} < ε.

Suppose the above statement is false.

Then, there exists an ε > 0 for which we can �nd sequence {xm(k)}, {xn(k)} with n(k) >
m(k) > k such that

max{d(xm(k), xn(k)), d(ym(k), yn(k))} ≥ ε. (2.11)

Further, we can choose n(k) corresponding tom(k) in such a way that it is smallest integer with

n(k) > m(k) and satis�ng (2.11). Then

max{d(xm(k), xn(k)−1), d(ym(k), yn(k)−1)} < ε. (2.12)

From triangle inequality

d(xn(k), xm(k)) ≤ d(xn(k), xn(k)−1) + d(xn(k)−1, xm(k)). (2.13)

Similarly

d(yn(k), ym(k)) ≤ d(yn(k), yn(k)−1) + d(yn(k)−1, ym(k)). (2.14)

From (2.13) and (2.14), we have

max{d(xn(k), xm(k)), d(yn(k), ym(k))} ≤ max{d(xn(k), xn(k)−1), d(yn(k), yn(k)−1)}

+max{d(xn(k)−1, xm(k)), d(yn(k)−1, ym(k))}.
(2.15)

From (2.11), (2.12) and (2.15), we get

ε ≤ max{d(xn(k), xm(k)), d(yn(k), ym(k))} ≤ max{d(xn(k), xn(k)−1), d(yn(k), yn(k)−1)}+ ε.

(2.16)
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Letting k → ∞ in (2.16) and taking into account (2.10) we have

lim
k→∞

max{d(xn(k), xm(k)), d(yn(k), ym(k))} = ε. (2.17)

Again, the triangle inequality, we have

d(xn(k)−1, xm(k)−1) ≤ d(xn(k)−1, xm(k)) + d(xm(k), xm(k)−1), (2.18)

and

d(yn(k)−1, ym(k)−1) ≤ d(yn(k)−1, ym(k)) + d(ym(k), ym(k)−1). (2.19)

From (2.18) and (2.19), we have

max{d(xn(k)−1, xm(k)−1), d(yn(k)−1, ym(k)−1)} ≤ max{d(xn(k)−1, xm(k)), d(yn(k)−1, ym(k))}

+max{d(xm(k), xm(k)−1), d(ym(k), ym(k)−1)}.
(2.20)

From (2.12), we have

max{d(xn(k)−1, xm(k)−1), d(yn(k)−1, ym(k)−1)} ≤ max{d(xm(k), xm(k)−1), d(ym(k), ym(k)−1)}+ ε.

(2.21)

Using the triangle inequality, we have

d(xn(k), xm(k)) ≤ d(xn(k), xn(k)−1) + d(xn(k)−1, xm(k)−1) + d(xm(k)−1, xm(k)), (2.22)

and

d(yn(k), ym(k)) ≤ d(yn(k), yn(k)−1) + d(yn(k)−1, ym(k)−1) + d(ym(k)−1, ym(k)). (2.23)

From (2.22), (2.23) and (2.11), we get

ε ≤ max{d(xn(k), xn(k)−1), d(yn(k), yn(k)−1)}

+max{d(xn(k)−1, xm(k)−1), d(yn(k)−1, ym(k)−1)}

+max{d(xm(k)−1, xm(k)), d(ym(k)−1, ym(k))}.

(2.24)

From (2.24) and (2.21), we have

ε−max{d(xn(k), xn(k)−1), d(yn(k), yn(k)−1)} −max{d(xm(k)−1, xm(k)), d(ym(k)−1, ym(k))}

≤ max{d(xn(k)−1, xm(k)−1), d(yn(k)−1, ym(k)−1)}

< max{d(xm(k)−1, xm(k)), d(ym(k)−1, ym(k))}+ ε.

(2.25)

Letting k → ∞ in (2.25) and using (2.10), we get

lim
k→∞

max{d(xn(k)−1, xm(k)−1), d(yn(k)−1, ym(k)−1)} = ε. (2.26)

Since xn(k)−1 ≥ xm(k)−1 and yn(k)−1 ≤ ym(k)−1, using the contractive condition we can obtain

φ(d(xn(k), xm(k))) = φ(d(F (xn(k)−1, yn(k)−1), F (xm(k)−1, ym(k)−1)))

≤ φ(M((xn(k)−1, yn(k)−1), (xm(k)−1, ym(k)−1)))

− ϕ(M((xn(k)−1, yn(k)−1), (xm(k)−1, ym(k)−1))),

(2.27)

where

M((xn(k)−1, yn(k)−1), (xm(k)−1, ym(k)−1)) = max{d(xn(k)−1, xm(k)−1), d(yn(k)−1, ym(k)−1),

d(F (xn(k)−1, yn(k)−1), xn(k)−1),

d(F (xm(k)−1, ym(k)−1), xm(k)−1)}

= max{d(xn(k)−1, xm(k)−1), d(yn(k)−1, ym(k)−1),

d(xn(k), xn(k)−1), d(xm(k), xm(k)−1)}.
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Similarly,

φ(d(yn(k), ym(k))) = φ(d(F (yn(k)−1, xn(k)−1), d(F (ym(k)−1, xm(k)−1)))

≤ φ(M((yn(k)−1, xn(k)−1), (ym(k)−1, xm(k)−1)))

− ϕ(M((yn(k)−1, xn(k)−1), (ym(k)−1, xm(k)−1))),

(2.28)

where

M((yn(k)−1, xn(k)−1), (ym(k)−1, xm(k)−1) = max{d(yn(k)−1, ym(k)−1), d(xn(k)−1, xm(k)−1),

d(F (yn(k)−1, xn(k)−1), yn(k)−1),

d(F (ym(k)−1, xm(k)−1), ym(k)−1)}

= max{d(xn(k)−1, xm(k)−1), d(yn(k)−1, ym(k)−1),

d(yn(k), yn(k)−1), d(ym(k), ym(k)−1)}.

From (2.27) and (2.28), we have

max{φ(d(xn(k), xm(k)), d(yn(k), ym(k)))} ≤ φ(zn)− ϕ(zn),

where

zn = max{d(xn(k)−1, xm(k)−1), d(yn(k)−1, ym(k)−1),

d(xn(k), xn(k)−1), d(yn(k), yn(k)−1),

d(xm(k), xm(k)−1), d(ym(k), ym(k)−1)}.

Finally letting k → ∞ in last two inequalities and using (2.26), (2.17) and (2.10) and the conti-

nuity of φ and ϕ, we have

φ(ε) ≤ φ(max(ε, 0, 0))− ϕ(max(ε, 0, 0)) < φ(ε)

and consequently, ϕ(ε) = 0. Since ϕ is an altering distance function, ε = 0 and which is a

contradiction.

This proves our claim.

Since X is a complete metric space, ∃ x, y ∈ X such that

lim
n→∞

xn = x and lim
n→∞

yn = y.

Now we show that (x, y) is a coupled �xed point of F .
As, we have

x = lim
n→∞

xn+1 = lim
n→∞

F (xn, yn) = F ( lim
n→∞

xn, lim
n→∞

yn) = F (x, y),

y = lim
n→∞

yn+1 = lim
n→∞

F (yn, xn) = F ( lim
n→∞

yn, lim
n→∞

xn) = F (y, x).

Therefore, (x, y) is a coupled �xed point of F . 2

Theorem 2.2. Suppose all the assumptions of Theorem (2.1) are satis�ed . Moreover, assume

that X has the following properties

(a) if a non-decreasing sequence{xn} in X converges to some point x ∈ X, then xn ≤ x, ∀n,

(b) if a non-increasing sequence {yn} in X converges to some point y ∈ X, then yn ≥ y, ∀n.

Then the conclusion of Theorem (2.1) also hold.

Proof. Following the proof of Theorem (2.1) we only have to check that (x, y) is a coupled �xed
point of F .
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In fact, since {xn} is non-decreasing and xn → x and {yn} is non-increasing and yn → y, by
our assumption, xn ≤ x and yn ≥ y ∀ n.

Applying the contractive condition we have

φ(d(F (x, y), F (xn, yn))) ≤ φ(M((x, y), (xn, yn)))− ϕ(M((x, y), (xn, yn)))

≤ φ(M((x, y), (xn, yn))),
(2.29)

and as φ is nondecreasing, we obtain

d(F (x, y), F (xn, yn)) ≤ M((x, y), (xn, yn)),

where

M((x, y), (xn, yn)) = max{d(x, xn), d(y, yn), d(F (x, y), x), d(F (xn, yn), xn)}. (2.30)

Letting n → ∞ in (2.29) (and hence (2.30)), we obtain

d(x, F (x, y)) = 0,

and consequently F (x, y) = x.
Using a similar argument it can be proved that y = F (y, x) and this �nishes the proof. 2

Now, we give a suf�cient condition for the uniqueness of the coupled �xed point in Theorem

(2.1) and (2.2). This condition is

for (x, y), (u, v) ∈ X ×X there exists (z, t) ∈ X ×X which is comparable to (x, y) and (u, v).
(2.31)

Note that in X ×X we consider the partial order relation given by

(x, y) ≤ (u, v) ⇐⇒ x ≤ u and y ≥ v.

Theorem 2.3. Adding condition (2.31) to the hypotheses of Theorem (2.1) (resp. Theorem (2.2))

we obtain uniqueness of the coupled �xed point of F .

Proof. Suppose (x, y) and (x′, y′) are coupled �xed points of F , that is, F (x, y) = x, F (y, x) =
y, F (x′, y′) = x′ and F (y′, x′) = y′. We shall prove that x = x′, y = y′.

Let (x, y) and (x′, y′) are not comparable. By assumption there exist (z, t) ∈ X ×X compa-

rable with both of them. Suppose that (x, y) ≥ (z, t).
We de�ne sequences {zn}, {tn} as follows

z0 = z, t0 = t, zn+1 = F (zn, tn) and tn+1 = F (tn, zn) ∀n.

Since (z, t) is comparable with (x, y). We claim that (x, y) ≥ (zn, tn) for each n ∈ N .

We will use mathematical induction.

For n = 0, as (x, y) ≥ (z, t), this means z0 = z ≤ x and y ≥ t = t0 and consequently,

(x, y) ≥ (z0, t0).
Suppose that (x, y) ≥ (zn, tn); then using the mixed monotone property of F , we get

zn+1 = F (zn, tn) ≤ F (x, tn) ≤ F (x, y) = x,

tn+1 = F (tn, zn) ≥ F (y, zn) ≥ F (y, x) = y,

and this proves our claim.

Now, since zn ≤ x and tn ≥ y, using (2.1), we have

φ(d(x, zn+1)) = φ(d(F (x, y), F (zn, tn))) ≤ φ(M((x, y), (zn, tn)))− ϕ(M((x, y), (zn, tn))),

(2.32)

where

M((x, y), (zn, tn)) = max{d(x, zn), d(y, tn), d(F (x, y), x), d(F (zn, tn), zn)}
= max{d(x, zn), d(y, tn)}.
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Therefore

φ(d(x, zn+1)) ≤ φ(max{d(x, zn), d(y, tn)})− ϕ(max{d(x, zn), d(y, tn)})
≤ φ(max{d(x, zn), d(y, tn)}),

(2.33)

and analogously

φ(d(y, tn+1)) ≤ φ(max{d(y, tn), d(x, zn)}). (2.34)

From (2.33) and (2.34) and using the fact that φ is nondecreasing, we obtain

φ(max{d(x, zn+1), d(y, tn+1)}) = max{φ(d(x, zn+1), φ(d(y, tn+1))}
≤ φ(max{d(x, zn), d(y, tn)})− ϕ(max{d(x, zn), d(y, tn)})
≤ φ(max{d(x, zn), d(y, tn)}).

(2.35)

This imples that

max{d(x, zn+1), d(y, tn+1)} ≤ max{d(x, zn), d(y, tn)},

and consequently the sequence max{d(x, zn+1), d(y, tn+1)} is decreasing and nonnegative and

so,

lim
n→∞

max{d(x, zn+1), d(y, tn+1)} = r, (2.36)

for certain r ≥ 0. Using (2.36) and letting n → ∞ in (2.35), we have

φ(r) ≤ φ(r)− ϕ(r) ≤ φ(r),

and consequently ϕ(r) = 0 and thus r = 0.

Finally, as

lim
n→∞

max{d(x, zn+1), d(y, tn+1)} = 0. (2.37)

This implies

lim
n→∞

d(x, zn+1) = lim
n→∞

d(y, tn+1) = 0. (2.38)

Similarly

lim
n→∞

d(x′, zn+1) = lim
n→∞

d(y′, tn+1) = 0. (2.39)

From (2.38) and (2.39), we have x = x′, y = y′. The proof is complete. 2

Theorem 2.4. In addition to the hypotheses of Theorem (2.1)(resp. Theorem (2.2)), suppose that

x0 and y0 in X are comparable, then x = y.

Proof. Suppose that x0 ≤ y0. We claim that

xn ≤ yn, ∀n ∈ N. (2.40)

From the mixed monotone property of F , we have

x1 = F (x0, y0) ≤ F (y0, y0) ≤ F (y0, x0) = y1.

Assume that xn ≤ yn, for some n. Now,

xn+1 = F (xn, yn) ≤ F (yn, yn) ≤ F (yn, xn) = yn+1.

Hence, this proves our claim.
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Now, using (2.40) and the contractive condition, we get

φ(d(xn+1, yn+1)) = φ(d(yn+1, xn+1)) = φ(d(F (yn, xn), F (xn, yn)))

≤ φ(M((yn, xn), (xn, yn)))− ϕ(M((yn, xn), (xn, yn)))

≤ φ(M((yn, xn), (xn, yn))),

(2.41)

and as φ is nondecreasing,

d(xn+1, yn+1) ≤ M((yn, xn), (xn, yn)),

where

M((yn, xn), F (xn, yn)) = max{d(yn, xn), d(xn, yn), d(F (yn, xn), yn), d(F (xn, yn), xn)}
= max{d(yn, xn), d(yn+1, yn), d(xn+1, xn)}.

(2.42)

Thus, limn→∞ d(xn, yn) = r for certain r ≥ 0.

Taking n → ∞ in (2.41)(and hence (2.42)), and using continuity of φ and ϕ, we have

φ(r) ≤ φ(r)− ϕ(r) ≤ φ(r),

and this gives us r = 0.

As xn → x and yn → y and limn→∞ d(xn, yn) = 0. We have 0 = limn→∞ d(xn, yn) =
d(limn→∞ xn, limn→∞ yn) = d(x, y) and thus x = y.

This �nishes the proof. 2

Example 2.5. Let X = R with usual metric and order. De�ne F : X × X → X as F (x, y) =
1

4
(x2 − 3y2) for all x, y ∈ X.

Let φ, ϕ : [0,∞) → [0,∞) be de�ned by φ(t) = t and ϕ(t) = 1

3
(t). Clearly, φ, ϕ are altering

distance functions.

Now, let x ≤ u and y ≥ v. So, we obtain

φ(d(F (x, y), F (u, v))) = d(F (x, y), F (u, v))

= |1
4
(x2 − 3y2)− 1

4
(u2 − 3v2)|

=
1

4
|(x2 − u2)− 3(y2 − v2)|

≤ 1

4
[d(x, u) + 3d(y, v)]

≤ 2

3
max{d(x, u), d(y, v), d(F (x, y), x), d(F (u, v), u)}

= max{d(x, u), d(y, v), d(F (x, y), x), d(F (u, v), u)}

− 1

3
max{d(x, u), d(y, v), d(F (x, y), x), d(F (u, v), u)}

= φ(max{d(x, u), d(y, v), d(F (x, y), x), d(F (u, v), u)})
− ϕ(max{d(x, u), d(y, v), d(F (x, y), x), d(F (u, v), u)}).

Hence, all of the conditions of Theorem (2.1) are satis�ed. Moreover, (0, 0) is the coupled
�xed point of F .

Corollary 2.6. Let (X,≤) be a partially ordered set and suppose that there exists a metric d in

X such that (X, d) is a complete metric space. Let F : X ×X → X is a continuous mapping on

X having the mixed monotone property such that there exists k ∈ [0, 1) satisfying

d(F (x, y), F (u, v))) ≤ k max{d(x, u), d(y, v), d(F (x, y), x), d(F (u, v), u)}

∀ x, y, u, v ∈ X with x ≥ u and y ≤ v. Suppose either F is continous or X has the following

properties
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(a) if a non-decreasing sequence{xn} in X converges to some point x ∈ X, then xn ≤ x, ∀n,
(b) if a non-increasing sequence {yn} in X converges to some point y ∈ X, then yn ≥ y, ∀n.

If there exists x0, y0 ∈ X such that x0 ≤ F (x0, y0) and y0 ≥ F (y0, x0), then F has a coupled

�xed point.

Proof. Applying Theorems (2.1) and (2.2) and taking as φ= identity and ϕ = (1 − k)φ, we
obtain the corollary. 2

Corollary 2.7. Let F satisfy the contractive condition of Theorems (2.1) and (2.2) except that

condition (2.1) is replaced by the following condition. There exists a positive Lebesgue- inte-

grable function µ on R+ such that
∫ ε

0
µ(t)dt > 0, for each ε > 0 and that then, F has a coupled

�xed point.∫ φ(d(F (x,y),F (u,v)))

0

≤
∫ φ(M((x,y),(u,v)))

0

µ(t)dt−
∫ ϕ(M((x,y),(u,v)))

0

µ(t)dt, (2.43)

where

M((x, y), (u, v)) = max{d(x, u), d(y, v), d(F (x, y), x), d(F (u, v), u)}.

Proof. Consider the function φ : [0,∞) → [0,∞) de�ned by

G =

∫ x

0

µ(t)dt.

is an altering distance function.

Then (2.43) becomes

G(φ(d(F (x, y), F (u, v)))) ≤ G(φ(M((x, y), (u, v))))− G(ϕ(M((x, y), (u, v)))),

where

M((x, y), (u, v)) = max{d(x, u), d(y, v), d(F (x, y), x), d(F (u, v), u)}.

Taking φ1 = Goφ, ϕ1 = Goϕ and applying Theorems (2.1) and (2.2), we obtain the result. 2

Corollary 2.8. Let (X,≤) be a partially ordered set and suppose that there exists a metric d in

X such that (X, d) is a complete metric space. Let F : X ×X → X is a continuous mapping on

X having the mixed monotone property such that there exists k ∈ [0, 1) satisfying∫ d(F (x,y),F (u,v))

0

ρ(t)dt ≤ k

∫ max{d(x,u),d(y,v),d(F (x,y),x),d(F (u,v),u)}

0

ρ(t)dt

∀ x, y, u, v ∈ X with x ≥ u and y ≤ v, where ρ : R+ → R+ is a Lebesgue- integrable mapping

and satis�es that
∫ ε

0
ρ(t)dt > 0, for ε > 0. Suppose either F is continous orX has the following

properties

(a) if a non-decreasing sequence{xn} in X converges to some point x ∈ X, then xn ≤ x, ∀n,
(b) if a non-increasing sequence {yn} in X converges to some point y ∈ X, then yn ≥ y, ∀n.

If there exists x0, y0 ∈ X such that x0 ≤ F (x0, y0) and y0 ≥ F (y0, x0), then F has a coupled

�xed point.

Proof. It is easily proven that the function φ : [0,∞) → [0,∞) de�ned by

φ(t) =

∫ t

0

ρ(s)ds

is an altering distance function.

Applying Theorem (2.1) and (2.2) with the altering distance function φ de�ned above and

ϕ = (1− k)φ, we obtain the desired result. 2
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3 Application to integral equations

In this section we study the existence and uniqueness of solutions of a nonlinear integral equation

using the results proved in Secton 2.

Consider the following integral equation:

x(t) =

∫ 1

0

(k1(t, s) + k2(t, s))(f(s, x(s)) + g(s, x(s)))ds+ a(t), t ∈ [0, 1]. (3.1)

We will analyze (3.1) under the following assumptions:

(i) ki : [0, 1]× [0, 1] → R(i = 1, 2) are continuous and k1(t, s) ≥ 0 and k2(t, s) ≤ 0.

(ii) a ∈ C[0, 1].

(iii) f, g : [0, 1]×R → R are continuous functions.

(iv) There exist constants λ, µ > 0 such that for all x, y ∈ R and x ≥ y

0 ≤ f(t, x)− f(t, y) ≤ λ
√
ln[(y − x)2 + 1]

and

−µ
√
ln[(y − x)2 + 1] ≤ g(t, x)− g(t, y) ≤ 0.

(v) There exist α, β ∈ C[0, 1] such that

α(t) ≤
∫ 1

0

k1(t, s)(f(s, α(s)) + g(s, β(s)))ds+

∫ 1

0

k2(t, s)(f(s, β(s)) + g(s, α(s)))ds+ a(t)

≤
∫ 1

0

k1(t, s)(f(s, β(s)) + g(s, α(s)))ds+

∫ 1

0

k2(t, s)(f(s, α(s))) + g(s, β(s)))ds+ a(t) ≤ β(t).

(vi) 2.max(λ, µ) ∥ k1 − k2 ∥∞≤ 1, where

∥ k1 − k2 ∥∞= sup{(k1(t, s)− k2(t, s)) : t, s ∈ [0, 1]}.

Previously, we considered the space X = C[0, 1] of continuous functions de�ned on [0, 1] with
the standard metric given by

d(x, y) = sup
t∈[0,1]

| x(t)− y(t) |, for x, y ∈ C[0, 1].

This space can also be equipped with a partial order given by

x, y ∈ C[0, 1], x ≤ y ⇐⇒ x(t) ≤ y(t), for any t ∈ [0, 1].

Clearly, if in X ×X we consider the order given by

(x, y), (u, v) ∈ X ×X, (x, y) ≤ (u, v) ⇐⇒ x ≤ u and y ≥ v,

and since for any x, y ∈ X we have thatmax(x, y),min(x, y) ∈ X , condition (2.31) is satis�ed.

Moreover, in [11] it is proved that (C[0, 1],≤) satis�es assumption (1).

Now, we formulate our result.

Theorem 3.1. Under assumptions (i)-(vi), eq. (3.1) has a unique solution in C[0, 1].

Proof. We consider the operator F : X ×X → X de�ned by

F (x, y)(t) =

∫ 1

0

k1(t, s)(f(s, x(s)) + g(s, y(s)))ds

+

∫ 1

0

k2(t, s)(f(s, y(s)) + g(s, x(s)))ds+ a(t), for t ∈ [0, 1].
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By virtue of our assumptions, F is well de�ned (this means that for x, y ∈ X then F (x, y) ∈ X).

Firstly, we prove that F has the mixed monotone property.

In fact, for x1 ≤ x2 and t ∈ [0, 1], we have

F (x1, y)(t)− F (x2, y)(t) =

∫ 1

0

k1(t, s)(f(s, x1(s)) + g(s, y(s)))ds

+

∫ 1

0

k2(t, s)(f(s, y(s)) + g(s, x1(s)))ds+ a(t)

−
∫ 1

0

k1(t, s)(f(s, x2(s)) + g(s, y(s)))ds

−
∫ 1

0

k2(t, s)(f(s, y(s)) + g(s, x2(s)))ds− a(t)

=

∫ 1

0

k1(t, s)(f(s, x1(s))− f(s, x2(s)))ds

+

∫ 1

0

k2(t, s)(g(s, x1(s))− g(s, x2(s)))ds.

(3.2)

Taking into account that x1 ≤ x2 and our assumptions,

f(s, x1(s))− f(s, x2(s)) ≤ 0,

g(s, x1(s))− g(s, x2(s)) ≥ 0,

and from (3.2) we obtain

F (x1, y)(t)− F (x2, y)(t) ≤ 0

and this proves that F (x1, y) ≤ F (x2, y).
Similarly, if y1 ≥ y2 and t ∈ [0, 1], we have

F (x, y1)(t)− F (x, y2)(t) =

∫ 1

0

k1(t, s)(f(s, x(s)) + g(s, y1(s)))ds

+

∫ 1

0

k2(t, s)(f(s, y1(s)) + g(s, x(s)))ds+ a(t)

−
∫ 1

0

k1(t, s)(f(s, x(s)) + g(s, y2(s)))ds

−
∫ 1

0

k2(t, s)(f(s, y2(s)) + g(s, x(s)))ds− a(t)

=

∫ 1

0

k1(t, s)(g(s, y1(s))− g(s, y2(s)))ds

+

∫ 1

0

k2(t, s)(f(s, y1(s))− f(s, y2(s)))ds,

and by our assumptions, as y1 ≥ y2,

g(s, y1(s))− g(s, y2(s)) ≤ 0,

f(s, y1(s))− f(s, y2(s)) ≥ 0,

and thus,

F (x, y1)(t)− F (x, y2)(t) ≤ 0,

or, equivalently,

F (x, y1) ≤ F (x, y2).
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Therefore, F has mixed monotone property.

In what follows, we estimate d(F (x, y), F (u, v)) for x ≥ u and y ≤ v.
Indeed, as F has the mixed monotone property, F (x, y) ≥ F (u, v) and we can obtain

d(F (x, y), F (u, v)) = sup
t∈[0,1]

| F (x, y)(t)− F (u, v)(t) |

= sup
t∈[0,1]

(F (x, y)(t)− F (u, v)(t))

= sup
t∈[0,1]

[ ∫ 1

0

k1(t, s)(f(s, x(s)) + g(s, y(s)))ds

+

∫ 1

0

k2(t, s)(f(s, y(s)) + g(s, x(s)))ds+ a(t)

−
∫ 1

0

k1(t, s)(f(s, u(s)) + g(s, v(s)))ds

−
∫ 1

0

k2(t, s)(f(s, v(s)) + g(s, u(s)))ds− a(t)
]

= sup
t∈[0,1]

[ ∫ 1

0

k1(t, s)[(f(s, x(s))− f(s, u(s)))− (g(s, v(s))− g(s, y(s)))]

−
∫ 1

0

k2(t, s)[(f(s, v(s))− f(s, y(s)))− (g(s, x(s))− g(s, u(s)))]ds
]
.

(3.3)

By our assumptions( notice that x ≥ u and y ≤ v)

f(s, x(s))− f(s, u(s)) ≤ λ
√
ln[(x(s)− u(s))2 + 1]

g(s, v(s))− g(s, y(s)) ≥ −µ
√
ln[(y(s)− v(s))2 + 1]

f(s, v(s))− f(s, y(s)) ≤ λ
√
ln[(v(s)− y(s))2 + 1]

g(s, x(s))− g(s, u(s)) ≥ −µ
√
ln[(x(s)− u(s))2 + 1].

Taking into account these last inequalities, k2 ≤ 0 and (3.3), we get

d(F (x, y), F (u, v)) ≤ sup
t∈[0,1]

[ ∫ 1

0

k1(t, s)[λ
√
ln[(x(s)− u(s))2 + 1] + µ

√
ln[(y(s)− v(s))2 + 1]]ds

+

∫ 1

0

(−k2(t, s))[λ
√

ln[(v(s)− y(s))2 + 1] + µ
√

ln[(x(s)− u(s))2 + 1]]ds
]

= max(λ, µ) sup
t∈[0,1]

[

∫ 1

0

(k1(t, s)− k2(t, s))
√

ln[(x(s)− u(s))2 + 1]ds

+

∫ 1

0

(k1(t, s)− k2(t, s))
√
ln[(y(s)− v(s))2 + 1]ds

]
.

(3.4)

De�ning

I =
∫ 1

0
(k1(t, s)− k2(t, s))

√
ln[(x(s)− u(s))2 + 1]ds

II =
∫ 1

0
(k1(t, s)− k2(t, s))

√
ln[(y(s)− v(s))2 + 1]ds
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and using the Cauchy - Schwartz inequality in (I) we obtain

(I) ≤
(∫ 1

0

(k1(t, s)− k2(t, s))
2ds

) 1

2

.
(∫ 1

0

ln[(x(s)− u(s))2 + 1]ds
) 1

2

≤∥ k1 − k2 ∥∞ .(ln ∥ x− u ∥2 +1))
1

2 =∥ k1 − k2 ∥∞ .(ln(d(x, u)2 + 1))
1

2 .

(3.5)

Similarly, we can obtain the following estimate for (II):

(II) ≤∥ k1 − k2 ∥∞ .(ln(d(y, v)2 + 1))
1

2 . (3.6)

from (3.4)- (3.6), we have

d(F (x, y),F (u, v)) ≤ max(λ, µ) ∥ k1 − k2 ∥∞ [(ln(d(x, u)2 + 1))
1

2 + (ln(d(y, v)2 + 1))
1

2 ]

≤ max(λ, µ) ∥ k1 − k2 ∥∞ [(ln(max(d(x, u), d(y, v), d(F (x, y), x), d(F (u, v), u))2 + 1))
1

2

+ (ln(d(x, u), d(y, v), d(F (x, y), x), d(F (u, v), u))2 + 1))
1

2 ]

= 2max(λ, µ) ∥ k1 − k2 ∥∞ [(ln(max(d(x, u), d(y, v), d(F (x, y), x), d(F (u, v), u))2 + 1))
1

2 ].

The last inequality and assumption (vi) give us

d(F (x, y), F (u, v)) ≤ (ln(max(d(x, u), d(y, v), d(F (x, y), x), d(F (u, v), u))2 + 1))
1

2 ,

and this implies

d(F (x, y), F (u, v))2 ≤ (ln(max(d(x, u), d(y, v), d(F (x, y), x), d(F (u, v), u))2 + 1)),

or, equivalently,

d(F (x, y), F (u, v))2 ≤ (max(d(x, u), d(y, v), d(F (x, y), x), d(F (u, v), u))2

− [(max(d(x, u), d(y, v), d(F (x, y), x), d(F (u, v), u))2

− ln(max(d(x, u), d(y, v), d(F (x, y), x), d(F (u, v), u))2 + 1))].

(3.7)

Put φ(x) = x2 and ϕ(x) = x2 − ln(x2 + 1). Obviously, φ and ϕ are altering distance functions

and from (3.7) we get

φ(d(F (x, y), F (u, v)) ≤ φ(max(d(x, u), d(y, v), d(F (x, y), x), d(F (u, v), u))

− ϕ(max(d(x, u), d(y, v), d(F (x, y), x), d(F (u, v), u)))

This proves that the operator F satis�es the contractive condition appearing in Theorem (2.1).

Finally, let α, β be the functions appearing in assumption (v); then, by (v), we get

α ≤ F (α, β) ≤ F (β, α) ≤ β.

Theorem (2.3) gives us that F has a unique coupled �xed point (x, y) ∈ X × X. Since α ≤ β,
Theorem (2.4) says us that x = y and this implies x = F (x, x) and x is the unique solution of

eq. (3.1).

This �nishes the proof. 2
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