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Abstract. In this article, we study coupled fixed point theorems in partially ordered metric
spaces for non linear contraction condition related to a pair of altering distance functions. To
illustrate our results, an example and an application to integral equations have also been given.

1 Introduction

The Banach Contraction Principle is the pivotal results of analysis. Generalizations of this prin-
ciple have been obtained in several directions. Its significance lies in its vast applicability in a
number of branches of mathematics.

One of the most interesting fixed point theorems in partially ordered metric spaces was inves-
tigated by Ran and Reurings [13] applied their result to linear and nonlinear matrix equations.
Then, many authors obtained several interesting results in partially ordered metric spaces, eg., in
[7, 11, 12].

In 1984, Khan et. al [9] initiated the use of a control function that alters distance between
two points in a metric space. Such mappings are called an altering distances. Altering distance
has been used in metric fixed point theory in a number of papers (see [5, 6, 10]). It has also been
extended in the context of multivalued and fuzzy mappings. The concept of altering distance
function has also been introduced in Menger spaces. Recently, Harjani and Sadarangani [8] used
these functions where they proved some fixed point theorems in partially ordered metric spaces
with applications to ordinary differential equations.

Bhaskar and Lakshmikantham [1] initiated the study of a coupled fixed point theorem in or-
dered metric spaces and applied their results to prove the existence and uniqueness of a solutions
for a periodic boundary value problem. Many researchers have obtained coupled fixed point re-
sults for mappings under various contractive conditions in the framework of partial metric spaces
[2,3, 4,14, 15].

At first we need the following definitions and results.

Definition 1.1. [9]. An altering distance function is a function ¥ : [0, c0) — [0, co) satisfying:
(i) W is continuous and nondecreasing.
(ii) W(t) = 0if and only if t = 0.

Definition 1.2. [1]. An element (z,y) € X x X is said to be coupled fixed point of the mapping
F:XxX—Xif

F(z,y) =z and F(y,z) =y.

Definition 1.3. [1]. Let (X, <) be a partially ordered set and F : X x X — X. We say that F’
has the mixed monotone property if F'(x,y) is monotone non-decreasing in = and is monotone
non-increasing in y, that is, for any z,y € X,

i, 20 € X2y <ap = F(x1,y) < F(x2,y)
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and
Y1, Y2 €X7y1 S Y == F(‘T7y1> 2 F(‘T7y2>

Theorem 1.4. [1]. Let (X, <) be a partially ordered set and suppose there exits a metric d on
X such that (X,d) is a complete metric space. Let F : X x X — X be a continuous mapping
having the mixed monotone property on X. Assume that there exists a k € [0, 1) with

A(F(2,9), F(,0)) < 5 [dlw) + d(y,0)] (.

Va,y,u,v € X withx > uwand y < v. If there exists two elements xo,yo € X with xo <
F(z0,y0) and yo > F(yo, xo), then F has a coupled fixed point.

Theorem 1.5. [1]. Let (X, <) be a partially ordered set and suppose that there is a metric d in
X such that (X, d) is a complete metric space. Assume that X has the following properties:

(i) if a nondecreasing sequence x,, — x, then x,, < x, Vn,
(ii) if a nonincreasing sequence y, — y , then y, >y, Vn.

Let F': X x X — X be a mapping having the mixed monotone property on X. Assume that
there exists a k € [0, 1) with

A(F (2, ), Flu,0)) < 5ld(z, u) +d(y,v)] (12

Vo > uandy < v. If there exists xo,yo € X with zg < F(xg,y0) and yo > F(yo,x0), then F
has a coupled fixed point.

The aim of this paper is to prove some unique coupled fixed point theorems for mappings hav-
ing the mixed monotone property in partially ordered metric spaces involving altering distance
functions. Lastly, we present an application to integral equations.

2 Main Theorem

Theorem 2.1. Let (X, <) be a partially ordered set and suppose that there exists a metric d in
X such that (X, d) is a complete metric space. Let F : X x X — X be a continuous mapping
on X having the mixed monotone property such that

p(d(F(x,y), F(u,0))) < oM ((x,y), (u,v))) = (M ((x,y), (u,v))) 2.1

where

M((,y), (u,v)) = maz{d(z, u), d(y, v), d(F(z,y), x), d(F(u,v),u)}

Vaz,y,u,v € X withax > uand y < v, where ¢ and ¢ are altering distance functions. Suppose
that there exists xo,yo € X such that xo < F(xg,yo) and yo > F(yo, o), then F has a coupled
fixed point.

Proof. Choose xg, o € X and set z; = F(xg,y0) and y; = F(yo, zo). Repeating this process,
set Tp1 = F(Tn,yn) and yn,11 = F(yn, ). Then by (2.1), we have

@(d(xn+lv .Tn)) = (p(d(F(J?n,yn), F(xn—layn—l)»
< (M ((2n; yn)s (Tn—1,Yn-1))) = (M (2, Yn), (Tn—1,Yn-1))),
and

(d(Yn+1,yn)) = C(d(F (Yn, 20), F(Yn-1,2n-1)))
< ‘P(M((ynv xn)’ (y’ﬂ—la xn—l))) - (b(M((ynv xn)> (yn—h xn—l)))v
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where,
M((iﬂn, yn)v (xn—la yn—l)) = max{d(mn» :L'n—l)a d(ynv yn—l)a
d(F(l‘n, yn),ﬂfn), d(F(xn—hyn—l)vxn—l)}
= max{d(x'ru xn71)7 d(yn7 ynfl)y d(‘rn+17 xn)a d({L‘n, (Enfl)}
max{d<xn7zn—l)ad(ynayn—l)ad(xn+l7xn)}~

Now, let us consider two cases.

Case I. If
M((xna yn)» (xn—la yn—l)) = maw{d(mn, xn—1)7 d(yn, yn—l)}~
We have
(p(d(mn+17 xn)) < (P(max{d(xm xn,1), d(ym ynfl)}) - qb(maw{d(xm $n71)7 d(yna ynfl)})v
(2.2)
and
@(d(yn-‘rlv yn)) S @(max{d(yna yn71)7 d(xn; $n,1)}) - ¢(max{d(yn7 ynfl)a d(l‘n, xnfl)})~
(2.3)
Case II: If
M((-rrm yn)a (xn—lv yn—l)) = d(xn+l7 xn)
We claim that

M((n,yn)s (Tn-1,Yn—1)) = d(zn+1,2n) = 0.
In fact if d(zp11, ) # 0, then
P(d(zni1,2n)) < (d(Tni1,20)) = G(d(@ni1,2n)) < e(d(Tni1,20)) as ¢ > 0.
This implies
A(Tpt1, Tn) < d(Tpt1, Tn)s

which is a contradiction. Since M ((xy, yn), (Tn—-1,¥yn—1)) = 0. Then it is obvious that (2.2) and
(2.3) hold.
Now, by (2.2) and (2.3), we have

o(d(zni1,2n)) < (maz{d(xn, 2n—1),d(Yn, Yn-1)}) — ¢(maz{d(zn, Tn-1),d(Yn, Yn-1)})

2.4)
As ¢ > 0.
o(d(zni1,2n)) < @(maz{d(zn, 2n_1),d(Yn,Yn-1)}),
and using the fact that ¢ is nondecreasing, we have
d(@ns1,2n) < maz{d(@n, Tn-1), d(Yn, yn-1)}- (2.5)

Similarly,

So(d(yTHI’ yn)) < @(mam{d(ym yn—l)v d(xna xn—l)}) - QS(max{d(ym yn—l)v d(wm xn—l)})

< @(max{d(yn, yn_1), d(l‘n, mn—l)})’
(2.6)

and consequently

d(yn+17 yn) S maﬂ?{d(yn, yn—1)7 d(-rru xn—l)}a (27)
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by (2.5) and (2.7), we have

maz{d(Tni1,Tn)s d(Yn+1,Yn)} < maz{d(zn, n-1), d(Yn,Yn-1)}

and thus, the sequence max{d(zn+1,Tn), d(yn+1,yn)} is nonnegative decreasing. This implies
that there exists » > 0 such that

lim maz{d(xni1,Zn), d(Ynt1,Yn)} = 7. (2.3

n—0o0

It is easily seen that if ¢ : [0,00) — [0, 00) is nondecreasing, p(max(a,b)) = maz(p(a), p(b))
for a, b € [0, c0). Taking into account this and (2.4) and (2.6), we get

max{cp(d(oan, xn))v @(d(yn+17 yn))} = gp(maﬁc{d(xnﬂ, xn)» d(yn+17 yn)})
< o(max{d(zn, ¥n_1),d(Yn, Yn-1)}) (2.9)
- ¢(max{d($m xnfl)v d(ynv ynfl)})'

Letting n — oo in (2.9) and taking into account (2.8), we get

o(r) < p(r) —o(r) < o(r),

and this implies ¢(r) = 0. Since ¢ is an altering distance function, » = 0 and this implies

lim max{d(zpi1,2n),d(Yn+1,yn)} = 0.

n—oo

Thus
lim d(zp11,2,) = lim d(yn+1,yn) = 0. (2.10)
n— oo n— oo

Next, we claim that {z,}, {y,} are Cauchy sequences.
We will show that for every ¢ > 0, there exists k € N such that if n, m > k,

Suppose the above statement is false.
Then, there exists an ¢ > 0 for which we can find sequence {21}, {%,, ()} With n(k) >
m(k) > k such that

Further, we can choose n(k) corresponding to m (k) in such a way that it is smallest integer with
n(k) > m(k) and satisfing (2.11). Then

Maz{d(Z k), Tr(k)=1)s AYm(k)> Yn(k)—1)} < € (2.12)
From triangle inequality
AT (k) Trm(r)) < A Zn()s Toe)—1) + ATp)y—15 T )- (2.13)
Similarly
A Yn (k) Ymk)) < AYn(k)s Yn(k)—1) T AUn(k)—15 Ym(k))- (2.14)
From (2.13) and (2.14), we have
maz{d(Tp k), Tm(k))s A Ynik)y Ymr))} < max{d(Ty ), Trr)—1)> AYn(k)s Yn(e)—1) }

+ max{d(ivn(k)flv xm(k))v d(yn(k)fla ym(k))}
(2.15)

From (2.11), (2.12) and (2.15), we get

€< max{d(‘rn(k)a wm(k))a d(yn(k)7 ym(k))} < max{d(xn(k)7 xn(k)71)> d(yn(lc)7 yn(k)fl)} te
(2.16)
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Letting k — oo in (2.16) and taking into account (2.10) we have

klirglo max{d(Tp k), Tom(k))s AYn(k) Ymk))} = € (2.17)
Again, the triangle inequality, we have
AT ) =15 Ton(r)—1) < A @ (k)—15 Ti(r)) T A L), T () 1) (2.18)
and
A Yn ) =15 Ymk)—1) < AYne)=1> Ym(k)) T A Ymk)> Ym(e)—1)- (2.19)

From (2.18) and (2.19), we have
ma’x{d(xn(k:)flaxm(k)fl)ad(yn( k)—1> Ym(k )} < max{d( (k)— laxm(k))vd(yn(k)fhym(k))}

+ max{d(T k), Tm(k)—1)> A Ym(k)s Ym(k)—1) }-
(2.20)

From (2.12), we have

max{d(xn(k)—la xm(k)—l)a d(yn( k)—1> Ym(k )} < max{d( (k)» xm(k:)—l)a d(ym( k)s Ym(k )} te
(2 21)

Using the triangle inequality, we have
(k) Ton(r)) < A @nr)s Tr)=1) + AT =1 Tm(r)=1) + ATm)—1, Tmwy),  (2.22)
and
AYn(k)s Ym(k)) < AWUn(k) Yn(k)—1) + AYnk) =1, Ymk)—1) + A Ymk)—15 Ym(x))- (2.23)
From (2.22), (2.23) and (2.11), we get
e < max{d(Znm), Tnk)—1)s AYn(k) Yn(k)—1)}
+max{d(Tpe)—1, Tm)—1), AYn(k)—1> Ym(k)—1) } (2.24)
+ maz{d(Zm(k)—15 T(k))s A Ym(k)—15 Ym(k)) }-
From (2.24) and (2.21), we have
£ = maz{d(Tp (), Tr(k)—1), AYn(k)s Yn(k)—1)} — MaZ{A( (k) =1> Trm(k))s AU (k)= 1> Ym(k) )}
< maz{d(Tp k)15 Tm(k)=1)5 A Yn(k)—1> Ym(k)—1) }
< maz{d(Tp(k)=1> Tm(k))s A Y (k)= 1> Ym(k)) } + €

(2.25)
Letting £ — oo in (2.25) and using (2.10), we get
I maz{d(@n k) -1, Tmk)-1), AYn(k) -1 Ym(k) 1)} = & (2.26)
Since @p,(x)—1 = Tp(k)—1 a0 Yp(k)—1 < Yrm(k)—1, Using the contractive condition we can obtain
P(d(Tn(k), Tm )) ( (F(Z o)~ 1 Yn(k)—1)> F (@)~ 1, Ym()-1)))
OM (T (k) =1 Yn(k)—1)s (Trn(k) =1, Ym(k)—1))) (2.27)

¢(M(( (k) =1 Yn(k)—=1)s (Tm(k) =1, Ym(k)—1)))
where
M((Zn(k) =15 Yn(k)-1)s @mk) =15 Ymr)-1)) = maz{d(@pnk)—1; Tmk)-1)s AYn(k) -1 Ym(k) 1)
A(F(Zn()—15 Yn(k)—1) Tn(k)—1)
A(F (T (k)—15 Ym(k)—1)> T m(k)—l)}
= maz{d(Tpn ()1, Tm(k)-1)s AYn(k)—1, Ym(k) 1),
d(xn(kwnu )d( m(k)s Tm(k)~1)}
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Similarly,

O(dWYn(k)s Ymk))) = LAE Ynk)—1> Tne)—1)> AEFE Ym(e)—15 Tm(k)-1)))
< SD(M((yn(k)fh */L'n(k:)fl)u (ym(k)fla xm(k)fl))) (2.28)
— O(M((Yn(k)-1> Trk)—1)s Ymk)—15 Tmk)-1)))

where

M((Yn(k)=1> Tr(k)—1)s Umk)=1> Tmk)—1) = MAZ{A(Yn (k) =1, Ymk) 1) AT (k)15 Tim(k)-1)
A(F (Yn(k) =1 Tr(k)—1)s Yn(k)—1)5
A(F (Y (k)15 Trm(k)~1)s Ym(k)—1)}
= maz{d(Zp(k)—1> Tm(k)—1)s AYn(k)—15 Ym(k)—1)
A(Yn(s)s Yn( )’d(ym (k)=1)}-

From (2.27) and (2.28), we have

mam{(p(d(xn(k)v xm(k))v d(yn(k)v ym(k)))} < 90(2") - ¢(Zn)7
where

Zn :max{d(mn k)—1:Tm (k)71)>d(yn(k)fl’ym(k)fl)’
(1) ~1)5 A Yn(k) Yn(k)—1)5
d(mm )ad(ym(k)?ym(k:)fl)}'

Finally letting £ — oo in last two inequalities and using (2.26), (2.17) and (2.10) and the conti-
nuity of ¢ and ¢, we have

90(8) < @(max(a 0, 0)) - ¢(maa:(57 0, 0)) < (p(g)

and consequently, ¢(¢) = 0. Since ¢ is an altering distance function, ¢ = 0 and which is a
contradiction.

This proves our claim.

Since X is a complete metric space, 3 z,y € X such that

lim z,, = x and l1m Yn = Y-
n— o0

Now we show that (z, y) is a coupled fixed point of F.
As, we have

x = lim x,y 1 = lim F(z,,y,) = F(lim z,, hm yn) = F(z,y),
n— 00 n— 00 n—00 n—

y= lim y,1; = lim F(yn7xn) - F( lim yp, hm xn) = F(yvx)
n—00 n—00

n—oo n—

Therefore, (z,y) is a coupled fixed point of F. O

Theorem 2.2. Suppose all the assumptions of Theorem (2.1) are satisfied . Moreover, assume
that X has the following properties

(a) if a non-decreasing sequence{x,} in X converges to some point x € X, then z, < x, Vn,
(b) if a non-increasing sequence {y,} in X converges to some point y € X, then y, >y, Vn.

Then the conclusion of Theorem (2.1) also hold.

Proof. Following the proof of Theorem (2.1) we only have to check that (z, ) is a coupled fixed
point of F.
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In fact, since {x,, } is non-decreasing and z,, — = and {y,, } is non-increasing and y,, — y, by
our assumption, z,, < z and y,, > y V n.
Applying the contractive condition we have

(d(F(2,9), F(2n,yn))) < @(M((2,9), (T, yn))) — (M ((2,y), (20, yn)))
< QO(M((‘TJ/)? (‘r"’yn)))?

and as ¢ is nondecreasing, we obtain

A(F (2, y), F(zn, yn)) < M((2,9), (2n, yn)),

(2.29)

where

M((z,y), (zn, yn)) = maz{d(z,2n), d(y, yn), d(F (2,y), 2),d(F(zn, yn), 2n)}.  (2.30)
Letting n — oo in (2.29) (and hence (2.30)), we obtain
d(x, F(z,y)) = 0,
and consequently F'(z,y) = x.

Using a similar argument it can be proved that y = F'(y, ) and this finishes the proof. O

Now, we give a sufficient condition for the uniqueness of the coupled fixed point in Theorem
(2.1) and (2.2). This condition is

for (z,y), (u,v) € X x X there exists (z,¢) € X x X which is comparable to (z,y) and (u,v).
2.31)

Note that in X x X we consider the partial order relation given by
(z,y) < (u,v) <= z<wuandy>v.

Theorem 2.3. Adding condition (2.31) to the hypotheses of Theorem (2.1) (resp. Theorem (2.2))
we obtain uniqueness of the coupled fixed point of F'.

Proof. Suppose (z,y) and (z',y’) are coupled fixed points of F', that is, F(z,y) = z, F(y,z) =
y, F(2',y') =2’ and F(y',2') = y'. We shall prove that z = z',y = y/.

Let (z,y) and (2/,y) are not comparable. By assumption there exist (z,¢) € X x X compa-
rable with both of them. Suppose that (z,y) > (2,1).

We define sequences {z,}, {t,} as follows

=2, to=t, zn+1=F(zn,tn) and tpt1 = F(tn,2n) VYn.

Since (z,t) is comparable with (z, y). We claim that (z,y) > (zy,t,) for eachn € N.
We will use mathematical induction.
For n = 0, as (z,y) > (z,t), this means zp = z < z and y > ¢ = ¢ and consequently,

(iC, y) > (207 to)'
Suppose that (z,y) > (2n, tr); then using the mixed monotone property of F, we get

Zn+l = F(Znatn) < F(Jﬁ,tn) < F(x,y) =,
tnr1 = F(tn, 2n) > F(y,2,) > F(y,x) = v,

and this proves our claim.
Now, since z,, < z and ¢,, > y, using (2.1), we have

p(d(z, 2n11)) = @(d(F(z,y), F(2n,tn))) < (M ((,9), (2n, tn))) — (M ((2,9), (2n, tn))),
(2.32)
where

M((‘T’ y>7 (Zm tn)) = maI{d(zv Zn)7 d(y, tn)a d(F(x, y)v x)v d(F(znv tn)’ Zn)}
= max{d(z, z,),d(y, tn)}
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Therefore
P, 20)) < lmar{de, z0), dly, ) = dlmarldla, ) dlwt)})
< p(maz{d(z, zn), d(y, t)}), '
and analogously
e(d(y, tni1)) < p(maz{d(y, tn), d(z, zn)}). (2.34)

From (2.33) and (2.34) and using the fact that ¢ is nondecreasing, we obtain
p(max{d(x, znr1), d(y, tns1)}) = maz{e(d(@, 2n41), o(d(y, tnr1))}
< p(maz{d(z, zn),d(y, tn)}) — ¢(maz{d(z, z,),d(y, tn)})

< p(mazx{d(z,z,),d(y, tn)}).
(2.35)

This imples that
max{d(az, Zn+1)7 d(y; tn,Jrl)} < ma:c{d(x, Zn)a d(l/v tn)}a

and consequently the sequence maz{d(x, z,41),d(y, tnr1)} is decreasing and nonnegative and
50,

lim maz{d(x, zn11),d(y, tni1)} =1, (2.36)

n—oo

for certain r > 0. Using (2.36) and letting n — oo in (2.35), we have

p(r) < o(r) = o(r) < p(r),

and consequently ¢(r) = 0 and thus r = 0.

Finally, as
lim maz{d(z, zn+1),d(y, tnt1)} = 0. (2.37)
n—oo
This implies
lim d(z,zp41) = lim d(y,tn41) = 0. (2.38)
n—oo n—oo
Similarly
lim d(z', zp41) = lim d(y/,tn41) = 0. (2.39)
n—oo n—oo

From (2.38) and (2.39), we have x = 2/, y = y'. The proof is complete. O

Theorem 2.4. In addition to the hypotheses of Theorem (2.1)(resp. Theorem (2.2)), suppose that
xg and yo in X are comparable, then x = y.

Proof. Suppose that x5 < yy. We claim that
T < Yp,Vn € N. (2.40)
From the mixed monotone property of F', we have
z1 = F(z0,%) < F(y0.y0) < F(y0,0) = 1.
Assume that z,, < y,,, for some n. Now,
Tt = F(2n,yn) < F(Yns yn) < F(Yn, Tn) = Ynt1-

Hence, this proves our claim.
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Now, using (2.40) and the contractive condition, we get
P(d(@n115Yn+1)) = P(dYnt1, Tnt1)) = G(AF (Yns T0), F(Tn, Yn)))
< (M ((Yn>xn), (n,yn))) = G(M((Yn, Tn), (€0, yn))) (2.41)
< @(M((yna xn)a (wi yn)))a
and as ¢ is nondecreasing,

d(InHvynH) < M((ynvxn)y (xnvyn))v

where
M((ynaxn)vF(xnvyn)) = max{d(ynvxn)7d(xmyn)vd(F(ynaxn)vyn)vd(F(xmyn)axn)}

= max{d(ym zn)a d(yn+1, yn)7 d(InJrla In)}
(2.42)

Thus, lim,,_, oo d(zn, y,) = r for certain r > 0.
Taking n — oo in (2.41)(and hence (2.42)), and using continuity of ¢ and ¢, we have

o(r) < o(r) = o(r) < p(r),

and this gives us r = 0.
As z, — zand y, — y and lim,_,o d(zn,yn) = 0. We have 0 = lim,, o0 d(Tp, yn) =

d(limy, 00 Ty, liMy 00 yp) = d(z,y) and thus z = y.
This finishes the proof. O

Example 2.5. Let X = R with usual metric and order. Define F' : X x X — X as F(z,y) =
H(a? —3y?) forall z,y € X.

Let ¢, ¢ : [0,00) — [0, 00) be defined by ¢(t) = t and ¢(t) = 1(¢). Clearly, ¢, ¢ are altering
distance functions.

Now, let x < u and y > v. So, we obtain

gp(d(F(x,y),F(u,’u))) = d(F(m,y),F(u,v))

Lo N 2
1

e e
1

A\
8
S
_|_
98]
<Y
=

< 4l u) + 3d(y,v)]
2

< Fmac{d(z,w), d(y, ), d(F(z,y), ), d(F(u,0), )}
= mar{d(z,u), d(y,v), d(F(z, ), 7), d(F o, v), )}

~ gmaa(d(e, u), dy,v), d(F (2, ), 2), d(F(w, v), u)}
= (maz{d(z, u), d(y, ), d(F (), 2), d(F(w ), 0)})

—gb(max{d(x,u),d(y,v),d(F(x,y),z),d(F(u,v),u)}).

Hence, all of the conditions of Theorem (2.1) are satisfied. Moreover, (0, 0) is the coupled
fixed point of F'.

Corollary 2.6. Let (X, <) be a partially ordered set and suppose that there exists a metric d in
X such that (X, d) is a complete metric space. Let F : X x X — X is a continuous mapping on
X having the mixed monotone property such that there exists k € [0, 1) satisfying

d(F(x,y), F(u,v))) < k max{d(z,u), d(y,v), d(F(z,y),z),d(F(u,v),u)}

Va,y,u,v € X withxz > uand y < v. Suppose either F is continous or X has the following
properties
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(a) if a non-decreasing sequence{x,} in X converges to some point x € X, then xz, < z, Vn,
(b) if a non-increasing sequence {y,} in X converges to some point y € X, then y,, >y, Vn.

If there exists xg,yo € X such that xo < F(zo,y0) and yo > F(yo,xo), then F has a coupled
fixed point.

Proof. Applying Theorems (2.1) and (2.2) and taking as = identity and ¢ = (1 — k), we
obtain the corollary. O

Corollary 2.7. Let F satisfy the contractive condition of Theorems (2.1) and (2.2) except that
condition (2.1) is replaced by the following condition. There exists a positive Lebesgue- inte-
grable function 1 on R such that fOE w(t)dt > 0, for each € > 0 and that then, F has a coupled

fixed point.
(d(F(z,y),F(u,v))) (M ((z,y),(u,v))) (M ((z,y),(u,v)))
/ </ eyt - | w)d,  (243)
0 0 0
where

M((z,y), (u,v)) = maz{d(z,u),d(y,v), d(F(z,y),z), d(F(u,v),u)}.

Proof. Consider the function ¢ : [0,00) — [0, c0) defined by

r—iézuuyw

is an altering distance function.
Then (2.43) becomes

T(p(d(F(z,y), F(u,v)))) <T(e(M((,y), (u,v)))) = T(¢(M((z,y), (u,v)))),

where

M((z,y), (u,v)) = maz{d(z,u),d(y,v), d(F(z,y),z), d(F(u,v),u)}.

Taking ¢; = T'op, ¢1 = T'op and applying Theorems (2.1) and (2.2), we obtain the result. O

Corollary 2.8. Ler (X, <) be a partially ordered set and suppose that there exists a metric d in
X such that (X, d) is a complete metric space. Let F : X x X — X is a continuous mapping on
X having the mixed monotone property such that there exists k € [0, 1) satisfying
d(F(z,y),F(u,v)) maz{d(z,u),d(y,v),d(F(z,y),z),d(F(u,v),u)}
/‘ p@ﬁgk/ p(t)dt

0 0

VzyuveXwithe>uandy <wv, where p: Ry — R is a Lebesgue- integrable mapping
and satisfies that fos p(t)dt > 0, for e > 0. Suppose either F is continous or X has the following
properties

(a) if a non-decreasing sequence{x,} in X converges to some point x € X, then z,, < x, ¥n,
(b) if a non-increasing sequence {y,} in X converges to some point y € X, then y,, > y, Vn.

If there exists xg,yo € X such that xy < F(zo,y0) and yo > F(yo,xo), then F has a coupled
fixed point.

Proof. It is easily proven that the function ¢ : [0, 00) — [0, 00) defined by
t
o0 = [ pls)as
is an altering distance function.

Applying Theorem (2.1) and (2.2) with the altering distance function ¢ defined above and
¢ = (1 — k), we obtain the desired result. O
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3 Application to integral equations

In this section we study the existence and uniqueness of solutions of a nonlinear integral equation
using the results proved in Secton 2.
Consider the following integral equation:

x(t) = /0 (k1(t,s) + ka(t,s))(f(s,z(s)) + g(s,2(s)))ds + a(t), t € [0,1]. 3.1

We will analyze (3.1) under the following assumptions:

(i) k;:[0,1] x [0,1] — R(¢ = 1,2) are continuous and k; (¢, s) > 0 and k,(¢,s) <O0.
(ii) a € C[0, 1].
(iii) f,g:[0,1] x R — R are continuous functions.

(iv) There exist constants A\, x > O such that forall z,y € Rand z > y
0< f(t,z) = f(t,y) < \/in[(y —2)* + 1]
and
—p/In[(y —x)* + 1] < g(t, ) — g(t,y) <0.

(v) There exist o, 8 € C[0, 1] such that
/ ki(t,s)(f(s,a(s)) + g(s, ds+/ ka(t, s)(f(s,B(s)) + g(s,a(s)))ds + a(t)

S/lMt@U@ﬂ®D+ﬂ&M@WB+/kdhﬂﬂ&d@ﬂ+ﬂ&ﬂ®wk+dﬂSMﬂ
0 0

(vi) 2.mazx(\ p) || k1 — k2 |0 < 1, where
| k1 — k2 ||oo= sup{(k1(t,s) — ka(¢,5)) : t,s € [0,1]}.

Previously, we considered the space X = C]0, 1] of continuous functions defined on [0, 1] with
the standard metric given by

d(z,y) = sup |=z(t) —y(t) |,for =,y € C[0,1].
te(0,1]

This space can also be equipped with a partial order given by
z,y € Cl0,1],x <y <= z(t) <y(t), forany ¢ € [0,1].
Clearly, if in X x X we consider the order given by
(z,y), (u,v) € X x X, (z,y) < (u,v) < z<wu and y > v,

and since for any z;, y € X we have that mazx(z, y), min(z,y) € X, condition (2.31) is satisfied.
Moreover, in [11] it is proved that (C[0, 1], <) satisfies assumption (1).
Now, we formulate our result.

Theorem 3.1. Under assumptions (i)-(vi), eq. (3.1) has a unique solution in C[0, 1].

Proof. We consider the operator F': X x X — X defined by
1
Fla)(t) = [ it 9)(f2(5) + gls.0()))ds

1
+/O Fa(t, $)(F (5, y(s)) + (s, 2(s)))ds + a(t), for t € [0, 1].
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By virtue of our assumptions, F is well defined (this means that for z;,y € X then F(z,y) € X).
Firstly, we prove that F' has the mixed monotone property.
In fact, for z; < z; and ¢ € [0, 1], we have

1
F(Il,y)(t)*F(xz,y)(tF/o kit s)(f(s,21(s)) + g(s,y(s)))ds

1
+ [ ka(t,5)(f(s,5(s)) + g(s,21(5)))ds + a(t)

1
— [ Fa(t,8)(f (s, 22(s)) + g(s,9(s)))ds

1
ka(t, 5)(f(5,9(5)) + g(s,22(5)))ds — a(t)

<

(3.2)

c\o

ka(t, s)(f(s,21(s)) = f(s,22(5)))ds

S~

1
+ [l g(s.a1(5) = gl 2s))ds.
0
Taking into account that z; < x; and our assumptions,

f(svxl(s)) - f(S,IEz(S)) S
9(s,21(s)) = g(s,22(s)) =

and from (3.2) we obtain

Flany)(t) = F(z2,9)(t) <0

and this proves that F'(z1,y) < F(z2,y).
Similarly, if y; > y, and ¢ € [0, 1], we have

Flean)®) ~ PO = [ B0 + o5

[ 0,765 + 526+ att)
= [ B a(6) + glosn(6)s

[ 10,517 6s35(5) + 5060 att)
= [ 10 56)) ~ o))

+ / kot ) (F (5,11 (5)) — £(5.30(5)))ds,
0

and thus,

or, equivalently,
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Therefore, F' has mixed monotone property.
In what follows, we estimate d(F(x,y), F(u,v)) forz > uand y < v.
Indeed, as F' has the mixed monotone property, F(z,y) > F(u,v) and we can obtain

d(F(z,y), F(u,v)) = Sup | F(z,y)(t) — F(u,v)(?) |

= tzl[;pl](F(x, y)(t) — F(u,v)(t))

= s [ [ R (7o) + glosa()ds

t€0,1

1
+ [ lalts ) (5, 0(5) + g, 2(5)))ds + a)
0
1
*Akﬁﬁﬁﬁwm+ﬂw@mﬁ
1
fAkML$U@w@D+MaM@D®fa®}

1
=mm[/kﬂtMU@I@D*ﬂ&MﬁD*@@W@D*ﬂ&MQM
0

te(0,1]

[ B 5006 S5 aos206)) — w6t
(3.3)

By our assumptions( notice that z > u and y < v)

Taking into account these last inequalities, k, < 0 and (3.3), we get

d(F(z,y), F(u,v)) < tzl[z)pl {/ )\\/ln —u(s))?+ 1] + u\/ln —v(s))? + 1]]ds
/ —ko(t,5) 2 Im[(0(s 2+ 1]+ gy Inl(a(s) — u(s)? + 1]ds]
= maz(\, i) tzl[:)l,)l][/ (k1(t, s) — ka(t, s) \/ln —u(s))? + 1]ds

+ /Ol(kzl(t, $) = Fa(t, )y Inl(y(s) — v(5)) + 1)ds].
(3.4)

Defining

I = Jo (ki (t,5) — ka(t, 5))y/In[(a(s) — u(s))2 + 1]ds

II = fol(lﬁ (t,s) — ka(t,8))\/In[(y(s) — v(s))> + 1]ds
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and using the Cauchy - Schwartz inequality in (I) we obtain

1
2

() < (/Ol(kzl(t,s) _ kz(t,s))zds)i(/ol In(a(s) — u(s))” + 1)ds)

(3.5)
<kt = k2 floo (I [l 2 = [P +1)2 = k1 = ks [loc -(In(d(z,w)? +1))2.
Similarly, we can obtain the following estimate for (II):
(1) <[ by = k2 [loo -(In(d(y, v)* +1))*. (3.6)

from (3.4)- (3.6), we have

~—
[
+
[an—y
~—

d(F(x,y),F(u,v)) < maz(\, ) || k1 — ka2 [loo [(In(d(z,u)? + 1))} + (In(d(y, v
< maz(\ ) || by = k2 [l [(In(maa(d(z, w), d(y,v), d(F(z,y), 2), d(F(u,v),u))* + 1))}
+ (In(d(x, u), d(y,v), d(F(z,y), ), d(F(u,0),u))* + 1))}]
= 2max(\, 1) || k1 — k2 oo [(In(maz(d(z, w), d(y, v), d(F(z,y), z), d(F(

The last inequality and assumption (vi) give us

Bl—

d(F(z,y), F(u,0)) < (In(maz(d(z,u), d(y,v), d(F(z,y),z), d(F(u,v),u))* +1))7,
and this implies
d(F(z,y), F(u,0))* < (In(maz(d(z,w), d(y, v), d(F(z,y), x),d(F(u,v),u))* + 1)),
or, equivalently,
d(F(x,y), F(u,v))* < (maz(d(z,u), d(y,v), d(F(z,y),z), d(F(u,v),u))?
— [(maz(d(z,u),d(y,v), d(F(z,y),z),d(F(u,v),u))? 3.7)
— In(mazx(d(z,v),d(y,v), d(F(z,y), ), d(F(u,v),u))* + 1))].

Put p(x) = 22 and ¢(z) = 2> — In(z® + 1). Obviously, ¢ and ¢ are altering distance functions
and from (3.7) we get

p(d(F(z,y), F(u,v)) < p(maz(d(z,u), d(y, v), d(F(z,y), x), d(F(u,v),u))
- (;S(ma:c(d(x,u),d(y,v), d(F(m,y),x),d(F(u, v),u)))

This proves that the operator F' satisfies the contractive condition appearing in Theorem (2.1).
Finally, let «, 3 be the functions appearing in assumption (v); then, by (v), we get

o < F(a, B) < F(B,a) < 8.

Theorem (2.3) gives us that F' has a unique coupled fixed point (z,y) € X x X. Since a < 3,
Theorem (2.4) says us that z = y and this implies x = F(x,z) and x is the unique solution of
eq. (3.1).

This finishes the proof. O
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