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Abstract. Let R be a commutative ring with identity which is not an integral domain. Let Z(R)
denote the set of all zero-divisors of R and let Z(R)∗ = Z(R)\{0}. Recall from [5] that the

annihilator graph of R, denoted by AG(R) is an undirected graph whose vertex set is Z(R)∗ and
distinct vertices x, y are joined by an edge in this graph if and only if annR(xy) ̸= annRx ∪
annRy. Let R be a reduced ring. First, in this article, we determine when the complement of the

annihilator graph of R is connected and determine its diameter and radius when it is connected.

Second, in this article, we determine the girth of the complement of the annihilator graph of R.
Finally, we determine rings R such that the clique number of the complement of the annihilator

graph of R is �nite and also determine a formula for its clique number.

1 Introduction

The rings considered in this note are commutative with identity and which are not integral do-

mains. The idea of associating the elements of a ring with a graph and investigating the interplay

between the ring structure and the graph properties of the graph associated with it was introduced

by I. Beck in [7]. In [7], Beck was mainly interested in colorings. His research work inspired a

lot of work on zero-divisor graphs of rings. For a commutative ring R with identity, we denote

the set of all zero-divisors of R by Z(R) and we denote Z(R)\{0} by Z(R)∗. Recall from [2]

that for a commutative ring R with identity, the zero-divisor graph of R, denoted by G(R) is an
undirected simple graph whose vertex set is Z(R)∗ and distinct vertices x, y are joined by an

edge in this graph if and only if xy = 0. A lot of research articles authored by several eminent

researchers appeared in reputed international journals in Mathematics, especially in Algebra on

the zero-divisor graphs of rings and the graphs associated with other algebraic structures. For an

excellent and inspiring survey on the work done in the area of zero-divisor graphs of commuta-

tive rings, the reader is referred to [3]. The concept of the annihilator graph of a commutative

ring was introduced by Ayman Badawi in [5] and several interesting interplay between the ring-

theoretic properties of a ring R and graph-theoretic properties of its annihilator graph has been

well investigated in [5]. Let R be a ring. For an element a ∈ R, we denote the annihilator of

a in R (that is, {r ∈ R|ar = 0}) by annRa. Recall from [5] that the annihilator graph of R,
denoted by AG(R), is an undirected simple graph whose vertex set is Z(R)∗ and distinct ver-

tices x, y are joined by an edge in this graph if and only if annR(xy) ̸= annRx ∪ annRy. Let
G = (V,E) be a simple graph. Recall from [6] that the complement of G, denoted by Gc is a

graph whose vertex set is V and distinct elements x, y ∈ V are joined by an edge in Gc if and

only if there is no edge joining x and y in G. The aim of this article is to investigate the effect on

the ring structure of R by the graph-theoretic properties of (AG(R))c (where (AG(R))c denotes
the complement of AG(R)). Let R be a ring. It was noted in [5] that G(R) is a subgraph of

AG(R). Hence, it follows that (AG(R))c is a subgraph of (G(R))c. In [15], some results on

(G(R))c were proved and they illustrate the interplay between the ring-theoretic properties of R
and the graph-theoretic properties of (G(R))c. In this note, we investigate on some properties

of (AG(R))c, a spanning subgraph of (G(R))c. It is useful to note that if x, y ∈ Z(R)∗, then
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x − y is an edge of (AG(R))c if and only if annR(xy) = annRx ∪ annRy if and only if either

annR(xy) = annRx or annR(xy) = annRy. For a ring R, we denote the nilradical of R by

nil(R) . Recall that a ring R is said to be reduced if nil(R) = (0). In this article, we focus our

study on (AG(R))c, where R is a reduced ring.

First we recall the following de�nitions from commutative ring theory which are used in this

article. Let R be a ring and I be a proper ideal of R. Recall from [12] that a prime ideal P of

R is said to be a maximal N-prime of I if P is maximal with respect to the property of being

contained in ZR(R/I) = {r ∈ R : rx ∈ I for some x ∈ R\I}. Thus a prime ideal P of R
is a maximal N-prime of (0) if P is maximal with respect to the property of being contained in

Z(R). Let x ∈ Z(R). Then the multiplicatively closed set S = R\Z(R) is such that Rx∩S = ∅.
Hence, it follows from Zorn's lemma and [13, Theorem 1] that there exists a maximal N-prime

P of (0) in R such that x ∈ P . Therefore, we get that Z(R) = ∪α∈LPα, where {Pα}α∈L is the

set of all maximal N-primes of (0) in R.
Let I be a proper ideal of a ring R. Recall from [11] that a prime ideal P of R is said to be a

Bourbaki prime of I if P = (I :R x) for some x ∈ R. In such a case, we simply say that P is a

B-prime of I .
Before we give a brief account of the results proved in this article, it is useful to recall the

following de�nitions from graph theory. The graphs considered in this article are undirected and

simple. Let G = (V,E) be a graph. Let a, b ∈ V, a ̸= b. If there exists a path in G between a and
b, then d(a, b) is de�ned as the length of a shortest path in G between a and b. If there exists no
path in G between a and b, then we de�ne d(a, b) = ∞. We de�ne d(a, a) = 0. Let G = (V,E)
be a connected graph. Recall from [6, De�nition 4.2.1] that the diameter of G, denoted by

diam(G) is de�ned as diam(G) = sup{d(a, b) : a, b ∈ V }. Let a ∈ V . The eccentricity of a,
denoted by e(a), is de�ned as e(a) = sup{d(a, b) : b ∈ V }. The radius of G, denoted by r(G),
is de�ned as r(G) = min{e(a) : a ∈ V }.

Let G = (V,E) be a graph. Suppose that G contains a cycle. Recall from [6, p.159] that

the girth of G, denoted by girth(G) is the length of a shortest cycle in G. If G does not contain

any cycle, then we set girth(G) = ∞. Recall from [6, De�nition 1.2.2] that a clique of G is

a complete subgraph of G. For a simple graph G, the clique number of G, denoted by ω(G) is
de�ned as the largest positive integer n ≥ 1 such that G contains a clique on n vertices. If G
contains a clique on n vertices for all n ≥ 1, then we set ω(G) = ∞.

Let G = (V,E) be a graph. Recall from [6, p.129] that a vertex coloring of G is a mapping

f : V → S, where S is a set of distinct colors. A vertex coloring f : V → S is said to be proper,

if adjacent vertices of G receive distinct colors of S; that is, if u and v are adjacent in G, then
f(u) ̸= f(v). The chromatic number of G, denoted by χ(G) is the minimum number of colors

needed for a proper vertex coloring of G. It is clear that for any graph G, ω(G) ≤ χ(G).
LetR be a commutative ring with identity which is not an integral domain. Several interesting

theorems on AG(R) were proved in [5] by A. Badawi. It was shown in [5, Theorem 2.2] that

AG(R) is connected and diam(AG(R)) ≤ 2. Moreover, it was proved in [5, Theorem 2.9 and

Corollary 2.11] that if AG(R) contains a cycle, then girth(AG(R)) ≤ 4. Furthermore, it was

shown that for a reduced ring R, AG(R) = G(R) if and only if R has exactly two minimal prime

ideals [5, Theorem 3.6]. The authors of [14] investigated on the coloring ofAG(R). In [14], they
studied classes of rings R such that ω(AG(R)) = χ(AG(R)). An explicit formula was given for

ω(AG(R)) for certain classes of rings. The annihilator graph of a semigroup was studied in [1].

Motivated by the above mentioned works, in this article, we try to study the interplay between

the graph-theoretic properties of (AG(R))c and the ring-theoretic properties of R, where R is a

reduced ring.

In Section 2, we consider reduced rings R such that R has exactly one maximal N-prime of

(0). It is shown in Corollary 2.7 that (AG(R))c is connected and moreover, diam((AG(R))c) =
r((AG(R))c) = 2. It is proved in Lemma 2.10 that (AG(R))c contains an in�nite clique

and hence, girth((AG(R))c) = 3. It is illustrated in Example 2.9 that the result regarding

diam((AG(R))c) for reduced rings may fail to hold for a nonreduced ring.

In Section 3, we consider reduced rings R such that R has at least two maximal N-primes

of (0). It is shown in Proposition 3.1 that (AG(R))c is connected if and only if P1 ∩ P2 ̸= (0)
for any two maximal N-primes P1, P2 of (0) in R. Moreover, it is proved in Proposition 3.1

that if (AG(R))c is connected, then 2 ≤ diam((AG(R))c) ≤ 3. Furthermore, it is proved in

Proposition 3.2 that diam((AG(R))c) = 3 if and only if Tot(R) contains a nontrivial idem-
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potent, where Tot(R) denotes the total quotient ring of R. In Example 3.6, an example of a

reduced ring T which admits exactly two maximal N-primes of (0) is provided which satis�es

2 = r((AG(T ))c) < diam((AG(T ))c) = 3. It is proved in Proposition 3.8 that for a von

Neumann regular ring R with at least three prime ideals, (AG(R))c is connected and moreover,

diam((AG(R))c) = r((AG(R))c) = 3. In Theorem 3.19, it is shown that for any reduced ringR
which admits at least two maximal N-primes of (0), girth((AG(R))c) ∈ {3, 6,∞}. Moreover,

Theorem 3.19 classi�es rings R such that girth((AG(R))c) = ∞.

In this article, we also consider the problem of characterizing reduced rings R such that

ω((AG(R))c) < ∞. It is shown in Lemma 2.10 that such a ring must admit at least two maximal

N-primes of (0). Let R be a reduced ring which admits at least two maximal N-primes of (0).
It is proved in Theorem 3.12 that ω((AG(R))c) < ∞ if and only if there exist �nite �elds

F1, F2, . . . , Fn(n ≥ 2) such that R ∼= F1 × F2 × · · · × Fn as rings. For such a ring R, it is shown
in Proposition 3.21 that ω((AG(R))c) = χ((AG(R))c).

A ring R is said to be quasilocal if R has only one maximal ideal. A Noetherian quasilocal

ring is referred to as a local ring. Whenever a set A is a subset of a set B and A ̸= B, then we

denote it using the notation A ⊂ B. The Krull dimension of a ring is simply denoted by dimR.
We denote the cardinality of a set A using the notation |A|.

2 The case where R has exactly one maximal N-prime of (0)

Let R be a ring which has only one maximal N-prime of (0) (that is, equivalently Z(R) is an
ideal of R). With this assumption, we study some graph-theoretic properties of (AG(R))c. As
mentioned in the introduction, unless otherwise speci�ed, the rings considered in this article are

not integral domains.

Lemma 2.1. Let R be a ring such that R admits P as its unique maximal N-prime of (0). If

|Z(R)∗| ≥ 2 and P is a B-prime of (0) in R, then (AG(R))c is not connected.

Proof. By hypothesis, there exists x ∈ R such that P = ((0) :R x). Observe that x ∈ Z(R)∗

and for any y ∈ P, y ̸= x, there exists no path in (G(R))c between x and y. Since (AG(R))c is
a subgraph of (G(R))c, it follows that there exists no path in (AG(R))c between x and y. This
proves that (AG(R))c is not connected.

Let R be a ring such that R admits P as its unique maximal N-prime of (0). We investigate

some properties of (AG(R))c under the assumption that P is not a B-prime of (0) in R. (Note
that P is not a B-prime of (0) in R if R is reduced.)

Remark 2.2. Let R be a ring which admits P as its unique maximal N-prime of (0). Assume

that P is not a B-prime of (0) in R. Then it is known that (G(R))c is connected and more-

over, diam((G(R))c) = 2 [16, Proposition 1.2]. We are not able to determine whether or not

(AG(R))c is connected. However, we have some partial answers which we now proceed to

present.

Lemma 2.3. Let R be a ring which admits P as its unique maximal N-prime of (0). If P =
nil(R), then (AG(R))c admits no edges.

Proof. Let x, y ∈ P\{0} be such that x ̸= y. Since x, y ∈ nil(R), we can choose n,m ∈
N least with the property that xny = 0 and xym = 0. Observe that xn−1 ∈ annR(xy) but
xn−1 /∈ annRy and ym−1 ∈ annR(xy) but ym−1 /∈ annRx. Hence, annR(xy) ̸= annRx and

annR(xy) ̸= annRy. Thus as noted in the introduction, it follows that there is no edge of

(AG(R))c joining x and y. This shows that (AG(R))c has no edges.

Example 2.4. Let (V,M) be a rank 1 valuation domain which is not discrete. Letm ∈ M,m ̸= 0.

Let R = V/mV . Then (AG(R))c has no edges.

Proof. It was veri�ed in [16, Example 3.1] that P = M/mV is the only maximal N-prime of

the zero ideal in R and moreover, P is not a B-prime of (0) in R. Since P is the only prime

ideal of R, it follows that P = nil(R). Hence, it follows from Lemma 2.3 that (AG(R))c has no
edges.
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Let R be a reduced ring with P as its unique maximal N-prime of (0). We prove in Corollary

2.7 that (AG(R))c is connected and moreover, diam((AG(R))c) = 2. We use Proposition 2.5

in the proof of Lemma 2.6, Corollary 2.7 and some other results of this article.

Proposition 2.5. Let T be a reduced ring which may admit any number of maximal N-primes of

(0). Let a, b ∈ Z(T )∗, a ̸= b. Then the following statements hold.

(i) If ab ̸= 0, then there is a path of length at most two between a and b in (AG(T ))c.
(ii) If ab = 0 and if a+ b ∈ Z(T ), then there is a path of length at most two between a and b

in (AG(T ))c.
(iii) If the intersection of any two maximal N-primes of (0) in T is nonzero, then there is a

path of length at most three between a and b in (AG(T ))c.

Proof. (i)We can assume that there is no edge of (AG(T ))c between a and b. Hence, annT (ab) /∈
{annTa, annT b} and so, ab /∈ {a, b}. Since T is reduced, it follows that annT (a2b) = annT (ab) =
annT (ab2). Therefore, we obtain that a − ab − b is a path of length two between a and b in
(AG(T ))c.

(ii) From ab = 0 and a2 ̸= 0, it follows that a+ b ̸= 0. It is clear that a+ b /∈ {a, b}. Note that
(a+ b)a = a2 and (a+ b)b = b2. Moreover, as T is reduced, we obtain that for any x ∈ T\{0},
annTx = annTx

2. Therefore, a−(a+b)−b is a path of length two between a and b in (AG(T ))c.

(iii) In view of (i) and (ii), we can assume that ab = 0 and a+b /∈ Z(T ). Let P1, P2 be maximal

N-primes of (0) in T such that a ∈ P1 and b ∈ P2. Since a + b /∈ Z(T ), we obtain that a /∈ P2

and b /∈ P1. By hypothesis, P1 ∩P2 ̸= (0). Let x ∈ P1 ∩P2, x ̸= 0. It follows from a+ b /∈ Z(T )
that either ax ̸= 0 or bx ̸= 0. Without loss of generality, we can assume that ax ̸= 0. Observe

that annT (a2x) = annT (ax) = annT (a2x2), and ax(ax + b) = a2x2, (ax + b)b = b2, and
annT b = annT b

2. Hence, it follows that a− ax− (ax+ b)− b is a path of length three between
a and b in (AG(T ))c.

Lemma 2.6. Let T be a reduced ring such that P1 ∩ P2 ̸= (0) for any two maximal N-primes

P1, P2 of (0) in T . Let a, b ∈ Z(T )∗ be such that ab = 0 and a+ b /∈ Z(T ). Then d(a, b) = 3 in

(AG(T ))c.

Proof. We know from the proof of Proposition 2.5(iii) that there exists a path of length at most

three between a and b in (AG(T ))c. Since ab = 0, it is clear that a and b are not adjacent

in (AG(T ))c. We assert that there exists no path of length two between a and b in (AG(T ))c.
Suppose that a − c − b is a path of length two between a and b in (AG(T ))c. Then ac ̸= 0 and

bc ̸= 0. As a − c is an edge of (AG(T ))c, either annT (ac) = annTa or annT (ac) = annT c.
Note that b(ac) = 0 but bc ̸= 0. Hence, annT (ac) = annTa. Similarly, it follows from b − c
is an edge of (AG(T ))c, a(bc) = 0 but ac ̸= 0 that annT (bc) = annT b. Since c ∈ Z(T ), there
exists d ∈ T\{0} that cd = 0. Hence, (ac)d = (bc)d = 0. This implies that ad = bd = 0. This

is impossible since a + b /∈ Z(T ). Thus there exists no path of length two between a and b in
(AG(T ))c. This shows that d(a, b) ≥ 3 in (AG(T ))c and so, d(a, b) = 3 in (AG(T ))c.

Corollary 2.7. Let R be a reduced ring with P as its unique maximal N-prime of (0). Then

(AG(R))c is connected and moreover, diam((AG(R))c) = r((AG(R))c) = 2.

Proof. Note that Z(R) = P . Thus for any a, b ∈ Z(R), a + b ∈ Z(R). Let a, b ∈ P\{0} with

a ̸= b. It follows from (i) and (ii) of Proposition 2.5 that there exists a path of length at most two

between a and b in (AG(R))c. This proves that (AG(R))c is connected and diam((AG(R))c) ≤
2. We next verify that e(x) = 2 for any x ∈ Z(R)∗. Note that there exists y ∈ R\{0} such that
xy = 0. As R is reduced, it follows that x ̸= y. Thus x and y are not adjacent in (AG(R))c.
Hence, d(x, y) = 2 in (AG(R))c. Since diam((AG(R))c) ≤ 2, we obtain that e(x) = 2.

Therefore, diam((AG(R))c) = r((AG(R))c) = 2.

In Example 2.8, we mention an example from [10, Example p.16] which illustrates Corollary

2.7.

Example 2.8. Let K be a �eld and {Xi}∞i=1
be a set of indeterminates over K. Let D =

∪∞
n=1

K[[X1, . . . , Xn]]. Let I be the ideal of D generated by {XiXj : i, j ∈ N, i ̸= j}. Let

R = D/I . Then the following statements hold.
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(i) R has exactly one maximal N-prime of its zero ideal.

(ii) R is reduced, (AG(R))c is connected, and diam((AG(R))c) = r((AG(R))c) = 2.

Proof. (i) For each i ∈ N, let us denote Xi + I by xi. Let M denote the ideal of R generated

by {xi : i ∈ N}. It was noted in [10, Example, p.16] that R is quasilocal with M as its unique

maximal ideal. Moreover, it was veri�ed in [16, Example 3.4(i)] that R has M as its unique

maximal N-prime of its zero ideal.

(ii) Let i ∈ N. Let Pi denote the ideal of R generated by {xj : j ∈ N, j ̸= i}. It was mentioned

in [10, Example, p.16] that {Pi : i ∈ N} is the set of all minimal prime ideals ofR and moreover,

∩∞
i=1

Pi = (0). Hence, R is reduced. It now follows from Corollary 2.7 that (AG(R))c is

connected and diam((AG(R))c) = r((AG(R))c) = 2.

In Example 2.9, we present an example of a quasilocal ring (R,P ) such that P is the unique

maximal N-prime of (0) in R, (AG(R))c is connected, and moreover, diam((AG(R))c) =
r((AG(R))c) = 3. Example 2.9 presented below is from [13, Exercises 6 and 7, pp. 62-63].

Moreover, Example 2.9 illustrates that Corollary 2.7 may fail to hold for a ring which is not

reduced.

Example 2.9. Let S = K[X,Y ] be the polynomial ring in two variables X,Y over a �eld K.

Let M = SX + SY . Let T = SM . Let W = ⊕(T/Tp) be the direct sum of the T-modules

T/Tp, where p varies over all the nonassociate prime elements of T . Let R = T ⊕W be the ring

obtained on using Nagata's principle of idealization. Then the following statements hold.

(i) P = MT ⊕ W is the unque maximal ideal of R and moreover, P is the only maximal

N-prime of the zero ideal in R.
(ii) (AG(R))c is connected and moreover, diam((AG(R))c) = r((AG(R))c) = 3.

Proof. Since T is local with MT as its unique maximal ideal, it follows that P = MT ⊕W is

the unique maximal ideal of R. Moreover, note that T is a unique factorization domain with an

in�nite number of nonassociate prime elements. We know from the veri�cation of [17, Example

2.8] that P is the unique maximal N-prime of the zero ideal in R.

(ii) For convenience, let us denote the set of all nonassociate prime elements of T by P. Note
that W = ⊕p∈P(T/Tp). Let x = (a,w) ∈ P\{(0, 0)}. Suppose that a ̸= 0. Let A denote the

set of all p ∈ P such that p divides a in T . Then it is easy to verify that annRx = (0) ⊕ N ,

where N = ⊕p∈A(T/Tp). Suppose that a = 0. Then w ̸= 0 and x = (0, w). Let B denote the

set of all p ∈ P such that the component of w corresponding to p is nonzero. It is clear that B is

a �nite nonempty subset of P. Let us denote the ideal
∏

p∈B Tp by I . It is not hard to show that

annRx = I ⊕W .

Let x, y ∈ P\{(0, 0)} with x ̸= y. Let x = (a,w) and y = (b, w′) for some a, b ∈ MT
and w,w′ ∈ W . We now show that there exists a path of length at most three between x and

y in (AG(R))c. We can assume that x and y are not adjacent in (AG(R))c. We consider the

following cases.

Case(I). a ̸= 0 and b ̸= 0

Let z = (ab, 0). Then it is clear that z ∈ P, z ̸= (0, 0). Observe that zx = (a2b, abw) and
yz = (ab2, abw′). LetA1 denote the set of all p ∈ P such that p divides a in T and letA2 denote

the set of all p ∈ P such that p divides b in T . Note that annR(xz) = annRz = annR(yz) =
(0)⊕N , where N = ⊕p∈A1∪A2(T/Tp). Therefore, x− z− y is a path of length two between x
and y in (AG(R))c.
Case(II). a = b = 0

Note that w,w′ are nonzero elements of W . Let B1 denote the set of all p ∈ P such that the

component ofw corresponding to p is nonzero and letB2 denote the set of all p ∈ P such that the

component ofw′ corresponding to p is nonzero. Observe thatB1 andB2 are �nite and nonempty

subsets of P. Since P is in�nite, there exists p ∈ P such that p /∈ B1 ∪ B2. Let z = (p, 0).
Note that xz = (0, pw) and yz = (0, pw′). Observe that annR(xz) = annRx = I1 ⊕W , where

I1 =
∏

p∈B1
Tp. and annR(yz) = annRy = I2 ⊕W , where I2 =

∏
p∈B2

Tp. Hence, we obtain

that x− z − y is a path of length two between x and y in (AG(R))c.
Case(III). a ̸= 0 but b = 0

Let p ∈ P be such that p does not divide a in T . Let w′′ ∈ W be such that the component of

w′′ corresponding to p is 1+ Tp and for any q ∈ P, q ̸= p, the component of w′′ corresponding
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to q is 0+ Tq. Let z = (0, w′′). Observe that xz = (0, aw′′) . Note that annR(xz) = annRz =
Tp ⊕W . Hence, x and z are adjacent in (AG(R))c. We know from Case(II) that there exists a

path of length at most two between z = (0, w′′) and y = (0, w′) in (AG(R))c. This shows that
there exists a path of length at most three between x and y in (AG(R))c.

This proves that (AG(R))c is connected and diam((AG(R))c) ≤ 3. We next verify that

e(x) = 3 in (AG(R))c for each x ∈ P , x ̸= (0, 0). Note that x = (a,w) for some a ∈ MT and

w ∈ W . We consider two cases. Suppose that a ̸= 0. LetA denote the set of all p ∈ P such that

p divides a in T . It is clear that A is a �nite nonempty subset of P. Let w′ ∈ W be de�ned as

follows: the component of w′ corresponding to p equals any nonzero element of T/Tp for each
p ∈ A, whereas, for any q ∈ P, q /∈ A, the component of w′ corresponding to q equals 0+ Tq.
Let y = (0, w′). Observe that xy = (0, 0). and so, x and y are not adjacent in (AG(R))c. We

assert that there exists no path of length two between x and y in (AG(R))c. Suppose that there
exists z ∈ P\{(0, 0)} such that x− z − y is a path of length two between x and y in (AG(R))c.
Let z = (b, w′′) for some b ∈ MT and w′′ ∈ W . As z and y are adjacent in (AG(R))c, it follows
that zy ̸= (0, 0) and so, bw′ ̸= 0. Hence, we obtain that there exists at least one p ∈ A such

that p does not divide b in T . Moreover, as y and z are adjacent in (AG(R))c, we obtain that

either annR(yz) = annRy or annR(yz) = annRz. Let B denote the set of all p ∈ P such that p
divides b in T . It is clear that annRz = (0)⊕N , whereN = ⊕p∈B(T/Tp). LetA1 be the subset

consisting of all p ∈ A such that the component of bw′ corresponding to p is nonzero. Observe
that annRy = (

∏
p∈A Tp)⊕W and annR(yz) = (

∏
p∈A1

Tp) ⊕W . It follows from the above

discussion that annR(yz) = annRy and so, we obtain thatA = A1. Hence, b is not divisible by
any p ∈ A. Therefore, A∩B = ∅. Note that annRx = (0)⊕(⊕p∈A(T/Tp)) , annRz = (0)⊕N ,

where N = ⊕p∈B(T/Tp) and annR(xz) = (0) ⊕ N ′, where N ′ = ⊕p∈A∪B(T/Tp). Since

A ∪ B /∈ {A,B}, we obtain that annR(xz) ̸= annRx and annR(xz) ̸= annRz. This is

in contradiction to the assumption that x and z are adjacent in (AG(R))c. This proves that

there exists no path of length two between x and y in (AG(R))c. As it is already shown that

diam((AG(R))c) ≤ 3, it follows that e(x) = 3 in (AG(R))c.
Suppose that a = 0. Then x = (0, w) and w ̸= 0. Let C be the �nite nonempty subset

of P consisting of all p ∈ P such that the component of w corresponding to p is nonzero. Let

b =
∏

p∈C p. Let y = (b, 0). It follows as in the previous paragraph that d(x, y) = 3 in (AG(R))c

and so, e(x) = 3 in (AG(R))c. This proves that e(x) = 3 for each vertex x of (AG(R))c and
therefore, diam((AG(R))c) = r((AG(R))c) = 3.

Lemma 2.10. Let R be a reduced ring which admits P as its unique maximal N-prime of (0).
Then (AG(R))c contains an in�nite clique.

Proof. Note that Z(R) = P . Let a ∈ P, a ̸= 0. Since R is reduced, it follows that an ̸= 0

and moreover, annR(an) = annRa for all n ∈ N. Furthermore, we assert that an ̸= am for

all distinct n,m ∈ N. Suppose that an = am for some distinct n,m ∈ N. We can assume

without loss of generality that n < m. Observe that an(1 − am−n) = 0. This implies that

1− am−n ∈ Z(R) = P . Hence, 1 = am−n + 1− am−n ∈ P . This is impossible. Thus an ̸= am

for all distinct n,m ∈ N. Note that the subgraph of (AG(R))c induced on {an : n ∈ N} is an

in�nite clique.

Remark 2.11. Let R be a reduced ring which admits P as its unique maximal N-prime of

(0). Then girth((AG(R))c) = 3. Indeed, any edge of (AG(R))c is an edge of a triangle in

(AG(R))c.

Proof. Let a ∈ P, a ̸= 0. It follows from the proof of Lemma 2.10 that a− a2 − a3 − a is a cycle
of length 3 in (AG(R))c. Therefore, girth((AG(R))c) = 3. Let a− b be an edge of (AG(R))c.
Then ab ̸= 0 and as 1 − b, 1 − a /∈ P , it follows that ab /∈ {a, b}. We know from the proof of

Proposition 2.5(i) that a−ab and ab− b are edges of (AG(R))c. Hence, a−ab− b−a is a cycle
of length 3 in (AG(R))c.

3 The case where R has at least two maximal N-primes of (0)

In this section, we consider reduced rings R such that R has at least two maximal N-primes of

(0) and study the properties of (AG(R))c.
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Proposition 3.1. Let R be a reduced ring which admits at least two maximal N-primes of (0).
Then (AG(R))c is connected if and only if P1∩P2 ̸= (0) for any two maximal N-primes P1, P2 of

(0) in R. Moreover, if (AG(R))c is connected, then 2 ≤ diam((AG(R))c) ≤ 3 and furthermore,

diam((AG(R))c) = 3 if and only if there exist a, b ∈ Z(R)∗ such that ab = 0 and a+ b /∈ Z(R).

Proof. Assume that P1 ∩ P2 ̸= (0) for any two maximal N-primes P1, P2 of (0) in R. (This

condition is satis�ed if R has at least three maximal N-primes of (0).) Let a, b ∈ Z(R)∗, a ̸= b.
We know from Proposition 2.5(iii) that there exists a path of length at most three between a and
b in (AG(R))c. This proves that (AG(R))c is connected and diam((AG(R))c) ≤ 3.

Suppose that P1 ∩ P2 = (0) for some maximal N-primes P1, P2 of (0) in R. In such a case,

it is clear that {P1, P2} is the set of all maximal N-primes of (0) in R. Observe that for any

x ∈ P1\{0}, P2 = ((0) :R x) and for any y ∈ P2\{0}, P1 = ((0) :R y). Hence, the subgraph of
(AG(R))c induced on Pi\{0} is complete for each i ∈ {1, 2}. Let x ∈ P1\{0} and y ∈ P2\{0}.
As there is no path in (G(R))c between x and y, it follows that there is no path in (AG(R))c

between x and y. This shows that (AG(R))c is not connected and has exactly two components

g1 and g2, where gi equals the subgraph of (AG(R))c induced on Pi\{0} for each i ∈ {1, 2}. In
this case, it is evident that (G(R))c = (AG(R))c.

Assume that (AG(R))c is connected. It is noted in the �rst paragraph of this proof that

diam((AG(R))c) ≤ 3. We next verify that diam((AG(R))c) ≥ 2. Indeed, we show that

e(a) ≥ 2 for any a ∈ Z(R)∗. Let a ∈ Z(R)∗. Then there exists x ∈ Z(R)∗ such that ax = 0.

As R is reduced, it is clear that a ̸= x. From ax = 0, it follows that a and x are not adjacent

in (AG(R))c. Hence, d(a, x) ≥ 2 in (AG(R))c. This shows that e(a) ≥ 2 for any vertex a of

(AG(R))c and so, diam((AG(R))c) ≥ 2. This proves that 2 ≤ diam((AG(R))c) ≤ 3. We now

prove the furthermore part. Assume that diam((AG(R))c) = 3. Hence, there exist a, b ∈ Z(R)∗

such that d(a, b) = 3 in (AG(R))c. Therefore, a and b are not adjacent in (AG(R))c. If ab ̸= 0,

then we know from Proposition 2.1(i) that a− ab− b is a path of length two between a and b in
(AG(R))c. This is impossible, since we are assuming that d(a, b) = 3 in (AG(R))c. Therefore,
ab = 0. If a+ b ∈ Z(R), then we know from Proposition 2.5(ii) that a − (a+ b) − b is a path
of length two between a and b in (AG(R))c. This is again impossible. Hence, a + b /∈ Z(R).
Conversely, if a, b ∈ Z(R)∗ are such that ab = 0 and a+ b /∈ Z(R), then we know from Lemma

2.6 that d(a, b) = 3 in (AG(R))c and so, diam((AG(R))c) = 3.

Recall that for any ring R, the total quotient ring of R, denoted by Tot(R), is de�ned as

S−1R, where S = R\Z(R). That is, the total quotient ring of R is the ring of fractions of R with

respect to the multiplicatively closed subsetR\Z(R) ofR. LetR be a reduced ring which admits

at least two maximal N-primes of (0) such that (AG(R))c is connected. In Proposition 3.2, we

characterize when diam((AG(R))c) = 3 in terms of some ring-theoretic property of Tot(R).

Proposition 3.2. Let R be a reduced ring which admits at least two maximal N-primes of (0).
Suppose that (AG(R))c is connected. Then diam((AG(R)c) = 3 if and only if Tot(R) contains
a nontrivial idempotent.

Proof. Assume that diam((AG(R))c) = 3. Hence, we obtain from Proposition 3.1 that there

exist a, b ∈ Z(R)∗ such that ab = 0 and a + b /∈ Z(R). Consider the elements x = a/1 and

y = b/1 of Tot(R). Observe that xy = 0/1 and x+y is a unit in Tot(R). Let I1 = Tot(R)x and

I2 = Tot(R)y. Note that I1 + I2 = Tot(R) and I1I2 = (0/1). Therefore, we obtain from the

Chinese remainder theorem [4, Proposition 1.10(ii) and (iii)] that the mapping f : Tot(R) →
Tot(R)/I1 × Tot(R)/I2 de�ned by f(t) = (t + I1, t + I2) is an isomorphism of rings. This

proves that Tot(R) is isomorphic to the direct product of two nonzero rings. Hence, Tot(R)
contains an idempotent e such that e /∈ {0/1, 1/1}.

Conversely, assume that Tot(R) contains a nontrivial idempotent. Let e = r/s be a nontriv-
ial idempotent of Tot(R). Then (r/s)((s − r)/s) = 0/1. This implies that r, s − r ∈ R\{0},
r(s − r) = 0, and r + s − r = s /∈ Z(R). Hence, we obtain from Proposition 3.1 that

diam((AG(R))c) = 3.

In Example 3.3, we mention an example of a reduced ring S such that Tot(S) admits a

nontrivial idempotent but S has no nontrivial idempotent.
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Example 3.3. Let R be the ring considered in Example 2.8. Let S = R[[X]] be the power

series ring in one variable X over R. Then Tot(S) admits a nontrivial idempotent but S has no

nontrivial idempotent.

Proof. In the notation of Example 2.8, R is quasilocal with M as its unique maximal ideal, R
is reduced, and moreover, M is generated by {xi : i ∈ N}. Furthermore, xixj = 0 + I for all

distinct i, j ∈ N. Note that S = R[[X]] is quasilocal withMS+XS as its unique maximal ideal.

Therefore, S has no nontrivial idempotent. Since R is reduced, it follows that S is reduced. Let

f(X) = x1X and g(X) =
∑∞

j=2
xjX

j .. Observe that f(X)g(X) = 0+I . Hence, f(X), g(X) ∈
Z(S). We claim that f(X) + g(X) /∈ Z(S). For if f(X) + g(X) ∈ Z(S), then it follows from

[9, Proposition 3.5] that there exists r ∈ R\{0 + I} such that r(f(X) + g(X)) = 0 + I . This
implies that rxi = 0 + I for all i ∈ N. Hence, rM = (0 + I). Therefore, r2 = 0 + I . This is
impossible, since R is reduced and r ∈ R\{0+ I}. This proves that f(X)+ g(X) /∈ Z(S). Now
it follows from Propositions 3.1 and 3.2 that Tot(S) contains a nontrivial idempotent.

Let R be a reduced ring which admits at least two maximal N-primes of (0) such that

(AG(R))c is connected. In Lemma 3.4, we provide a condition on the nature of maximal N-

primes of (0) in R which implies that diam((AG(R))c) = 3.

Lemma 3.4. Let R be a reduced ring which admits at least two maximal N-primes of (0) such
that (AG(R))c is connected. If R admits at least one maximal N-prime of (0) such that P is a

B-prime of (0) in R, then diam((AG(R))c) = 3.

Proof. Let u ∈ R\{0} be such that P = ((0) :R u). Since R is reduced, u2 ̸= 0 and so, u /∈ P .
As is mentioned in the introduction , we know from Zorn's lemma and [13, Theorem 1] that if I
is any ideal of R with I ⊆ Z(R), then I ⊆ Q for some maximal N-prime Q of (0) in R. Hence,
it follows that P +Ru ̸⊆ Z(R). Therefore, there exist p ∈ P and r ∈ R such that p+ru /∈ Z(R).
On applying Lemma 2.6 with a = p and b = ru, we obtain that d(p, ru) = 3 in (AG(R))c. It
now follows from Proposition 3.1 that diam((AG(R))c) = 3.

Let R be a reduced ring which admits at least two maximal N-primes of (0) such that

(AG(R))c is connected. In Lemma 3.5, Example 3.6, Propositions 3.7 and 3.8, we discuss

regarding r((AG(R))c).

Lemma 3.5. Let R be a reduced ring which admits at least two maximal N-primes of (0) such
that (AG(R))c is connected. If there exists x ∈ R\{0} such that x ∈ P for any maximal N-prime

P of (0) in R, then r((AG(R))c) = 2.

Proof. We know from the proof of Proposition 3.1 that e(a) ≥ 2 in (AG(R))c for any a ∈
Z(R)∗. We now verify that d(x, y) ≤ 2 in (AG(R))c for any y ∈ Z(R)∗ with y ̸= x. Let

y ∈ Z(R)∗, y ̸= x be such that x and y are not adjacent in (AG(R))c. If xy ̸= 0, then we

obtain from Proposition 2.5(i) that x − xy − y is a path of length two between x and y in

(AG(R))c. Suppose that xy = 0. Note that y ∈ P for some maximal N-prime P of (0) in R. By
hypothesis, x ∈ P . Hence, x + y ∈ P ⊆ Z(R). Therefore, we obtain from Proposition 2.5(ii)
that x − (x + y) − y is a path of length two between x and y in (AG(R))c. This proves that

e(x) = 2 in (AG(R))c and so, r((AG(R))c) = 2.

For a reduced ring R which has only one maximal N-prime of (0), we know from Corollary

2.7 that diam((AG(R))c) = r((AG(R))c). In Example 3.6, we illustrate that this result can

fail to hold for a reduced ring T which admits at least two maximal N-primes of (0) such that

(AG(T ))c is connected.

Example 3.6. Let R be the reduced ring considered in Example 2.8. Let T = R × Z. Then

(AG(T ))c is connected, and moreover, r((AG(T ))c) = 2 < diam((AG(T ))c) = 3.

Proof. In the notation of the proof of Example 2.8(i), we know that R has M as its only one

maximal N-prime of its zero ideal and moreover, R is reduced. Note that T is reduced and

Z(T ) = (M ×Z)∪ (R× (0)). Hence, it follows that T has exactly two maximal N-primes of its
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zero ideal and they are given by P1 = M×Z and P2 = R×(0). Observe that P1∩P2 = M×(0) ̸=
(0) × (0). Therefore, we obtain from Proposition 3.1 that (AG(T ))c is connected. Moreover,

on applying Proposition 3.1 with a = (1, 0) and b = (0, 1), we get that diam((AG(T ))c) = 3.

Furthermore, for any nonzero m ∈ M , (m, 0) ∈ P1 ∩ P2 and hence, it follows from Lemma 3.5

that r((AG(T ))c) = 2.

Let R be a reduced ring with at least two maximal N-primes of (0) such that (AG(R))c is
connected. In Propositions 3.7 and 3.8, we provide some suf�cient conditions on the ring R in

order that diam((AG(R))c) = r((AG(R))c) = 3.

Proposition 3.7. Let R be a reduced ring with a �nite number n ≥ 3 of minimal prime ideals.

Then (AG(R))c is connected and moreover, diam((AG(R))c) = r((AG(R))c) = 3.

Proof. Let {P1, P2, P3, . . . , Pn} denote the set of all minimal prime ideals of R. Note that

∩n
i=1

Pi = (0) and Z(R) = ∪n
i=1

Pi. Observe that {P1, P2, . . . , Pn} is the set of all maximal N-

primes of (0) in R. Since n ≥ 3, it follows that the intersection of any two maximal N-primes of

(0) is nonzero. Hence, we obtain from Proposition 3.1 that (AG(R))c is connected and moreover,

diam((AG(R))c) ≤ 3. We next verify that e(x) ≥ 3 for any x ∈ Z(R)∗. Let x ∈ Z(R)∗. Let
A = {i ∈ {1, . . . , n} : x ∈ Pi}. Note that A ̸= ∅ and A ⊂ {1, . . . , n}. Let B = {1, . . . , n}\A.
Note that ∩i∈BPi ̸⊆ ∪i∈APi. Therefore, there exists y ∈ (∩i∈BPi)\(∪i∈APi). It is clear

from the choice of y that xy = 0 and x + y /∈ Z(R). Hence, we obtain from Lemma 2.6

that d(x, y) = 3 in (AG(R))c. This proves that e(x) ≥ 3 for any x ∈ Z(R)∗. Therefore,

diam((AG(R))c) = r((AG(R))c) = 3.

Let R be the ring considered in Example 2.8. It is noted in the proof of Example 2.8(ii) that
R has an in�nite number of minimal prime ideals. Let T = R × Z. Observe that T is reduced

and has in�nitely many minimal prime ideals. It is veri�ed in Example 3.6 that r((AG(T ))c) =
2 < diam((AG(T ))c) = 3. Thus Example 3.6 illustrates that Proposition 3.7 can fail to hold

for a reduced ring with an in�nite number of minimal prime ideals. Recall from [8, Exercise

16, p.111] that a ring R is said to be von Neumann regular if for any given x ∈ R, there exists
y ∈ R such that x = x2y. It is known that a ring R is von Neumann regular if and only if R is

reduced and dimR = 0 [8, Exercise 16(d), p.111]. We prove in Proposition 3.8 that for any von

Neumann regular ring R with at least three prime ideals, (AG(R))c is connected and moreover,

r((AG(R))c) = diam((AG(R))c) = 3.

Proposition 3.8. Let R be a von Neumann regular ring with at least three prime ideals. Then

(AG(R))c is connected and moreover, r((AG(R))c) = diam((AG(R))c) = 3.

Proof. As R is von Neumann regular, each prime ideal of R is minimal and maximal. Thus

each prime ideal of R is a maximal N-prime of (0) in R. By hypothesis, we obtain that R
has at least three maximal N-primes of (0) and therefore, it follows from Proposition 3.1 that

(AG(R))c is connected and moreover, diam((AG(R))c) ≤ 3. We next verify that e(x) ≥ 3

for each x ∈ Z(R)∗. Let x ∈ Z(R)∗. Since R is von Neumann regular, there exists y ∈ R
such that x = x2y. This implies that xy = e is an idempotent element of R. Observe that

x = ex = (x+ 1 − e)e = ue with u = x+ 1 − e is a unit in R. It is clear that e /∈ {0, 1}. Let
z = 1 − e. Note that xz = 0 and x+ z is a unit in R and hence, x+ z /∈ Z(R). Therefore, we
obtain from Lemma 2.6 that d(x, z) = 3 in (AG(R))c. This proves that e(x) ≥ 3 for any vertex

x of (AG(R))c. Hence, we get that r((AG(R))c) = diam((AG(R))c) = 3.

Let R be a reduced ring which admits at least two maximal N-primes of (0). We discuss

regarding girth((AG(R))c) in Lemmas 3.9 and 3.10. We need some lemmas to arrive at the

conclusion of Theorem 3.12. It is clear that if (AG(R))c contains an in�nite clique, then

girth((AG(R))c) = 3. In keeping with our focus on the present need and also on the prob-

lem of determining the clique number of (AG(R))c in the later part of this section, we provide

some suf�cient conditions in Lemmas 3.9 and 3.10 in order that (AG(R))c to contain an in�nite
clique.

Lemma 3.9. LetR be a reduced ring. Let P1, P2 be distinct prime ideals ofR such that P1∪P2 ⊆
Z(R). If P1+P2 ̸= R, then (AG(R))c contains an in�nite clique and so, girth((AG(R))c) = 3.
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Proof. Observe that either P1 ̸⊆ P2 or P2 ̸⊆ P1. Without loss of generality, we can assume that

P1 ̸⊆ P2. Let a ∈ P1\P2. Hence, an ∈ P1\P2 for all n ∈ N and so, an ̸= 0. We claim that

an ̸= am for all distinct n,m ∈ N. Suppose that an = am for some distinct n,m ∈ N. Without

loss of generality, we can assume that n < m. From an = am, it follows that an(1−am−n) = 0.

This implies from the choice of a that 1−am−n ∈ P2. Therefore, 1 = am−n+1−am−n ∈ P1+P2.

This is in contradiction to the assumption that P1 + P2 ̸= R. Thus an ̸= am for all distinct

n,m ∈ N. Since R is reduced, annRa = annRa
n for all n ∈ N. Moreover, as P1 ⊆ Z(R),

it follows that an ∈ Z(R)∗ for all n ∈ N. Hence, we obtain that an and am are adjacent

in (AG(R))c for all distinct n,m ∈ N. Therefore, it follows that the subgraph of (AG(R))c

induced on {an : n ∈ N} is an in�nite clique. Observe that a− a2 − a3 − a is a cycle of length 3
in (AG(R))c and so, girth((AG(R))c) = 3.

Lemma 3.10. LetR be a reduced ring. If G(R) contains an in�nite clique, then so does (AG(R))c.

Proof. By hypothesis, there exists an in�nite subset A of Z(R)∗ such that the subgraph of G(R)
induced on A is a clique. Hence, for each i ∈ N, there exists ai ∈ A such that ai ̸= aj for all

distinct i, j ∈ N. Moreover, aiaj = 0 for all distinct i, j ∈ N. Let i ∈ N. De�ne xi =
∑i

k=1
ak.

From xiai+1 = 0, it follows that xi ∈ Z(R) for each i ∈ N. We assert that xi ̸= 0 for each

i ∈ N. This is clear if i = 1. Let i ≥ 2. If xi = 0, then we obtain that ai = −
∑i−1

k=1
ak. This

implies that a2i = 0. This is a contradiction since ai ̸= 0 and R is reduced. Let i, j ∈ N, i ̸= j.
We verify that xi and xj are adjacent in (AG(R))c. Without loss of generality, we can assume

that i < j. First, note that xi ̸= xj . For if xi = xj , then we get that aj = −
∑

i+1≤k<j ak.

This implies that aj = 0. This is impossible. Hence, xi ̸= xj . From xixj = x2i , it follows that
annR(xixj) = annRxi. This shows that xi and xj are adjacent in (AG(R))c. Therefore, the

subgraph of (AG(R))c induced on {xi : i ∈ N} is an in�nite clique.

With the help of [7, Proposition 3.7], in Theorem 3.12, we determine necessary and suf�cient

conditions in order that (AG(R))c does not contain any in�nite clique, whereR is a reduced ring

which admits at least two maximal N-primes of (0). We use Lemma 3.11 in the proof of Theorem

3.12.

Lemma 3.11. Let R1 be an integral domain and let R2 be a nonzero ring. Let R = R1 × R2. If

R1 is in�nite, then (AG(R))c contains an in�nite clique.

Proof. Since R1 is in�nite, there exist ai ∈ R1\{0} for each i ∈ N such that ai ̸= aj for all

distinct i, j ∈ N. Observe that the subgraph of (AG(R))c induced on {(ai, 0) : i ∈ N} is an

in�nite clique.

Theorem 3.12. Let R be a reduced ring which admits at least two maximal N-primes of (0).
Then the following statements are equivalent:

(i) ω((AG(R))c) < ∞.

(ii) (AG(R))c does not contain any in�nite clique.

(iii) There exist �nite �elds F1, F2, . . . , Fn(n ≥ 2) such that R ∼= F1×F2×· · ·×Fn as rings.

Proof. (i) ⇒ (ii) This is clear.

(ii) ⇒ (iii) We know from Lemma 3.10 that G(R) does not contain any in�nite clique. Hence,
we obtain from [7, Proposition 3.7] that R can admit only a �nite number of minimal prime

ideals. Let {P1, . . . , Pn} denote the set of all minimal prime ideals of R. It is clear that n ≥ 2

and ∩n
i=1

Pi = (0). Observe that {P1, P2, . . . , Pn} is the set of all maximal N-primes of (0) in
R. It follows from Lemma 3.9 that Pi + Pj = R for all distinct i, j ∈ {1, 2, . . . , n}. Now on

applying the Chinese remainder theorem [4, Proposition 1.10(ii) and (iii)], we obtain that the

mapping f : R → R/P1 ×R/P2 × · · · ×R/Pn de�ned by f(r) = (r + P1, r + P2, . . . , r + Pn)
is an isomorphism of rings. Let us denote R/Pi by Di for each i ∈ {1, 2, . . . , n}. Note that Di

is an integral domain for each i ∈ {1, 2, . . . , n} and R ∼= D1 × D2 × · · · × Dn as rings. From

Lemma 3.11, we obtain that Di is �nite and as any �nite integral domain is a �eld, it follows

that Di is a �nite �eld for each i ∈ {1, 2, . . . , n}. Therefore, with Fi = Di, we obtain that Fi is

a �nite �eld for each i ∈ {1, 2, . . . , n} and R ∼= F1 × F2 × · · · × Fn as rings.

(iii) ⇒ (i) From (iii), it is clear that R is �nite and so, ω((AG(R))c) < ∞.
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Let R be a reduced ring which admits at least two maximal N-primes of (0). If (AG(R))c

contains an in�nite clique, then it is clear that girth((AG(R))c) = 3. Hence, in determining

rings R such that girth((AG(R))c) = 3, it is enough to consider rings R such that (AG(R))c

does not contain any in�nite clique. Therefore, by Theorem 3.12, we can assume that there

exist n ≥ 2 and �nite �elds F1, F2, . . . , Fn such that R ∼= F1 × F2 × · · ·Fn as rings. With this

assumption, we proceed to determine rings R which are direct product of n (n ≥ 2) �nite �elds

such that girth((AG(R))c) = 3.

Lemma 3.13. LetR1, R2, R3 be rings and letR = R1×R2×R3. If at least one amongR1, R2, R3

contains at least three elements, then girth((AG(R))c) = 3.

Proof. Without loss of generality, we can assume that R1 contains at least three elements. Let

a ∈ R1\{0, 1}. Let x = (1, 0, 0), y = (a, 0, 0), and z = (1, 1, 0). Note that x − y − z − x is a

cycle of length 3 in (AG(R))c and so, girth((AG(R))c) = 3.

Corollary 3.14. Let F1, F2, . . . , Fn be �nite �elds and let R = F1×F2×· · ·×Fn. If n ≥ 4, then

girth((AG(R))c) = 3.

Proof. If n ≥ 4, then it is clear that |F3 × F4 × · · · × Fn| ≥ 3 and R ∼= R1 × R2 × R3 with

R1 = F1, R2 = F2, and R3 = F3 ×F4 × · · · ×Fn. It follows immediately from Lemma 3.13 that

girth((AG(R))c) = 3.

In Lemma 3.16, we characterize rings of the form R = F1 × F2 , where F1 and F2 are �nite

�elds in order that girth((AG(R))c) = 3. It is convenient to denote the collection of rings

{Z2 × Z2,Z2 × Z3,Z3 × Z3} by A.

Lemma 3.15. LetD1, D2 be integral domains and let R = D1 ×D2. If eitherD1 orD2 contains

at least three nonzero elements, then girth((AG(R))c) = 3.

Proof. Without loss of generality, we can assume that D1 contains at least three nonzero ele-

ments. Let a, b, c ∈ D1\{0} be any three distinct elements. Then it is clear that (a, 0)− (b, 0)−
(c, 0)− (a, 0) is a cycle of length 3 in (AG(R))c. Therefore, girth((AG(R))c) = 3.

Lemma 3.16. Let R = F1 × F2, where F1 and F2 are �nite �elds. Then the following statements

are equivalent:

(i) girth((AG(R))c) = 3.

(ii) (AG(R))c contains a cycle.

(iii) R is not isomorphic to any of the rings in A.

Proof. (i) ⇒ (ii) This is clear.

(ii) ⇒ (iii) Let T1 = Z2 × Z2. Observe that (AG(T1))c is a graph on two isolated vertices

{(1, 0), (0, 1)}. Let T2 = Z2 × Z3. Then (AG(T2))c has exactly two components g1 and g2,
where g1 is the complete graph on the single vertex {(1, 0)} and g2 is the complete graph on the

vertices {(0, 1), (0, 2)}. Let T3 = Z3 × Z3. Note that (AG(T3))c has exactly two components

h1 and h2, where h1 is the complete graph on two vertices {(0, 1), (0, 2)} and h2 is the complete

graph on two vertices {(1, 0), (2, 0)}. Thus (AG(Ti))c does not contain any cycle for each

i ∈ {1, 2, 3} and so, girth((AG(Ti))c) = ∞. Therefore, R is not isomorphic to any of the rings

in A.

(iii) ⇒ (i) Assume that R is not isomorphic to any of the rings in A. Hence, we obtain that

either F1 or F2 must contain at least three nonzero elements. In such a case , it follows from

Lemma 3.15 that girth((AG(R))c) = 3.

Let F1, F2, F3 be �nite �elds and R = R1 × F2 × F3. In Lemma 3.18, we characterize such

rings in order that girth((AG(R))c) = 3.

Lemma 3.17. Let R = Z2 × Z2 × Z2. Then (AG(R))c is a cycle of length 6.

Proof. It is convenient to denote (1, 0, 0) by e1, (0, 1, 0) by e2, and (0, 0, 1) by e3. Observe that
the vertex set of (AG(R))c = Z(R)∗ = {e1, e2, e3, e1 + e2, e2 + e3, e3 + e1}. Since e2i = ei for
each i ∈ {1, 2, 3} and eiej = (0, 0, 0) for all distinct i, j ∈ {1, 2, 3}, it follows that (AG(R))c is
the cycle of length 6 given by e1 − (e1 + e2)− e2 − (e2 + e3)− e3 − (e1 + e3)− e1.
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Lemma 3.18. Let R = F1×F2×F3, where F1, F2, F3 are �nite �elds. Then girth((AG(R))c) =
3 if and only if R is not isomorphic to Z2 × Z2 × Z2 as rings.

Proof. Assume that girth((AG(R))c) = 3. Let us denote the ring Z2 × Z2 × Z2 by T . We

know from Lemma 3.17 that (AG(T ))c is a cycle of length 6. Hence, girth((AG(T ))c) = 6.

Therefore, R is not isomorphic to T as rings.

Conversely, assume that R is not isomorphic to Z2 × Z2 × Z2 as rings. Hence, at least one

among F1, F2, F3 contains at least three elements. In such a case, we obtain from Lemma 3.13

that girth((AG(R))c) = 3.

With the help of Theorem 3.12, Corollary 3.14, Lemmas 3.16 and 3.18, we prove in Theorem

3.19 that for a reduced ring R which admits at least two maximal N-primes of (0),
girth((AG(R))c) ∈ {3, 6,∞}. Moreover, in Theorem 3.19, we classify the rings R for which

girth((AG(R))c) = ∞.

Theorem 3.19. Let R be a reduced ring with at least two maximal N-primes of (0). Then the

following statements are equivalent:

(i) girth((AG(R))c) ∈ {3, 6}.
(ii) (AG(R))c contains a cycle.

(iii) R is not isomorphic to any of the rings in A, where A = {Z2 × Z2,Z2 × Z3,Z3 × Z3}.

Proof. (i) ⇒ (ii) This is clear.

(ii) ⇒ (iii) If (AG(R))c contains an in�nite clique, then it is clear that (iii) holds. Suppose that
(AG(R))c does not contain any in�nite clique. Then it follows from Theorem 3.12, Corollary

3.14, and Lemmas 3.16, 3.17, 3.18 that R is not isomorphic to any of the rings inA.

(iii) ⇒ (i) If (AG(R))c contains an in�nite clique, then it is clear that girth((AG(R))c) = 3.

Suppose that (AG(R))c does not contain any in�nite clique. Then it follows from Theorem 3.12,

Corollary 3.14, and Lemmas 3.16, 3.17 , 3.18 that girth((AG(R))c) ∈ {3, 6}. Indeed, it follows
from the above mentioned results that girth((AG(R))c) = 6 if and only if R is isomorphic to

Z2 × Z2 × Z2 as rings.

Let n ≥ 2 and let F1, F2, . . . , Fn be �nite �elds. Let R = F1 × F2 × · · · × Fn. In view of

Theorem 3.12, it is natural to determine ω((AG(R))c). We determine ω((AG(R))c) in Proposi-
tion 3.21 and moreover, we prove that ω((AG(R))c) = χ((AG(R))c). We use Lemma 3.20 in

the proof of Proposition 3.21.

Let T be a ring. It is well-known that the relation ∼ de�ned on Z(T )∗ by x ∼ y if and only

if annTx = annT y is an equivalence relation and hence, it determines a partition of Z(T )∗ into
equivalence classes. For an element x ∈ Z(T )∗, we denote the equivalence class determined by

∼ containing x by [x].

Lemma 3.20. Let R be a reduced ring. Let ∼ be the equivalence relation de�ned on Z(R)∗ as

mentioned above. Let x ∈ Z(R)∗. Then the subgraph of (AG(R))c induced on [x] is a clique.

Proof. Let a, b ∈ [x] , a ̸= b. Note that a ∼ b and so, annRa = annRb. It is clear that annRa ⊆
annR(ab). Let r ∈ R be such that r(ab) = 0. Then ra ∈ annRb = annRa. Hence, ra

2 = 0

and so, ra = 0. This proves that annR(ab) ⊆ annRa and therefore, annR(ab) = annRa. This
shows that a and b are adjacent in (AG(R))c. Hence, the subgraph of (AG(R))c induced on [x]
is a clique.

Proposition 3.21. Let n ≥ 2 and F1, F2, . . . , Fn be �nite �elds with |F1| ≥ |F2| ≥ · · · ≥ |Fn|. Let
R = F1×F2×· · ·×Fn. Then ω((AG(R))c) = χ((AG(R))c) =

∑n−1

i=1
ki, where ki =

∏i
j=1

|F ∗
j |.

Proof. Let i ∈ {1, . . . , n − 1} and let Ci = {(α1, . . . , αi, 0, . . . , 0) : α1 ∈ F ∗
1
, . . . , αi ∈ F ∗

i }.
Let C = ∪n−1

i=1
Ci. We assert that the subgraph of (AG(R))c induced on C is a clique. Let

x, y ∈ C with x ̸= y. We verify that x and y are adjacent in (AG(R))c. Observe that for any i ∈
{1, . . . , n − 1} and any a, b ∈ Ci, annRa = annRb. Hence, by Lemma 3.20, we obtain that the

subgraph of (AG(R))c induced on Ci is a clique. Thus if x, y ∈ Ci for some i ∈ {1, . . . , n− 1},
then we obtain that x and y are adjacent in (AG(R))c. Suppose that x ∈ Ci and y ∈ Cj for some
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distinct i, j ∈ {1, . . . , n − 1}. Without loss of generality, we can assume that i < j. Observe
that xy ∈ Ci and so, annR(xy) = annRx. Therefore, x and y are adjacent in (AG(R))c. This

proves that the subgraph of (AG(R))c induced on C is a clique. As |C| =
∑n−1

i=1
ki, where

ki =
∏i

j=1
|Fj |∗, we get that ω((AG(R))c) ≥

∑n−1

i=1
ki. We next show that χ((AG(R))c) ≤∑n−1

i=1
ki. Let {c11, . . . , c1k1

, c21, . . . , c2k2
, . . . , cn−11, . . . , cn−1kn−1

} be a set of
∑n−1

i=1
ki distinct

colors. Let i ∈ {1, . . . , n − 1} and let Ai = {r ∈ R : exactly i coordinates of r are nonzero}. It
is clear that Z(R)∗ = ∪n−1

i=1
Ai and Ci ⊆ Ai for each i ∈ {1, . . . , n− 1}. Observe that |Ci| = ki

and it is already noted in this proof that the subgraph of (AG(R))c induced on Ci is a clique.

Hence, the elements of Ci can be colored using the set of colors {ci1, . . . , ciki}. For any choice

of integers 1 ≤ m1 < · · · < mi ≤ n from {1, 2, . . . , n}, let us denote the set consisting of

all r ∈ Ai such that mkth coordinate of r is nonzero for each k ∈ {1, . . . , i} by Ai(m1,...,mi).

Observe that Ai is the disjoint union of the sets Ai(m1,...,mi), where 1 ≤ m1 < · · · < mi ≤ n
varies over all possible choice of i elements from {1, 2, . . . , n} and it is clear that Ci = Ai(1,...,i).

By hypothesis, |F1| ≥ |F2| ≥ · · · ≥ |Fn| and so, |Ai(m1,...,mi)| ≤ ki = |Ci| for any choice of

i integers 1 ≤ m1 < · · · < mi ≤ n from {1, 2, . . . , n}. For any distinct choices of integers

say, 1 ≤ m1 < · · · < mi ≤ n and 1 ≤ n1 < · · · < ni ≤ n , it is not hard to verify that a
and b are not adjacent in (AG(R))c for any a ∈ Ai(m1,...,mi) and b ∈ Ai(n1,...,ni). Moreover,

for any x, y ∈ Ai(m1,...,mi), xy ∈ Ai(m1,...,mi) and annR(xy) = annRx. Hence, the subgraph of
(AG(R))c induced onAi(m1,...,mi) is a clique. As |Ai(m1,...,mi)| ≤ ki, the elements ofAi(m1,...,mi)

can be colored using any subset of {ci1, . . . , ciki} containing exactly |Ai(m1,...,mi)| colors. Thus
the vertices of (AG(R))c = Z(R)∗ = ∪n−1

i=1
Ai can be colored using a set of

∑n−1

i=1
ki colors. It is

clear that the above assignment of colors is indeed a proper vertex coloring of (AG(R))c. This

proves that χ((AG(R))c) ≤
∑n−1

i=1
ki. Therefore,

∑n−1

i=1
ki ≤ ω((AG(R))c) ≤ χ((AG(R))c) ≤∑n−1

i=1
ki. This shows that ω((AG(R))c) = χ((AG(R))c) =

∑n−1

i=1
ki.

Corollary 3.22. Let n ≥ 2 and Fi = Z2 for each i ∈ {1, 2, . . . , n}. Let R = F1 × F2 × · · · × Fn.

Then ω((AG(R))c) = χ((AG(R))c) = n− 1.

Proof. As |F ∗
i | = 1 for each i ∈ {1, 2, . . . , n}, in the notation of Proposition 3.21, we obtain

that ki = 1 for each i ∈ {1, . . . , n − 1}. Therefore, it follows from Proposition 3.21 that

ω((AG(R))c) = χ((AG(R))c) =
∑n−1

i=1
ki = n− 1.
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