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Abstract. In this paper, we introduce weak relatively complemented almost distributive lat-

tices. Certain examples are provided. We characterize the class of weak relatively complemented

almost distributive lattices in terms of dense elements and ∗-almost distributive lattices.

1 Introduction

It is well known that Boole axiomatized the two valued propositional calculus into a Boolean

algebra in 1854. Boolean algebras are used to construct and simplify electrical circuits, switching

circuits, which are used in the design of computer chips. However, there are some situations in

which two valued propositional calculus is not adequate. In this context, there can be several

generalizations of Boolean algebras (complemented distributive lattices) have come into picture.

The concept of an almost distributive lattice was introduced by Swamy and Rao as a common

abstraction of lattice theoretic and ring theoretic generalizations of a Boolean algebra like p-

rings, regular rings, bi-regular rings, associated rings, p1-rings, triple systems, Baer rings and

m-domain rings.

An almost distributive lattice is an algebraic structure (L,∧,∨, 0) of type (2, 2, 0) which

satis�es almost all axioms of a distributive lattice with zero except the commutativity of ∧, ∨
and the right distributivity of ∨ over ∧. Infact each one is equivalent to each other. It is not even a
lattice and hence dif�culty to deal with. The associativity of ∨ is not yet known. Several authors

studied this structure in both algebraic and topological aspects. In this paper, our main motto is

to emphasize the importance of the class of weak relatively complemented almost distributive

latices.

2 Preliminaries

Let us recall that the notion of almost distributive lattices and certain necessary results which are

required in the sequel.

De�nition 2.1. [9] By an Almost Distributive Lattice (Shortened: ADL), we mean an algebra

(L,∧,∨, 0) of type (2, 2, 0), if it satis�es the following conditions;

(i) 0 ∧ a = 0

(ii) a ∨ 0 = a

(iii) a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)

(iv) (a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c)

(v) a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)

(vi) (a ∨ b) ∧ b = b

for all a, b, c ∈ L.
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Example 2.2. [9] Let X be a non-empty set. Fix x0 ∈ X . For any x, y ∈ X, de�ne

x ∧ y =

{
x0 if x = x0

y if x ̸= x0
x ∨ y =

{
y if x = x0

x if x ̸= x0.

Then (X,∧,∨, x0) is an ADL with x0 as its zero element. This ADL is called a discrete ADL,

which is not a lattice.

Throughout this paper by L we mean an almost distributive lattice (L,∧,∨, 0) with zero.

Lemma 2.3. [9] For any a, b, c ∈ L, we have

(i) a ∧ 0 = 0 and 0 ∨ a = a

(ii) a ∧ a = a ∨ a = a

(iii) a ∨ b = a ⇐⇒ a ∧ b = b

(iv) ∧ is associative in L

(v) a ∧ b ∧ c = b ∧ a ∧ c

(vi) a ∧ b = 0 ⇐⇒ b ∧ a = 0

(vii) a ∧ b = b ∧ a, when a ∧ b = 0.

For any a, b ∈ L, de�ne a ≤ b if and only if a ∧ b = a or equivalently a ∨ b = b. It is easy to
observe that ≤ is a partial ordering on L. An element m is said to be maximal, if m ∧ x = x for

all x ∈ L. L is discrete if and only if every non-zero element is maximal.

De�nition 2.4. [9] L is said to be relatively complemented, if for any a, b ∈ L, a ≤ b, the interval
[a, b] = {x ∈ L | a ≤ x ≤ b} is a complemented distributive lattice (that is a Boolean algebra).

Theorem 2.5. [9] L is relatively complemented if and only if, for any a, b ∈ L, there exists x ∈ L
such that a ∧ x = 0 and a ∨ x = a ∨ b.

A non-empty subset I of L is said to be an ideal of L, if for any a, b ∈ I and x ∈ L,

a ∨ b, a ∧ x ∈ I . For any non-empty subset S of L, (S) = {(
n∨

i=1

si) ∧ x | si ∈ S, x ∈

L, n is a positive integer} is the smallest ideal containing S. In particular, for any a ∈ L, (a) =
{a∧ x | x ∈ L} is a principal ideal generated by a. The set I(L) of ideals of L forms a complete

bounded distributive lattice, where I ∩ J is the in�mum and I ∨ J = {i ∨ j | i ∈ I, j ∈ J} is

the suprimum of I and J in I(L). The set PI(L) of principal ideals of L is a sublattice of I(L),
where (a) ∧ (b) = (a ∧ b) and (a) ∨ (b) = (a ∨ b) for all a, b ∈ L.

For any non empty subset A of L, the set A∗ = {x ∈ L | a ∧ x = 0 for all a ∈ A} is

an annihilator ideal of L. In particular, for any a ∈ L, {a}∗ = (a)∗, where (a) is a principal

ideal generated by a. An element d is said to be dense, if (d)∗ = {0}. Denote D be the set of

dense elements in L. It is closed under ∧, provided D is non-empty. Moreover, if d ∈ D, then

d ∨ x & x ∨ d ∈ D, for all x ∈ L.

Lemma 2.6. [7] For any I, J ∈ I(L), we have

(i) I ⊆ J implies J∗ ⊆ I∗

(ii) I∗∗∗ = I∗

(iii) (I ∨ J)∗ = I∗ ∩ J∗

(iv) (I ∩ J)∗∗ = I∗∗ ∩ J∗∗

De�nition 2.7. [4] L is said to be a ∗-ADL, if for any x ∈ L, there exists y ∈ L such that

(x)∗∗ = (y)∗.

Theorem 2.8. [4] L is a ∗-ADL if and only if, for any x ∈ L, there exists y ∈ L such that

x ∧ y = 0 and x ∨ y is dense.

De�nition 2.9. [4] L is said to be disjunctive, if for any x, y ∈ L, (x)∗ = (y)∗ implies x = y.
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3 Weak relatively complemented almost distributive lattices

In this section, we de�ne a weak relatively complemented almost distributive lattice. We obtain

necessary and suf�cient conditions for an almost distributive lattice to become weak relatively

complemented.

De�nition 3.1. An ADL L is said to be weak relatively complemented, if for any a, b ∈ L, there
exists x ∈ L such that a ∧ x = 0 and (a ∨ x)∗ = (a ∨ b)∗.

Example 3.2. Let L = {0, d1, d2,m1,m2} be an ADL, where ∧ and ∨ de�ned as follows;

∧ 0 d1 d2 m1 m2

0 0 0 0 0 0

d1 0 d1 d2 d1 d2

d2 0 d1 d2 d1 d2

m1 0 d1 d2 m1 m2

m2 0 d1 d2 m1 m2

∨ 0 d1 d2 m1 m2

0 0 d1 d2 m1 m2

d1 d1 d1 d1 m1 m1

d2 d2 d2 d2 m2 m2

m1 m1 m1 m1 m1 m1

m2 m2 m2 m2 m2 m2

Then (L,∧,∨, 0) is a weak relatively complemented ADL but not a lattice (because d2 ∧ d1 =
d1 ̸= d2 = d1 ∧ d2).

Example 3.3. Let L be a discrete ADL and I is an in�nite set. The set S = {f ∈ LI | |f | = {i ∈
I | f(i) ̸= 0} is �nite } is an ADL with pointwise operations. For any f, g ∈ S, i ∈ I , de�ne

x(i) =

{
g(i) if f(i) = 0 and g(i) ̸= 0

0 otherwise.

Then x ∈ S (since |x| ⊆ |g|) and f ∧ x = 0 and (f ∨ x)∗ = (f ∨ g)∗. Thus S is a weak relatively

complemented ADL. Moreover S has no dense elements.

Example 3.4. Let L = {0, a, b, c, 1} be an ADL whose Hasse-diagram is

Then L is a weak relatively complemented ADL.

Remark 3.5. Every relatively complemented ADL is weak relatively complemented. The con-

verse need not be true. For, see Example 3.2., L is weak relatively complemented but not rela-

tively complemented.

In this context, we have the following.

Theorem 3.6. Every weak relatively complemented disjunctive ADL is relatively complemented.

Proof. Suppose that L is a disjunctive weak relatively complemented ADL. Let a, b ∈ L. Then
there exists x ∈ L such that a ∧ x = 0 and (a ∨ x)∗ = (a ∨ b)∗ (since L is weak relatively

complemented). a ∨ x = a ∨ b, since L is disjunctive.

Theorem 3.7. If every non-zero element is dense in L, then L is weak relatively complemented.
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Proof. Suppose that every non-zero element is dense in L. Let a, b ∈ L, if a ̸= 0, then choose

x = 0. So that a ∧ x = 0 and (a ∨ x)∗ = (a)∗ = (a ∨ b)∗ (since a ∨ b is dense). Similarly, even

if b ̸= 0. Therefore L is a weak relatively complemented ADL.

Remark 3.8. The converse of the above theorem need not be true. For, see Example 3.4., L is

weak relatively complemented ADL but a is a non-dense element in L.

De�nition 3.9. An ideal I of L is said to be a dense complemented, if there exists an ideal J of

L such that I ∧ J = {0} and I ∨ J is an ideal generated by a dense element.

Remark 3.10. In an ADL with maximal elements, every complemented ideal is dense comple-

mented. But the converse need not be true. For, see Example 3.4., (a) is a dense complemented

but not a complemented ideal in L.

Lemma 3.11. For any d ∈ D,x ∈ L, (x) = (d) implies x ∈ D.

Proof. From the hypothesis, we have d = x ∧ d. So that x = x ∨ d (by Lemma 2.3(iii)) is dense

(since x ∨ d is dense).

Lemma 3.12. Every dense complemented ideal is a principal ideal.

Proof. Let I be a dense complemented ideal in L. Then there exists an ideal J such that I ∩J =
{0} and I ∨J = (d), where d is dense element in L. So that d = a∨ b, for some a ∈ I and b ∈ J .
Clearly (a) ⊆ I. Let x ∈ I ⊆ (d). Then x = d∧x = (a∨b)∧x = (a∧x)∨(b∧x) = a∧x (since

b ∧ x ∈ I ∩ J = {0}). Therefore x ∈ (a) and hence I = (a). Thus every dense complemented

ideal is a principal ideal.

Theorem 3.13. If L has dense elements, then L is weak relatively complemented if and only if

every principal ideal is dense complemented.

Proof. Suppose that L is weak relatively complemented. Let a ∈ L and d is a dense element

in L. Then by our assumption, there exists b ∈ L such that a ∧ b = 0 and (a ∨ b)∗ = (a ∨
d)∗ = (a)∗ ∩ (d)∗ = (0). Therefore a ∨ b is dense and hence every principal ideal is dense

complemented. On the other hand, suppose that every principal ideal is dense complemented.

Let a, b ∈ L. Then there exist c, d ∈ L such that (a) ∩ (c) = {0} = (b) ∩ (d) and a ∨ c & b ∨ d
are dense elements. Take x = c ∧ b. Then a ∧ x = a ∧ c ∧ b = 0 (since a ∧ c = 0) and

(a ∨ x) ∧ (a ∨ b) = a ∨ (x ∧ b) = a ∨ (c ∧ b ∧ b) = a ∨ x. So that (a ∨ b)∗ ⊆ (a ∨ x)∗. Now, for
t ∈ L,

t ∈ (a ∨ x)∗ ⇒ t ∧ (a ∨ x) = 0

⇒ t ∧ a = 0 and t ∧ c ∧ b = 0

⇒ t ∧ b ∧ (a ∨ c) = 0

⇒ t ∧ b = 0 (since a ∨ c is dense)

⇒ t ∧ (a ∨ b) = 0

⇒ t ∈ (a ∨ b)∗.

Therefore (a ∨ x)∗ ⊆ (a ∨ b)∗ and hence (a ∨ x)∗ = (a ∨ b)∗. Thus L is weak relatively

complemented.

Theorem 3.14. L is weak relatively complemented if and only if PI(L) is weak relatively com-

plemented.

In [9], Swamy and Rao proved that an ADL is relatively complemented if and only if every

principal ideal is direct summand. In this context, we observe that every principal ideal need

not be direct summand in a weak relatively complemented ADL. For, see Example 3.4., (a) =
{0, a, b} is not a direct summand in L.
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4 BD(L)

In this section, we concentrate on the class of almost distributive lattices with dense elements.

For an ADL L, we introduce the set BD(L) = {a ∈ L | there exists b ∈ L such that a ∧
b = 0 and a ∨ b dense}, where D is the set of dense elements. It is observe that BD(L) is

always a weak relatively complemented subADL of L. We have obtain a necessary and suf�cient

condition for an ADL to become weak relatively complemented in terms of BD(L).

De�nition 4.1. Given an ADL L with dense elements, de�ne

BD(L) = {a ∈ L | there exists b ∈ L such that a ∧ b = 0 and a ∨ b is dense}.

Theorem 4.2. BD(L) is a weak relatively complemented subADL of L.

Proof. Let a1, a2 ∈ BD(L). Then there exist b1, b2 ∈ L such that a1 ∧ b1 = 0 = a2 ∧ b2 and

a1 ∨ b1 & a2 ∨ b2 are dense. Now,

(a1 ∧ a2) ∧ (b1 ∨ b2) = (a1 ∧ a2 ∧ b1) ∨ (a1 ∧ a2 ∧ b2) = 0

and, for x ∈ L,

x ∈ [(a1 ∧ a2) ∨ (b1 ∨ b2)]∗ ⇒ x ∧ a1 ∧ a2 = 0, x ∧ b1 = 0 = x ∧ b2

⇒ x ∧ a2 ∧ (a1 ∨ b1) = 0

⇒ x ∧ a2 = 0 (since a1 ∨ b1 is dense)

⇒ x ∧ (a2 ∨ b2) = 0

⇒ x = 0 (since a2 ∨ b2 is dense)

Therefore (a1 ∧ a2) ∨ (b1 ∨ b2) is dense and hence a1 ∧ a2 ∈ BD(L). Next,

(a1 ∨ a2) ∧ b1 ∧ b2 = (a1 ∧ b1 ∧ b2) ∨ (a2 ∧ b1 ∧ b2) = 0

and, for x ∈ L,

x ∈ [(a1 ∨ a2) ∨ (b1 ∧ b2)]∗ ⇒ x ∧ a1 = x ∧ a2 = x ∧ b1 ∧ b2 = 0

⇒ (x ∧ b2) ∧ (a1 ∨ b1) = 0

⇒ x ∧ b2 = 0 (since a1 ∨ b1 is dense)

⇒ x ∧ (a2 ∨ b2) = 0

⇒ x = 0. (since a2 ∨ b2 is dense)

Therefore (a1∨a2)∨ (b1∧ b2) is dense and hence a1∨a2 ∈ BD(L). Thus BD(L) is a subADL of

L. Further, if a, b ∈ BD(L), then there exist c, d ∈ L such that a∧ c = 0 = b∧d and a∨ c& b∨d
are dense. Take x = c ∧ b. Then a ∧ x = a ∧ c ∧ b = 0 and,

(a ∨ x) ∧ (a ∨ b) = a ∨ (x ∧ b) = a ∨ (c ∧ b ∧ b) = a ∨ (c ∧ b) = a ∨ x.

So that (a ∨ b)∗ ⊆ (a ∨ x)∗. Now, for t ∈ L,

t ∈ (a ∨ x)∗ ⇒ t ∧ a = 0 and t ∧ x = 0

⇒ t ∧ a = 0 and t ∧ c ∧ b = 0

⇒ t ∧ b ∧ (a ∨ c) = 0

⇒ t ∧ b = 0 (since a ∨ c is dense)

⇒ t ∧ (a ∨ b) = 0

⇒ t ∈ (a ∨ b)∗.

Therefore (a ∨ x)∗ ⊆ (a ∨ b)∗ and hence (a ∨ x)∗ = (a ∨ b)∗. Thus BD(L) is a weak relatively
complemented subADL of L.
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In [8], for an ADL L with maximal elements, Swamy and Ramesh introduced the Birkhoff

centre B(L) = {a ∈ L | a ∧ b = 0 and a ∨ b is maximal, for some b ∈ L}. They proved that

B(L) is always relatively complemented. Moreover L is relatively complemented if and only if

B(L) = L.

Remark 4.3. If every dense element is maximal in L, then B(L) = BD(L). But, we can pro-

vided an example, where B(L) is a proper subset of BD(L). See Example 3.2., BD(L) =
{0, d1, d2,m1,m2} and B(L) = {0,m1,m2}.

Lemma 4.4. For every non-zero element x in L, there exists a dense element d in L such that

x ≤ d.

Proof. Let x ∈ L such that x ̸= 0. Choose a dense element d in L. Then x ≤ x ∨ d and x ∨ d is

dense (because (x ∨ d)∗ = (x)∗ ∩ (d)∗ = {0}).

Theorem 4.5. L is weak relatively complemented if and only if BD(L) = L.

Proof. Suppose that L is weak relatively complemented. Let x ∈ L such that x is non-dense.

Then, by Lemma 4.4., there exists a dense element d ∈ L such that x ≤ d. For these x, d ∈ L, by
our assumption, there exists y ∈ L such that x∧y = 0 and (x∨y)∗ = (x∨d)∗ = {0}. Therefore
x ∈ BD(L) and hence BD(L) = L. Otherside is trivial.

Remark 4.6. If L has no dense elements, then there is a weak relatively complemented ADL

such that BD(L) ̸= L. For, see Example 3.3., S is weak relatively complemented ADL but

BD(S) ̸= S (Infact, BD(S) is empty).

Theorem 4.7. If every non-zero element is dense in L, then BD(L) = L.

Proof. Suppose that every non-zero element is dense in L. Then D = L \ {0}. Therefore
BD(L) = L.

Remark 4.8. The converse of the above theorem need not be true. For, see Example 3.4., we

have BD(L) = L but a and b are non-dense elements in L.

In [4], Rao and Rao introduced two congruences

θ = {(x, y) ∈ L× L | (x)∗ = (y)∗} and

θF = {(x, y) ∈ L× L | x ∧ a = y ∧ a, for some a ∈ F},
where F is a non-empty set closed under ∧. Now, we have the following.

Theorem 4.9. For any x, y ∈ L,
(i) (x, y) ∈ θ and x ∈ BD(L) implies y ∈ BD(L).
(ii) (x, y) ∈ θ and y ∈ BD(L) implies x ∈ BD(L).

Proof. (i) Suppose that (x, y) ∈ θ and x ∈ BD(L). Then (x)∗ = (y)∗, x ∧ t = 0 and x ∨ t is
dense for some t ∈ L. So, t ∧ y = 0 and (t ∨ y)∗ = (t)∗ ∩ (y)∗ = (t)∗ ∩ (x)∗ = (t ∨ x)∗ = {0}
(since t ∨ x is dense). Therefore t ∨ y is dense and hence y ∈ BD(L). Similarly we can prove

(ii).

Theorem 4.10. For any x, y ∈ L,
(i) (x, y) ∈ θ and x ∈ BD(L) implies θ = θD.

(ii) (x, y) ∈ θ and y ∈ BD(L) implies θ = θD.

Proof. (i) Let x, y ∈ L such that (x, y) ∈ θ and x ∈ BD(L). Then there exists s ∈ L such that

x ∧ s = 0 and x ∨ s is dense. Take d = (x ∧ y) ∨ s. For t ∈ L,

t ∈ (d)∗ ⇒ t ∧ x ∧ y = 0 and t ∧ s = 0

⇒ t ∧ y ∧ (x ∨ s) = 0

⇒ t ∧ y = 0 (since x ∨ s is dense)

⇒ t ∧ x = 0 (since (x, y) ∈ θ)

⇒ t ∧ (x ∨ s) = 0

⇒ t = 0. (since x ∨ s is dense)
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So that d is dense. Now,

x ∧ d = x ∧ ((x ∧ y) ∨ s) = (x ∧ y) ∨ (x ∧ s) = x ∧ y

y ∧ d = y ∧ ((x ∧ y) ∨ s) = (x ∧ y) ∨ (y ∧ s) = x ∧ y (since (x, y) ∈ θ)

Therefore (x, y) ∈ θD. On the other hand, let s, t ∈ L such that s ∧ d = t ∧ d, for some d ∈ D.
Then

(s)∗∗ ⇒ (s)∗∗ ∩ (0)∗

⇒ (s)∗∗ ∩ (d)∗∗

⇒ (s ∧ d)∗∗

⇒ (t ∧ d)∗∗ (since s ∧ d = t ∧ d)

⇒ (t)∗∗ ∩ (d)∗∗

⇒ (t)∗∗ ∩ (0)∗

⇒ (t)∗∗.

Therefore (s)∗∗∗ = (t)∗∗∗ and hence (s)∗ = (t)∗. Therefore (s, t) ∈ θ. Thus θ = θD. Similarly,

we can prove (ii).

Lemma 4.11. Let L1, L2 be two ADLs. Then d1 & d2 are dense elements in L1 & L2 respectively

if and only if (d1, d2) is dense in L1 × L2.

Theorem 4.12. Let L1 and L2 be two ADLs. Then BD(L1 × L2) = BD(L1)×BD(L2).

The relation η = {(a, b) ∈ L × L | a ∧ b = b and b ∧ a = a} is a congruence relation on L.
This η is the smallest congruence on L such that L/η is a lattice. Now, we have the following.

Theorem 4.13. BD(L/η) ∼= BD(L)

Proof. Let a/η ∈ BD(L/η). Then there exists b ∈ L such that a/η ∧ b/η = 0/η and a/η ∨ b/η
is a dense element in L/η. So that a ∧ b = 0 and, for x ∈ L,

(a ∨ b) ∧ x = 0 ⇒ ((a ∨ b) ∧ x)/η = 0/η

⇒ (a ∨ b)/η ∧ x/η = 0/η

⇒ x/η = 0/η (since (a ∨ b)/η is dense)

⇒ (x, 0) ∈ η

⇒ x = 0.

Therefore (a∨b) is dense and hence a ∈ BD(L).De�ne f : BD(L) → BD(L/η) by f(a) = a/η,
for all a ∈ L. Then f is well-de�ned and onto.

Kerf = {x ∈ BD(L) | f(x) = 0/η}
= {x ∈ BD(L) | x/η = 0/η}
= {x ∈ BD(L) | x = 0}
= {0}.

Therefore f is one - one and hence f is an isomorphism from BD(L) onto BD(L/η).

Theorem 4.14. An ideal I is dense complemented if and only if I = (a), for some a ∈ BD(L).

Proof. Let I be a dense complemented ideal in L. Then there exists an ideal J in L such that

I ∩ J = {0} and I ∨ J is an ideal generated by a dense element in L. Say d. Then d = a ∨ b for
some a ∈ I and b ∈ J . So that a ∧ b = 0 and then a ∈ BD(L). For x ∈ L,

x ∈ I ⇒ x ∧ b ∈ J ∩ I = {0}
⇒ x ∧ b = 0
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and,

x ∈ I ⇒ x ∈ I ∨ J = (d)

⇒ x = d ∧ x = (a ∨ b) ∧ x

⇒ x = a ∧ x

⇒ x ∈ (a).

Therefore I = (a). On the other hand, suppose that I = (a), for some a ∈ BD(L). Then there

exists b ∈ L such that a ∧ b = 0 and a ∨ b is dense. Take J = (b). Then I ∩ J = {0} and

I ∨ J = (a ∨ b). Therefore I is a dense complemented ideal in L.

Theorem 4.15. The following are equivalent for L,
(i) L is a weak relatively complemented ADL

(ii) Every principal ideal is dense complemented

(iii) BD(L) = L.

Proof. It is suf�cient to prove (ii)⇒ (iii). Assume (ii) Let a ∈ L. Then, by our assumption, there

exists b ∈ L such that (a) ∩ (b) = (0) and (a) ∨ (b) = (a ∨ b) is a principal ideal generated by a
dense element. Therefore a∧b = 0 and a∨b is dense. Hence a ∈ BD(L). Thus BD(L) = L.

5 Characterization of ∗-ADLs

In this section, we prove several characterizations of ∗-ADLs in terms of weak relatively com-

plemented ADLs and BD(L).
∗-ADL always possesses dense elements where as weak relatively complemented ADL may

not have dense elements (See Example 3.3.). In this regard, we observe that the class of ∗-ADLs
coincides with the class of weak relatively complemented ADLs provided L has dense elements.

Theorem 5.1. L is a ∗-ADL if and only if L is weak relatively complemented (provided L should

has dense elements).

Proof. Suppose that L is a ∗-ADL. Let a, b ∈ L. Then there exist a′, b′ ∈ L such that (a)∗∗ =
(a′)∗ and (b)∗∗ = (b′)∗. Take x = a′ ∧ b. Then a ∧ x = a ∧ a′ ∧ b = 0 and,

(a ∨ x) ∧ (a ∨ b) = a ∨ (x ∧ b) = a ∨ (a′ ∧ b ∧ b) = a ∨ (a′ ∧ b) = a ∨ x.

So that (a ∨ b)∗ ⊆ (a ∨ x)∗. Now, for t ∈ L,

t ∈ (a ∨ x)∗ ⇒ a ∧ t = 0 and x ∧ t = 0

⇒ a ∧ t = 0 and a′ ∧ b ∧ t = 0

⇒ t ∧ b ∧ (a ∨ a′) = 0

⇒ t ∧ b = 0 (since a ∨ a′ is dense)

⇒ t ∧ (a ∨ b) = 0

⇒ t ∈ (a ∨ b)∗.

Therefore (a ∨ x)∗ ⊆ (a ∨ b)∗ and hence (a ∨ b)∗ = (a ∨ x)∗. Thus L is weak relatively

complemented. On the other hand, suppose L is weak relatively complemented. Let a ∈ L.
Choose a dense element d in L. Then there exists b ∈ L such that a ∧ b = 0 and (a ∨ b)∗ =
(a ∨ d)∗ = {0}. Therefore a ∨ b is dense and hence L is a ∗-ADL.

Remark 5.2. If L has no dense elements, then the above theorem need not be true. For, see

Example 3.3., S is a weak relatively complemented but S is not a ∗-ADL.

Corollary 5.3. If L has dense elements, then every relatively complemented ADL is a ∗-ADL.

Remark 5.4. If L has no dense elements, then the above corollary need not be true. For, see

Example 3.2., L is a ∗-ADL but not a relatively complemented (because, for d2,m1 ∈ L, there is
no element x such that d2 ∧ x = 0 and d2 ∨ x = d2 ∨m1).

Theorem 5.5. Every disjunctive ∗-ADL is relatively complemented.
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Proof. Let L be a disjunctive ∗-ADL. Then L has dense elements and, by Theorem 5.1., it

is weak relatively complemented. Given a, b ∈ L, there exists x ∈ L such that a ∧ x = 0

and (a ∨ x)∗ = (a ∨ b)∗. a ∨ x = a ∨ b, since L is disjunctive. Therefore L is relatively

complemented.

In [10], Rao and Rao introduced the pseudo complementation on ADL L with maximal el-

ements. A unary operation ∗ : L → L is said to be pseudo complementation on L, if for any
a, b ∈ L, it satis�es the following conditions;

(i) a ∧ a∗ = 0

(ii) a ∧ b = 0 implies a∗ ∧ b = b
(iii) (a ∨ b)∗ = a∗ ∧ b∗.

They have obtained a one to one correspondence between the set of pseudo complementations

on L and the set of maximal elements in L.

Theorem 5.6. For any pseudo complementation ∗ on L and x ∈ L, x∗ = 0 if and only if x is

dense.

Proof. Let ∗ be a pseudo complementation on L and x ∈ L. Suppose that x∗ = 0. For t ∈ L,

t ∈ (x)∗ ⇒ x ∧ t = 0 ⇒ x∗ ∧ t = t ⇒ t = 0.

Therefore x is a dense element in L. On the other hand, suppose that x is a dense element in

L. Then x∗ ∧ x = 0 (since ∗ is a pseudo complementation on L). Therefore x∗ = 0, since x is

dense.

Lemma 5.7. For any pseudo complementation ∗ on L and x ∈ L, x ∨ x∗ is dense.

Proof. For t ∈ L,

t ∈ (x ∨ x∗)∗ ⇒ x ∧ t = 0 & x∗ ∧ t = 0

⇒ x∗ ∧ t = t & x∗ ∧ t = 0

⇒ t = 0.

Therefore x ∨ x∗ is a dense element in L.

Theorem 5.8. Every pseudo complemented ADL is a ∗-ADL and hence weak relatively comple-

mented.

Proof. Let ∗ be a pseudo complementation on L. Let x ∈ L. Then x ∧ x∗ = 0 and x ∨ x∗

is dense (by Lemma [5.7]). Therefore x ∈ BD and BD = L. Hence L is a ∗-ADL. Since
every pseudo complemented ADL possess a maximal(dense) elements, ∗-ADL is weak relatively

complemented (Theorem 5.1.). Thus L is weak relatively complemented.

Remark 5.9. The converse of the above theorem need not be true. That is, every ∗-ADL need

not be a pseudo complemented ADL. For example, let (N,≤) be an ADL with least element 1,

whereN is the set of all natural numbers,≤ is the natural ordering onN. Then (N,≤) is a ∗-ADL
but not a pseudo complemented (because N has no maximal elements).

Lemma 5.10. If every non-zero element is dense in L, then L is a ∗-ADL.

Remark 5.11. The converse of the above lemma need not be true. For, see Example 3.4., L is a

∗-ADL but a and b are non-dense elements.

Theorem 5.12. L is a ∗-ADL if and only if every principal ideal of L is dense complemented.

Proof. Suppose that L is a ∗-ADL. Let a ∈ L. Then there exists a′ ∈ L such that a ∧ a′ = 0 and

a ∨ a′ is dense (by Theorem 2.8.). Therefore (a) ∩ (a′) = {0} and (a) ∨ (a′) = (a ∨ a′) is an
ideal generated by a dense element in L. Other side is trivial.

In [6], Rao, Rao and Lakshman introduced quasi complemented ADLs. That is, by a quasi

complemented ADL we mean an ADL L with maximal elements in which for any a ∈ L, there
exists an element b ∈ L such that a ∧ b = 0 and a ∨ b is maximal. Now, we have the following.
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Theorem 5.13. Let L be an ADL with maximal elements. Then the following are equivalent;

(i) L is a ∗-ADL in which every dense element is maximal

(ii) L is a quasi complemented ADL

(iii) B = BD

(iv) L is relatively complemented.

Theorem 5.14. BD is always a ∗-SubADL of L.

Proof. In the Theorem 4.2., we con�rm that BD is a subADL of L. Let a ∈ BD. Then there

exists b ∈ L such that a ∧ b = 0 and a ∨ b is dense. Therefore (a)∗∗ = (b)∗ and hence BD is a

∗-ADL.

Theorem 5.15. L is a ∗-ADL if and only if BD = L.

Proof. Suppose that L is a ∗-ADL. Let a ∈ L. Then there exists a′ ∈ L such that (a)∗∗ = (a′)∗.
So that a ∧ a′ = 0 and a ∨ a′ is dense. Therefore a ∈ BD. The converse is trivial.
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