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Abstract In the present work, we deal with the harmonic problems in a bounded domain

of R2 with the nonlinear boundary integral conditions. After applying the Boundary integral

method, a nonlinear boundary integral equation is obtained, the existence and uniqueness of the

solution will be a consequence of applying theory of monotone operators.

1 Introduction

For the harmonic problem the simplest boundary condition we can impose speci�es u at all

points on the boundary G and is known as the Dirichlet boundary condition. The Dirichlet prob-

lem for the Laplace equation can easily be solved using the boundary integral equation [15]. If

the normal derivative of u i,e. ∂u
∂n , where n is the outward normal to the boundary G, is speci�ed

at all points on the boundary G, i,e. the Neumann boundary condition, with
∫
G

∂u
∂nds = 0, then

given the value of u at one point on G enables a unique solution to be obtained [15].

In this work, we impose more general boundary conditions, namely the nonlinear integral equa-

tion of Urysohn type[8; 11].

Much attention has been paid to the resolution of boundary value problems for partial differen-

tial operators with nonlinear boundary conditions by the method of integral equations, in many

directions (see for example, K. E. Atkinson [2; 3] and Ruotssalainen and Wendland [12] ).

Problems involving nonlinearities form a basis of mathematical models of various steady-

state phenomena and processes in mechanics, physics and many other areas of science. Among

these is the steady-state heat transfer. Also some electromagnetic problems contain nonlineari-

ties in the boundary conditions, for instance problems, where the electrical conductivity of the

boundary is variable [5]. Further applications arise in heat radiation and heat transfer [4; 5].

In the present paper, we look for the solution of the Laplacian equation with nonlinear data

of the form:

∇2u(x) = 0 , x ∈ W (1.1)

∂u

∂n
(x) +

∂u

∂τ
(x) +

∫
G

K (x, y, u(y)) dsy = f(x) , x ∈ G. (1.2)

We recall that the nonlinear boundary integral operator de�ned by

A(x, u(x)) =

∫
G

K (x, y, u(y)) dsy , x ∈ G (1.3)

is the nonlinear integral operator of Urysohn type.

In (1), we assume W is an open bounded region in R2 with a smooth boundary G = ∂W , and

f : G→ R , K : G× G×R → R

are given real value functions.

By the Green representation formula we formulate a nonlinear integral equation on the boundary
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G of the domain W. Under some assumptions on the Kernel of the nonlinear integral equation of

Urysohn K (x, y, u) we prove the existence and uniqueness of the solution.

1.1 De�nitions and notations

De�nition 1.1. ,[1,15] Let m ∈ N, we denote by Hm(W) the Sobolev space

Hm(W) = {u ∈ L2(W);Dαu ∈ L2(W), |α| ≤ m}

De�nition 1.2. ,[1,15] Let s ∈ R , we denote by Hs(Rn) the Sobolev space :

Hs(Rn) = {u ∈ L2(Rn); (1+ |ξ|2) s
2 |F [u]| ∈ L2(Rn)}.

and the associated norm:

∥u∥Hs = (

∫
Rn

(1+ |ξ|2)s|F [u]|2dξ) 1

2 .

with F [.] the Fourier transform.

De�nition 1.3. ,[1,15] Let W ⊂ Rn a bounded domain and G := ∂W, we de�ned

Hs(W) = {u|W : u ∈ Hs(Rn)}, s ∈ R

Hs(G) =


{u|G : u ∈ Hs+ 1

2 (Rn)}, s > 0

L2(G), s = 0

(H−s(G))
′
( dual space), s < 0

2 The Boundary Integral method

2.1 Representative formula and boundary operator

We need the fundamental solution of operator Laplacian D in the plane, de�ned by:

E (x, y) =
1

2π
log |x− y| (2.1)

We �rst consider some standard boundary integral operators. For x ∈ W, the single layer poten-
tial is

SWu (x) := −
∫
G

E (x, y)u (y) dsy

and the double layer potential is

DWu (x) :=

∫
G

u(y)
∂

∂ny
E (x, y) dsy.

Using the Green's identity for harmonic functions

u (x) =

∫
G

u(y)
∂

∂ny
E (x, y) dsy −

∫
G

∂u (y)

∂ny
E (x, y) dsy

for x ∈ W, or in the forme

u (x) = DWu (x) + SW
∂u (x)

∂n
, for x ∈ W. (2.2)
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Letting x tend to point on the boundary G and with the continuously of the simple layer potential

SW and the jump relation of the double layer potential DW . We can write the integral equation

on the boundary G.

u (x)−Du (x) = S
∂u (x)

∂n
, x ∈ G. (2.3)

where

S
∂u (x)

∂n
:= −2

∫
G

E (x, y)
∂u (y)

∂n
dsy , x ∈ G

and

Du (x) := 2

∫
G

u(y)
∂

∂ny
E (x, y) dsy , x ∈ G.

Clearly, if u ∈ H1 (W) is the solution of (1), then the Cauchy data u|G and ∂u
∂n |G satis�es the

integral equation (6).
Then the boundary conditions

∂u

∂n
(x) = −∂u

∂τ
(x)−A(x, u(x)) + f(x), x ∈ G

yields

u (x)−Du (x) = −S
∂u

∂τ
(x)− SA(x, u(x)) + Sf(x) , x ∈ G. (2.4)

the equation (7) can be written as

(I −D)u(x) + S
∂u

∂τ
(x) + SA(x, u(x)) = Sf(x) , x ∈ G. (2.5)

we have

S
∂u (x)

∂τ
:= −2

∫
G

E (x, y)
∂u (y)

∂τ
dsy , x ∈ G

and

0 = −2
∫
G

∂

∂τ
{u(y)E (x, y)}dsy

= −2
∫
G

∂u (y)

∂τ
E (x, y) dsy − 2

∫
G

∂E (x, y)

∂τ
u(y)dsy

then we have

S
∂u (x)

∂τ
= D′u(x) := 2

∫
G

∂E (x, y)

∂τ
u(y)dsy (2.6)

hence the equation 8 can be written as

(I −D +D′)u(x) + SA(x, u(x)) = Sf(x) , x ∈ G. (2.7)

For studying the solvability of the nonlinear equation(10), we give some assumptions to be

made here.

(H1)We assume a diam(W) < 1.

(H2) The Kernel K(., ., .) of the Urysohn operator is a Caratheodory function[11].

(H3)We assume that
∂K(x,y,u)

∂u is measurable satisfying

0 < a ≤ ∂K(x, y, u)

∂u
≤ b < +∞,

for some constants a, b.
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Remark 2.1. 1) The operator S may have eigenfunctions [15], then (H1) ensure that the integral
operator

S : Hs (G) → Hs+1 (G)

is an isomorphism for every s ∈ R and

(Sµ, µ) ≥ c∥µ∥2H−1/2

for all µ ∈ H−1/2 with some positive constant c > 0, [15 ]. By (., .) we denote the L2(G) scalar
product.

2) The Kernel K(., ., .) is a Caratheodory function (H2) (i.e) K(., ., u) is measurable for all

u ∈ R and K(x, y, .) is continuous for almost all x, y ∈ G.
3) The assumption (H3) implies that the Nemytski operator

A : L2(G) → L2(G)

is Lipschitz continuous and strongly monotonous such that

∥Au−Av∥0 ≤ b mes(G)∥u− v∥0

and

(Au−Av, u− v) ≥ a mes(G)∥u− v∥20. (2.8)

for all u, v ∈ L2(G).

Theorem 2.2. Let assumptions (H1), (H2) and (H3) hold. Then, for every f ∈ H−1/2 the non-

linear boundary integral equation (10) has a unique solution in H
1

2 (G).

Proof. The proof follows from the well-known theorem by Browder and Minty on monotone

operators [12, 13].

Since the simple layer potential operator on G

S : H−1/2(G) → H1/2(G)

is an isomorphism it is suf�cient to consider the unique solvability of equation

Bu(x) := S−1(I −D +D′)u(x) +A(x, u(x)) = f(x) , x ∈ G. (2.9)

We shall prove that the operator

B : H1/2(G) → H−1/2(G)

is continuous and strongly monotonous.

i- in the �rst we show that B is continuous:

It is clear from the continuity of the mapping properties of the simple and double layer operators,

that

S−1(I −D +D′) : H1/2(G) → H−1/2(G)

is continuous. And from (H3)

A : H1/2(G) → H−1/2(G)

is continuous. Hence the boundary integral operator

B : H1/2(G) → H−1/2(G)

is continuous.

ii- In the second we show that B is strongly monotonous operator.

Let µ ∈ H− 1

2 (G) de�ned by

µ(x) := S−1(I −D +D′)u(x)

for all u(x) ∈ H
1

2 (G) , is the normal derivative of the harmonic function
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w(x) =

∫
G

u(y)
∂

∂ny
E (x, y) dsy −

∫
G

µ(y)E (x, y) dsy

for x ∈ W, this means that w satis�es the problem{
Dw(x) = 0 , x ∈ W
w (x) = u (x) , x ∈ G.

Then Green's theorem yields

(S−1(I −D +D′)u, u) =

∫
G

µuds =

∫
G

∂w

∂n
uds =

∫
G

∂w

∂n
wds =

∫
W

(∇w)2dx.

Hence, for all u, v ∈ H
1

2 (G)

(S−1(I −D +D′)(u− v), u− v) =

∫
W

(∇(w1 − w2))
2
dx = |w1 − w2|2H1(W) (2.10)

where (w1 − w2) denotes the harmonic function corresponding to the Cauchy data u − v and

S−1(I −D)(u− v).

In an other hand, we note that there exists (ν1 − ν2) ∈ H− 1

2 (G), such that

S(ν1 − ν2) = u− v

on G, [15]. Hence for all x ∈ W, we have

SW(ν1 − ν2) = w1 − w2.

The simple layer potential

SW : Hs (G) → Hs+3/2 (W)

is continuous,for all s ∈ R [15]. Hence for s = −3/2 we �nd

∥w1 − w2∥L2(W) ≤ c1∥ν1 − ν2∥H−3/2(G)

≤ c2∥u− v∥H−1/2(G) ≤ c3∥u− v∥0,
for some positive constants c1, c2 and c3.
Hence we have

∥u− v∥0 ≥
1

c3
∥w1 − w2∥L2(W). (2.11)

Then with (10) and (11) we get

(Bu−Bv, u− v) = (S−1(I −D +D′)(u− v), u− v) + (Au−Av, u− v)

= |w1 − w2|2H1(W) + (Au−Av, u− v)

and with (9) we get the inequality

(Bu−Bv, u− v) ≥ |w1 − w2|2H1(W) + a mes(G)∥u− v∥20

hence with (12) we have

(Bu−Bv, u− v) ≥ |w1 − w2|2H1(W) +
a mes(G)

c2
3

∥w1 − w2∥2L2(W)

≥ min{1, a mes(G)

c2
3

}
(
|w1 − w2|2H1(W) + ∥w1 − w2∥2L2(W)

)
≥ min{1, a mes(G)

c2
3

}∥w1 − w2∥2H1(W)

≥ c4∥u− v∥2H1/2(G)

by the trace theorem [1, 15]. Which completes the proof.
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Example 2.3. Here we give an example to illustrate the theoretical results.

We consider the harmonic problems

Du (x) = 0 , x ∈ W

∂u

∂n
(x) +

∂u

∂τ
(x) +

∫
G

(2u(y) + sinu(y)) dsy = f(x) , x ∈ G

where the nonlinear boundary integral equation of Urysohn type de�ned by

Au(x) =

∫
G

(2u(y) + sinu(y)) dsy , x ∈ G

and the domain is

W = {x = (x1, x2)|x21 + x22 < r2 <
1

4
}

Clearly, the nonlinearity satis�es our assumptions (H1), (H2) and (H3) such that
diam(W) = 2r < 1.

The Kernel (2u(y) + sinu(y)) of the nonlinear boundary integral equation of Urysohn type is a

Caratheodory function. And
∂K(x, y, u)

∂u
= 2+ cosu(y)

is measurable satisfying

1 ≤ ∂ (2u(y) + sinu(y))

∂u
≤ 3 < +∞.

implies that the Nemytski operator

A : L2(G) → L2(G)

is Lipschitz continuous and strongly monotonous such that

2πr∥u− v∥20 ≤ (Au−Av, u− v)

∥Au−Av∥0 ≤ 6πr∥u− v∥0
for all u, v ∈ L2(G).
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