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Abstract. Let S be a set andF = {S1, S2, . . . , Sp} be a non-empty family of distinct non-
empty subsets of S whose union isS. The intersection graph ofF is denoted byI (F) and
defined byV (I (F)) = F , with Si andSj adjacent wheneveri 6= j andSi ∩ Sj 6= ∅. Then
a graphG is an intersection graph onS if there exists a familyF of subsets for whichG and
I (F) are isomorphic graphs. The intersection numberω(G) of a given graphG is the minimum
number of elements in a setS such thatG is an intersection graph onS.

Let R be a commutative ring with unity 16= 0. We associate a simple graphΩ(R) to R

whose vertices are the elements ofR, where two distinct verticesx andy of R are adjacent if
and only ifRx+Ry = R.

We find the intersection number of a complete tripartite graph andΩ(R) for some classes of
R.

1 Introduction

The idea of relating a commutative ring to a graph was introduced by IstvanBeck. In [1] Beck
consideredΓ(R) as a graph with vertices as elements ofR whereR is a commutative ring with
unity and two different verticesa andb are adjacent if and only ifab = 0.

In [7] Sharma and Bhatwadekar define another graph onR with vertices as elements ofR and
two distinct verticesa andb are adjacent if and only ifRa+ Rb = R. Later in [6] Maimani and
others have studied some of the properties of the same graph and termedthe graph as comaximal
graph. We denote it byΩ(R). The authors have studied the structure of comaximal graphs in [5]
and found all commutative rings with unity whose comaximal graph is split.

Intersection number of graphs is studied mainly by Chaudam and Parthasarathy in [3]. Inter-
section number of a triangle free graph with at least three vertices is its number of edges. So,
intersection number of a complete bipartite graph other thanK1,1 is the product of the sizes of
its partitions. But when the graph is multipartite, the situation is not very simple asit contains
triangles. Thomas in [8] investigated the intersection number of certain classes of multipartite
graphs.

In this paper we find the intersection number of a complete tripartite graph. We use this to
find the intersection number ofΩ(R) for certain classes ofR namely, the direct product of finite
fields. Also we find the intersection number ofΩ(Zp2), whenp is any prime andΩ(Z4p), when
p is an odd prime.

2 Preliminaries

In this section we list some concepts and results in graph theory which are useful in the subse-
quent discussion.

Definition 2.1.Let S be a set andF = {S1, S2, . . . , Sp} be a non-empty family of distinct non-
empty subsets ofS whose union isS. The intersection graph ofF is denoted byI (F) and
defined byV (I (F)) = F , with Si andSj adjacent wheneveri 6= j andSi ∩ Sj 6= ∅. Then
a graphG is an intersection graph onS if there exists a familyF of subsets for whichG and
I (F) are isomorphic graphs.
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Definition 2.2.The intersection numberω(G) of a given graphG is the minimum number of
elements in a setS such thatG is an intersection graph onS.

Theorem 2.3([4]). Every finite graph is an intersection graph.

Theorem 2.4([4]). If G is a connected(p, q)-graph andp ≥ 3 thenω(G) ≤ q.

Theorem 2.5([4]). LetG be a connected(p, q)-graph withp > 3. Thenω(G) = q if and only if
G has no triangles.

Theorem 2.6([3]). If H is an induced subgraph of a graphG; thenω(G) ≥ ω(H).

Theorem 2.7([3]). ω(Kp) = ⌈1+ log2 p⌉

Theorem 2.8([2]). Everyk-regular bipartite graph(k > 0) has a perfect matching and (hence
by induction) is 1-factorable.

3 Intersection Number ofKl,m,n

It follows from theorem2.5 thatω(Km,n) = mn if m > 1 orn > 1. In this section we investi-
gate the intersection number of a complete tripartite graph. The following result may be known
but we are not able to find a reference. Hence we include a proof of theresult.

Theorem 3.1.ω(Kl,m,n) = mn wherel ≤ m ≤ n andm ≥ 2.

Proof. Let U = {u1, . . . , ul}, V = {v1, . . . , vm} andW = {w1, . . . , wn} be the partition sets of
V (Kl,m,n). SinceKm,n is an induced subgraph ofKl,m,n, ω(Kl,m,n) ≥ mn. Now let,

Bi = Set of edges throughvi in the induced subgraphKm,n (1 ≤ i ≤ m)

and

Cj = Set of edges throughwj in the induced subgraphKm,n (1 ≤ j ≤ n).

First we assignBi to vi andCj to wj . We want to findA1, A2, . . . , Al to allocate the vertices
of U . Consider the subgraphKm,m induced by{v1, . . . , vm, w1, . . . , wm}. By theorem2.8, it
containsm edge disjoint perfect matchings. We choose anyl edge-disjoint perfect matchings,
say,A′

1, A
′

2, . . . , A
′

l. Now we choose one edge fromCj for m+1 ≤ j ≤ n and adjoin these edges
to A′

1 to getA1. Note that|Cj | = m. So by choosing edges from the remaining, it is possible
to form the pair wise disjoint setsA2, . . . , Al. Then eachAk (1 ≤ k ≤ l) contains one element
from eachBi andCj (1 ≤ i ≤ m,1 ≤ j ≤ n). Thusω(Kl,m,n) = mn.

Remark 3.2.ω(K1,1,n) = n+ 1 whenn > 1.

4 Intersection Number ofΩ(R)

In this section we find the intersection number ofΩ(R) for some classes ofR. First we consider
the class of rings which are direct product of two finite fields. In what follows,R∗ = R− {0}.

Theorem 4.1.LetF andK be two finite fields and|F | = m and|K| = n (m > 2, n > 2). Then,
ω(Ω(F ×K)) = (m− 1)(n− 1) + 1.

Proof. First we identify the structure ofΩ(F ×K) as in figure1.
LetS = {1,2, . . . , (m−1)(n−1)+1} and letV1 andV2 be the partition set ofV (Km−1,n−1)

with |V1| = m− 1 and|V2| = n−1. That is,V1 = {(α,0) : α ∈ F ∗}, V2 = {(0, β) : β ∈ K∗}.
We partition the setS−{(m−1)(n−1)+1} into (m−1) disjoint subsets of size(n−1) and

allocate them to the vertices ofV1. We fix the order of the elements in the allocated subsets. The
collection of the first elements in the allocated subsets will form the subset to be allocated to the
first vertex inV2; the collection of second elements in the allocated subsets will form the subset
to be allocated to the second vertex inV2 and so on. The zero element can be allocated with the
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K(m−1)(n−1)

K(m−1),(n−1)

Zero Element

Units

Non zero non units

Figure 1. Ω(F ×K)

symbol(m− 1)(n− 1) + 1. We allocate the setsS −{1}, S −{2} . . . , S − {(m− 1)(n− 1)} to
the(m− 1)(n− 1) units. Thus, we get a proper allocation. Therefore,

ω(Ω(F ×K)) ≤ (m− 1)(n− 1) + 1.

But, sinceKm−1,n−1 is an induced subgraph and the zero element is not adjacent to any of
the vertices of this induced subgraph, we get

ω(Ω(F ×K)) ≥ (m− 1)(n− 1) + 1.

Hence,
ω(Ω(F ×K)) = (m− 1)(n− 1) + 1.

Corollary 4.2. ω(Ω(Zpq)) = (p− 1)(q − 1) + 1, if p andq are distinct odd primes.

In the above theorem we assumed that the two fields must have more than two elements. Now
we investigate the case whenm = 2 orn = 2.

Theorem 4.3.LetF be a finite field with|F | = n(n > 2). Thenω(Ω(Z2×F )) = n+ ⌈log2(n−
1)⌉.

Proof. First we identify the structure of the graph as in figure2.

K(n−1)

K1,(n−1)

Zero Element

Units

Non zero non units

Figure 2. Ω(Z2 × F )
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Let S = {a1, . . . , an, b1, . . . , bt}; t = ⌈log2(n − 1)⌉. Let V1 andV2 with |V1| = 1 and
|V2| = n−1 be the partition sets forK1,n−1. That is,V1 = {(1,0)} andV2 = {(0, α) : α ∈ F ∗}.

The subset{a1, . . . , an−1} can be allocated to the vertex inV1 and the singletons{a1}, . . . , {an−1}
can be assigned to the vertices inV2. The zero element can be allocated by{an}.

Now, the remaining elements inS are⌈log2(n − 1)⌉ in number. Thus by allocating the sets
formed by those⌈log2(n− 1)⌉ elements toKn−1 and adjoining the elementsa1, . . . , an to each
of these subsets, we get a proper allocation forΩ(Z2 × F ). Therefore,

ω(Ω(Z2 × F )) ≤ n+ ⌈log2(n− 1)⌉.

But, ω(K1,n−1) = n − 1 and the above discussed allocation is the unique allocation with
(n − 1) symbols, say, 1,2, . . . , n − 1 for K1,n−1. Any of these(n − 1) symbols cannot be
allocated to the zero element. Therefore we need another symbol, say,n. Now, we observe that,
each set allocated to the vertices ofKn−1, must be a superset of{1,2, . . . , n}. That is, we need
a set of symbols with at least(n− 1) subsets. For this, we need at least⌈log2(n− 1)⌉ symbols
in that set. Therefore

ω(Ω(Z2 × F )) ≥ n+ ⌈log2(n− 1)⌉

Henceω(Ω(Z2 × F )) = n+ ⌈log2(n− 1)⌉.

Corollary 4.4. ω(Ω(Z2p)) = p+ ⌈log2(p− 1)⌉ wherep is an odd prime.

Theorem 4.5.ω(Ω(Zp2)) = p+ ⌈log2 p(p− 1)⌉ wherep is a prime.

Proof. We identify the structure ofΩ(Zp2) as in figure3.

Kp(p−1) Units

Non units· · ·

Figure 3. Ω(Zp2)

The arguments of the proof are similar to that of the proof of theorem4.3.

Theorem 4.6.LetFi (1 ≤ i ≤ 3) be finite fields with|Fi| = ni (n1 ≤ n2 ≤ n3, n3 6= 2). Then,

ω(Ω(F1 × F2 × F3)) = (n1 − 1)(n2 − 1)(n3 − 1)2 + 3(n1 − 1)(n2 − 1)(n3 − 1) + 1.

Proof. We identify the structure ofΩ(F1 × F2 × F3) as in figure4.
In the figure4, In = Kn.
SinceK(n1−1)(n2−1),(n1−1)(n3−1),(n2−1)(n3−1) is an induced subgraph,ω(Ω(F1 × F2 × F3)) ≥

(n1 − 1)(n2 − 1)(n3 − 1)2.
For allocating the vertices ofI(n1−1)(n3−1) and I(n2−1)(n3−1) we have to use all the(n1 −

1)(n2 − 1)(n3 − 1)2 symbols. Therefore we cannot use any of these symbols to allocate the
vertices ofI(n3−1). AlsoI(n3−1) together withI(n1−1)(n2−1) formsK(n1−1)(n2−1),(n3−1). Therefore
we need(n1 − 1)(n2 − 1)(n3 − 1) new symbols. Similarly, for the vertices ofI(n2−1) we cannot
use any of the symbols already used. Thus, consideringI(n1−1) also, we get,

ω(Ω(F1 × F2 × F3)) ≥ (n1 − 1)(n2 − 1)(n3 − 1)2 + 3(n1 − 1)(n2 − 1)(n3 − 1).

We need a special symbol for the zero-element. Therefore,

ω(Ω(F1 × F2 × F3)) ≥ (n1 − 1)(n2 − 1)(n3 − 1)2 + 3(n1 − 1)(n2 − 1)(n3 − 1) + 1.

From the above discussion it is clear that(n1−1)(n2−1)(n3−1)2+3(n1−1)(n2−1)(n3−1)+1
symbols are enough to allocate the non-units ofF1 × F2 × F3. Now it is enough to show that
units ofF1 × F2 × F3 can be allocated by these symbols.
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◦

K(n1−1)(n2−1)(n3−1)

I(n1−1)(n2−1) I(n1−1)(n3−1) I(n2−1)(n3−1)

I(n3−1) I(n2−1) I(n1−1)

Figure 4. Ω(F1 × F2 × F3)

Let S = {1,2, . . . , (n1 − 1)(n2 − 1)(n3 − 1)2 + 3(n1 − 1)(n2 − 1)(n3 − 1) + 1}. Then
S−{1}, S−{2}, . . . , S−{(n1−1)(n2−1)(n3−1)} can be allocated to the units, assuming the
zero element is not allocated with any of the symbols 1,2, . . . , (n1 − 1)(n2 − 1)(n3 − 1). Thus
we get a proper allocation. Hence,

ω(Ω(F1 × F2 × F3)) = (n1 − 1)(n2 − 1)(n3 − 1)2 + 3(n1 − 1)(n2 − 1)(n3 − 1) + 1.

In theorem4.6we insisted thatn3 6= 2. In the following theorem we consider the case when
n3 = 2. That is, the case whenn1 = n2 = n3 = 2.

Theorem 4.7.ω(Ω(Z2 × Z2 × Z2)) = 5.

Proof. The figure5 givesΩ(Z2 × Z2 × Z2).

(0,0,0)

(1,1,1)

(1,1,0) (1,0,1)

(0,1,1)

(0,0,1) (1,0,0) (0,1,0)

Figure 5. Ω(Z2 × Z2 × Z2)

Ω(Z2×Z2×Z2) containsK4 as an induced subgraph. So,ω(Ω(Z2×Z2×Z2)) ≥ ω(K4) = 3.
But these symbols are used to allocate(1,0,0), (1,0,1) and(0,1,1). So, we need a new symbol
for allocating(0,0,0). Therefore,ω(Ω(Z2×Z2 ×Z2)) ≥ 4. But by inspection,ω(Ω(Z2 ×Z2 ×
Z2)) ≤ 5.

Now it is enough to show that it is impossible to get a proper allocation with a setof 4
symbols.

Let S = {a, b, c, d}. One element ofS, saya should be reserved for the zero element and
a must be in the set allocated to(1,1,1) and should not be in any other allocated sets. Then
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there are only 3 elements remaining inS. Thus we have only 7 subsets available, namely,
{b, c, d}, {b, c}, {b, d}, {c, d}, {b}, {c} and{d}. Also there are 7 vertices to be allocated. The
graph structure demands that the 7 subsets to be allocated must contain 4 subsets which are
pairwise not disjoint. The only possible such a collection is{{b, c, d}, {b, c}, {b, d}, {c, d}}. Then
the remaining vertices need 3 pairwise disjoint subsets. The only possibility is{{b}, {c}, {d}}.
Without loss of generality, assume that{b}, {c} and{d} are allocated to(0,0,1), (0,1,0) and
(1,0,0) respectively. Note that(0,0,1) is adjacent to only 2 vertices, but among the first 4
subsets, 3 subsets containb. So, there doesn’t exist a proper allocation with 4 elements.

Thus,ω(Ω(Z2 × Z2 × Z2)) = 5.

Note that the formula given in theorem4.6works here also.

Corollary 4.8. ω(Ω(Zpqr)) = (p−1)(q−1)(r−1)2+3(p−1)(q−1)(r−1)+1wherep < q < r

are odd primes.

Theorem 4.9.ω(Ω(Z4p)) = 4(p− 1) + 2 wherep is an odd prime.

Proof. We identify the structure ofΩ(Z4p) as in figure6.

K2(p−1)

K2,2(p−1)

Units

Non-zero non units except 2p

2pZero Element

Figure 6. Ω(Z4p)

ω(Ω(Z4p)) ≥ 4(p− 1), sinceK2,2(p−1) is an induced subgraph. Also since the zero element
and 2p are not adjacent to any of the vertices ofK2,2(p−1), we need two more symbols. That is,
ω(Ω(Z4p)) ≥ 4(p− 1) + 2.

Now letS = {1,2, . . . ,4(p− 1),4(p− 1) + 1,4(p− 1) + 2}.
Using the symbols 1,2, . . . ,4(p − 1) we can allocate the vertices ofK2,2(p−1). Allocate

{4(p − 1) + 1} to the zero element and{4(p − 1) + 2} to 2p. Then we can allocate the sets
S − {1}, S − {2}, . . . , S − {2(p − 1)} to the vertices ofK2(p−1) and get a proper allocation.
Hence,

ω(Ω(Z4p)) = 4(p− 1) + 2.
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