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Abstract. Let S be a set andF = {S1,S2,...,S,} be a non-empty family of distinct non-
empty subsets of S whose unionds The intersection graph of is denoted by#(F) and
defined byV (7 (F)) = F, with S; and S; adjacent whenever # j andS; NS; # 0. Then
a graphG is an intersection graph ofi if there exists a familyF of subsets for whiclz and
#(F) are isomorphic graphs. The intersection numbgr) of a given graplt is the minimum
number of elements in a s€tsuch that7 is an intersection graph afi

Let R be a commutative ring with unity % 0. We associate a simple graff{R) to R
whose vertices are the elementsiifwhere two distinct vertices andy of R are adjacent if
and only ifRx + Ry = R.

We find the intersection number of a complete tripartite graphG(i@) for some classes of
R.

1 Introduction

The idea of relating a commutative ring to a graph was introduced by |8gak. In [1] Beck
considered (R) as a graph with vertices as elementsiofvhere R is a commutative ring with
unity and two different vertices andb are adjacent if and only b = 0.

In [7] Sharma and Bhatwadekar define another grapR wiith vertices as elements &fand
two distinct vertices: andb are adjacent if and only ika + Rb = R. Later in [6] Maimani and
others have studied some of the properties of the same graph and teenggdph as comaximal
graph. We denote it b@(R). The authors have studied the structure of comaximal grapla$ in [
and found all commutative rings with unity whose comaximal graph is split.

Intersection number of graphs is studied mainly by Chaudam and Paudittagin [3]. Inter-
section number of a triangle free graph with at least three vertices is itbarunf edges. So,
intersection number of a complete bipartite graph other tkianis the product of the sizes of
its partitions. But when the graph is multipartite, the situation is not very simpikecastains
triangles. Thomas ing] investigated the intersection number of certain classes of multipartite
graphs.

In this paper we find the intersection number of a complete tripartite graghus#' this to
find the intersection number 6( R) for certain classes @t namely, the direct product of finite
fields. Also we find the intersection number®fZ,.), whenp is any prime and(Zs,), when
p is an odd prime.

2 Preliminaries

In this section we list some concepts and results in graph theory whictsafel in the subse-
quent discussion.

Definition 2.1. Let S be a set andF = {51, 52,...,S,} be a non-empty family of distinct non-
empty subsets of whose union isS. The intersection graph of is denoted by#(F) and
defined byV (7 (F)) = F, with S; and S; adjacent whenever # j andS; NS; # 0. Then
a graphG is an intersection graph ofi if there exists a familyF of subsets for whiclz and
& (F) are isomorphic graphs.
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Definition 2.2. The intersection numbes(G) of a given graph’ is the minimum number of
elements in a sef such thaiG is an intersection graph oft

Theorem 2.3([4]). Every finite graph is an intersection graph.
Theorem 2.4([4]). If G is a connectedp, q)-graph andp > 3 thenw(G) < q.

Theorem 2.5([4]). LetG be a connectedp, q)-graph withp > 3. Thenw(G) = q if and only if
G has no triangles.

Theorem 2.6([3]). If H is an induced subgraph of a gragl thenw(G) > w(H).
Theorem 2.7([3]). w(K,) = [1+ log, p]

Theorem 2.8([2]). Everyk-regular bipartite graph(k > 0) has a perfect matching and (hence
by induction) is 1-factorable.

3 Intersection Number of K ,,, »,

It follows from theorem2.5thatw(K,, ) = mn if m > 1 orn > 1. In this section we investi-
gate the intersection number of a complete tripartite graph. The followindt raay be known
but we are not able to find a reference. Hence we include a proof oé¢ist.

Theorem 3.1.w(Kj 1,,,) = mn wherel <m <nandm > 2.

Proof. LetU = {uq,...,w}, V ={v1,...,vy} andW = {wy,...,w,} be the partition sets of
V(K mn). Sincek,, , is an induced subgraph &f; ,,, », w(Kjm.n) > mn. Now let,

B; = Set of edges through} in the induced subgrapR,, ,, (1 <1i < m)
and
C; = Set of edges through; in the induced subgraph,,, ,, (1 < j < n).

First we assigmB; to v; andC; to w;. We want to findAs, Ay, ..., A; to allocate the vertices
of U. Consider the subgrapht,, ,, induced by{vi,...,vm,w1,...,wy}. By theorem2.8, it
containsm edge disjoint perfect matchings. We choose apgge-disjoint perfect matchings,
say, A}, AS, ..., A]. Now we choose one edge fraff) for m+1 < j < n and adjoin these edges
to A] to getA;. Note that/C;| = m. So by choosing edges from the remaining, it is possible
to form the pair wise disjoint setd,, ..., A;. Then eachd,, (1 < k < [) contains one element
from eachB; andC; (1 <i <m,1<j <n). Thusw(K; m,n) = mn. o

Remark 3.2.w(K11,,) = n+ 1 whenn > 1.

4 Intersection Number of Q(R)

In this section we find the intersection numbekXfr) for some classes dt. First we consider
the class of rings which are direct product of two finite fields. In whid¥es, R* = R — {0}.

Theorem 4.1.Let F and K be two finite fields antF'| = m and|K| = n (m > 2,n > 2). Then,
wQF xK))=(m—-1)(n-1)+1

Proof. First we identify the structure & (F x K') as in figurel.

LetS={1,2,...,(m—1)(n—1)+1} and letV; andV; be the partition set of (K,,,_1,,—1)
with |[Vi] = m —21and|V2| =n—1. ThatisVi = {(«,0) : a € F*},V, ={(0,8) : g€ K*}.

We partition the se$ — {(m —1)(n— 1)+ 1} into (m — 1) disjoint subsets of sizg: — 1) and
allocate them to the vertices bf. We fix the order of the elements in the allocated subsets. The
collection of the first elements in the allocated subsets will form the subsetdbidzated to the
first vertex inV%»; the collection of second elements in the allocated subsets will form thetsubse
to be allocated to the second verteXinand so on. The zero element can be allocated with the
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———— Zero Element

K(m-1)(n-1) Units

K(m_1),(n-1) Non zero non units

Figure 1. Q(F x K)

symbol(m — 1)(n — 1) + 1. We allocate the sets— {1},5 —{2}...,S—{(m—1)(n—1)} to
the (m — 1)(n — 1) units. Thus, we get a proper allocation. Therefore,

W(QF x K)) < (m—1)(n—1) + 1.

But, sincekK,,_1,_1 is an induced subgraph and the zero element is not adjacent to any of
the vertices of this induced subgraph, we get

W(QF x K)) > (m—1)(n—1) + 1.

Hence,
wQF xK)=(m-1)(n-1)+1 i

Corollary 4.2. w(Q(Zy,)) = (p — 1)(¢ — 1) + 1, if p andq are distinct odd primes.

In the above theorem we assumed that the two fields must have more thaletaents. Now
we investigate the case when= 2 orn = 2.

Theorem 4.3.Let F be a finite field with F'| = n(n > 2). Thenw(Q(Z; x F)) = n+ [log,(n —
1)].

Proof. First we identify the structure of the graph as in figlre

° ——— Zero Element
K(n—l) —— Units
K1 (n-1) Non zero non units

Figure 2. Q(Z, x F)
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Let S = {a1,...,an,b1,...,b¢}; t = [log,(n — 1)]. Let V3 andV, with |V3] = 1 and
|V2| = n—1 be the partition sets fdky ,,_1. Thatis, V3 = {(1,0)} andV, = {(0, ) : « € F*}.

The subsefas, ..., a,_1} can be allocated to the vertexWh and the singletongas }, ..., {an-1}
can be assigned to the verticesin The zero element can be allocated{lay, }.

Now, the remaining elements $are[log,(n — 1)] in number. Thus by allocating the sets
formed by thosélog,(n — 1)] elements td¥,,_; and adjoining the elements, . .., a,, to each
of these subsets, we get a proper allocatiorCX@f, x F'). Therefore,

w(Q(Zz x F)) <n+ [log,(n —1)].

But, w(K1,,—1) = n — 1 and the above discussed allocation is the unique allocation with
(n — 1) symbols, say, 22,...,n — 1 for K;,_1. Any of these(n — 1) symbols cannot be
allocated to the zero element. Therefore we need another symbait, $dgw, we observe that,
each set allocated to the verticesrof 1, must be a superset 1, 2,...,n}. That is, we need
a set of symbols with at least — 1) subsets. For this, we need at ledsg,(n — 1)] symbols
in that set. Therefore
w(Q(Zy x F)) > n+ [logy(n —1)]

) =n+ [logy(n — 1)]. 0
Zy,)) = p+ [log,(p — 1)] wherep is an odd prime.

Hencew(Q(Z, x F)
Corollary 4.4. w(Q(
Theorem 4.5.w(Q(Z,2)) = p + [log, p(p — 1)] wherep is a prime.
Proof. We identify the structure a2(Z,) as in figures.

Kp(pfl) —— Units

—— Non units

Figure 3. Q(Z,2)

The arguments of the proof are similar to that of the proof of theate€dn O
Theorem 4.6.Let F; (1 < i < 3) be finite fields withF;| = n; (n1 < nz < ng,n3 # 2). Then,
w(Q(F]_ x F5 x Fg)) = (nl — 1)(712 — 1)(713 — 1)2 -+ 3(711 — 1)(712 — 1)(713 — 1) + 1.

Proof. We identify the structure dR(Fy x F» x F3) as in figured.
In the figured, I,, = K,,.
SinceKml,1)<n2,1)’(n1,1)(n3,1)7(n2,1)<n3,1) is an induced subgraptw(Q(Fl X Fo % Fg)) >
(nl — 1)(%2 — 1)(n3 — 1)2.
For allocating the vertices af,,, _1)(n,—1) and I(,,_1yn,—1) W€ have to use all then; —
1)(nz — 1)(n3 — 1)2 symbols. Therefore we cannot use any of these symbols to allocate the
vertices ofl,,,_1). Also I,,,_1) together with/,,, _1(,,—1) fOrms K ,,. _1)(,,—1),(ns—1)- Therefore
we needni — 1)(n2 — 1)(n3 — 1) new symbols. Similarly, for the vertices &f,,_,) we cannot
use any of the symbols already used. Thus, considéfjng, also, we get,

(Q(Fl X F2 X Fg)) (nl — 1)(’/12 — 1)(’/13 — 1)2 + 3(711 — 1)(712 — 1)(713 — 1)
We need a special symbol for the zero-element. Therefore,
w(Q(F]_ X F5 x Fg)) > (’I’L]_ — 1)(712 — 1)(713 - 1)2 + 3(711 — 1)(’/12 — 1)(’/13 — 1) + 1.

From the above discussion itis clear that — 1) (ny—1)(ng—1)?+3(n1—1)(np— 1) (n3—1)+1
symbols are enough to allocate the non-unitdpf F, x F3. Now it is enough to show that
units of F; x F, x F3 can be allocated by these symbols.
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Iina-y) T(np-1) -1

Figure 4. Q(Fy x F, X F3)

Let S = {1, 2,..., (’I’L]_ — 1)(712 — 1)(713 — 1)2 + 3(711 — 1)(712 — 1)(713 — 1) + 1} Then
S—{1},5—{2},...,5—{(n1—1)(nz—1)(n3— 1)} can be allocated to the units, assuming the
zero element is not allocated with any of the symbo®® 1 ., (ny — 1)(nz — 1)(ng — 1). Thus
we get a proper allocation. Hence,

w(Q(F]_ X Fy X Fg)) = (nl - 1)(’/12 - 1)(’/13 - 1)2 + 3(711 — 1)(712 — 1)(713 — 1) + 1. O

In theorem4.6we insisted that; # 2. In the following theorem we consider the case when
n3 = 2. That is, the case when = n, = n3 = 2.

Theorem 4.7.w(Q(Zy x Zy x Z3)) = 5.
Proof. The figure5 givesQ(Z; x Z; x Zs).

(O, 0, O)
(1, 1, 1)
(1, 170)// \(17 0,1)
(O, 0, 1) (1, 0, O) (O, 1, O)

Figure 5. Q(Zy x Z x Z3)

Q(Zyx Zy x Z) containsK, as an induced subgraph. S8Q(Z, x Zy x Zy)) > w(Ka) = 3.
But these symbols are used to allocgte0, 0), (1,0, 1) and(0, 1, 1). So, we need a new symbol
for allocating(0, 0, 0). Thereforew(Q(Z, x Z, x Z,)) > 4. But by inspectiony(Q(Z; x Z, x

Now it is enough to show that it is impossible to get a proper allocation with afsét
symbols.

Let S = {a,b,c,d}. One element ob, saya should be reserved for the zero element and
a must be in the set allocated (&, 1, 1) and should not be in any other allocated sets. Then
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there are only 3 elements remaining $h Thus we have only 7 subsets available, namely,
{b,c,d},{b,c},{b,d},{c,d},{b},{c} and{d}. Also there are 7 vertices to be allocated. The
graph structure demands that the 7 subsets to be allocated must contdisedsswhich are
pairwise not disjoint. The only possible such a collectiof\{is ¢, d}, {b, ¢}, {b,d}, {¢,d}}. Then
the remaining vertices need 3 pairwise disjoint subsets. The only possibi{i{ylis{c}, {d}}.
Without loss of generality, assume that}, {c} and{d} are allocated td0,0,1), (0,1, 0) and
(1,0,0) respectively. Note thaf0,0,1) is adjacent to only 2 vertices, but among the first 4
subsets, 3 subsets contairSo, there doesn't exist a proper allocation with 4 elements.
ThUS,w(Q(ZZ X iy X Zz)) =5. O

Note that the formula given in theorefn6 works here also.

Corollary 4.8. w(Q(Zpgr)) = (p—1)(¢—1)(r—1)2+3(p—1)(¢—1)(r—1)+1wherep < g < r
are odd primes.

Theorem 4.9.w(Q(Z4,)) = 4(p — 1) + 2 wherep is an odd prime.
Proof. We identify the structure d2(Z4,) as in figureb.

Zero Elemen 2p

Kop-1) —— Units

K321 ——— Non-zero non units excepp2

Figure 6. Q(Za,)

w(Q(Zap)) > 4(p — 1), sinceK5, 5,1 is an induced subgraph. Also since the zero element
and % are not adjacent to any of the verticesiof 5, 1), we need two more symbols. That is,
W(Q(Zay)) > Alp— 1) + 2.

Now letS ={1,2,...,4(p—1),4(p—1) +1,4(p— 1) + 2}.

Using the symbols ,2,...,4(p — 1) we can allocate the vertices &f,,,_1). Allocate
{4(p — 1) + 1} to the zero element anl(p — 1) + 2} to 2p. Then we can allocate the sets
S —{1},5 - {2},...,5 — {2(p — 1)} to the vertices ofKy,_1) and get a proper allocation.
Hence,

w(Q(Zay)) =4(p—1) + 2 o
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