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Abstract. In this paper we study some properties of a conformal maps between equidi-

mensional manifolds, we construct new example of non-harmonic biharmonic maps and we

characterize the biharmonicity of some maps on the warped product manifolds.

1 Introduction.

Let ϕ : (Mm, g) → (Nn, h) be a smooth map between Riemannian manifolds. Then ϕ is said to

be harmonic if it is a critical point of the energy functional :

E(ϕ) =
1

2

∫
M

|dϕ|2dvg (1.1)

with respect to compactly supported variations. Equivalently, ϕ is harmonic if it satis�es the

associated Euler-Lagrange equations :

τ(ϕ) = Trg∇dϕ = 0, (1.2)

τ(ϕ) is called the tension �eld of ϕ. One can refer to [7-10] for background on harmonic maps.

In the context of harmonic maps, the stress-energy tensor was studied in details by Baird and

Eells in [2]. Indeed, the Euler-Lagrange equation associated to the energy is the vanishing of the

tension �eld τ(ϕ) = Trg∇dϕ, and the stress-energy tensor for a map ϕ : (Mm, g) −→ (Nn, h)
de�ned by

S(ϕ) = e(ϕ)g − ϕ∗h.

The relation between S(ϕ) and τ(ϕ) is given by

divS(ϕ) = −h(τ(ϕ), dϕ).

The map ϕ is said to be biharmonic if it is a critical point of the bi-energy functional :

E2(ϕ) =
1

2

∫
M

|τ(ϕ)|2dvg (1.3)

Equivalently, ϕ is biharmonic if it satis�es the associated Euler-Lagrange equations :

τ2(ϕ) = −Trg
(
∇ϕ

)2
τ(ϕ)− TrgR

N (τ(ϕ), dϕ)dϕ = 0, (1.4)

where ∇ϕ is the connection in the pull-back bundle ϕ−1(TN) and, if (ei)1≤i≤m is a local or-

thonormal frame �eld onM , then

Trg
(
∇ϕ

)2
τ (ϕ) =

(
∇ϕ
ei∇

ϕ
ei −∇ϕ

∇ei
ei

)
τ (ϕ) ,

where we sum over repeated indices. We will call the operator τ2(ϕ), the bi-tension �eld of the
map ϕ.
In analogy with harmonic maps, Jiang In [11] has constructed for a map ϕ the stress bi-energy

tensor de�ned by

S2(ϕ) =

(
−1
2

|τ(ϕ)|2 + divh (τ(ϕ), dϕ)

)
g − 2symh (∇τ(ϕ), dϕ) ,



Conformal maps, biharmonic maps and the warped product 81

where

symh (∇τ(ϕ), dϕ) (X,Y ) =
1

2
{h (∇Xτ(ϕ), dϕ (Y )) + h (∇Y τ(ϕ), dϕ (X))} ,

for any X,Y ∈ G (TM) . The stress bi-energy tensor of ϕ satis�es the following relationship

divS2(ϕ) = h (τ2(ϕ), dϕ) .

Clearly any harmonic map is biharmonic, therefore it is interesting to construct non-harmonic

biharmonic maps. In [4] the authors found new examples of biharmonic maps by conformally

deforming the domain metric of harmonic ones. While in [6] the author analyzed the behavior of

the biharmonic equation under the conformal change the domain metric, he obtained metrics g̃ =
e2γ such that the idendity map Id : (M, g) −→ (M, g̃) is biharmonic non-harmonic. Moreover, in

[14] the author gave some extensions of the result in [6] together with some further constructions

of biharmonic maps. The author in [13] deform conformally the codomain metric in order to

render a semi-conformal harmonic map biharmonic. In [5] the authors studied the case where

ϕ : (Mn, g) −→ (Nn, h) is a conformal mapping between equidimensional manifolds where

they show that a conformal mapping ϕ is biharmonic if and only if the gradient of its dilation

satis�es a second order elliptic partial differential equation. We can refer the reader to [12], for

a survey of biharmonic maps. In the �rst section of this paper, we present some properties for a

conformal mapping ϕ : (Mn, g) −→ (Nn, h), we prove that the stress bi-energy tensor depend

only on the dilation (Theorem 2.1) and we calculate the bitension �eld of ϕ (Theorem 2.2). In

the last section we study the biharmonicity of some maps on the warped product (Theorem 3.1

and 3.2), with this setting we obtain new examples of biharmonic non-harmonic maps.

2 Some properties for conformal maps.

We study conformal maps between equidimensional manifolds of the same dimension n ≥ 3.

Note that by a result in [5], any such map can have no critical points and so is a local conformal

diffeomorphism. Recall that a mapping ϕ : (Mn, g) → (Nn, h) is called conformal if there exist

a C∞ function λ :M → R∗
+ such that for any X,Y ∈ G(TM) :

h(dϕ(X), dϕ(Y )) = λ2g(X,Y ).

The function λ is called the dilation for the map ϕ. The tension �eld and the stress energy tensor
for a conformal map are given by (see [1]):

Proposition 2.1. Let ϕ : (Mn, g) → (Nn, h) be a conformal map of dilation λ, we have

(i) divS(ϕ) = (n− 2)λ2d lnλ, (2.1)

(ii) divh(τ(ϕ), dϕ) = (2− n)
(
2λ2 |grad lnλ|2 + λ2D lnλ

)
. (2.2)

(iii) τ(ϕ) = (2− n)dϕ(grad lnλ). (2.3)

(iv) |τ(ϕ)|2 = (2− n)2λ2 |grad lnλ|2 . (2.4)

Note that the conformal map ϕ : (Mn, g) → (Nn, h) of dilation λ is harmonic if and only if

n = 2 or the dilation λ is constant.

In the �rst, wa calculate the stress bi-energy tensor for a conformal map ϕ when we prove

that S2(ϕ) depend only the dilation.

Theorem 2.1. Let ϕ : (Mn, g) → (Nn, h) be a conformal map with dilation λ, then we have

S2(ϕ) = (2− n)λ2
{(

n− 2

2
|grad lnλ|2 + D lnλ

)
g − 2∇d lnλ

}
, (2.5)

and the trace of S2(ϕ) is given by

TrS2(ϕ) = − (2− n)
2
λ2

{n
2
|grad lnλ|2 + D lnλ

}
. (2.6)
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To prove Theorem 2.1, we need the following Lemma :

Lemma 2.1. Let ϕ : (Mn, g) → (Nn, h) be a conformal map with dilation λ, then for any

function f ∈ C∞(M) and for any X,Y ∈ G(TM), we have

h (∇Xdϕ (gradf) , dϕ (Y )) = λ2 (X (lnλ)Y (f)− Y (lnλ)X (f))

+ λ2∇df (X,Y ) + λ2d lnλ (gradf) g (X,Y ) .
(2.7)

Proof of Lemma 2.1. Let f ∈ C∞ (M), for any X,Y ∈ G (TM), we have

h (∇Xdϕ (gradf) , dϕ (Y )) = X
(
λ2g (gradf, Y )

)
− h (dϕ (gradf) ,∇Xdϕ (Y ))

= X
(
λ2
)
g (gradf, Y ) + λ2g (∇Xgradf, Y ) + λ2g (gradf,∇XY )

− h (dϕ (gradf) ,∇dϕ (X,Y ))− h (dϕ (gradf) , dϕ (∇XY ))

= X
(
λ2
)
g (gradf, Y ) + λ2g (∇Xgradf, Y ) + λ2g (gradf,∇XY )

− h (dϕ (gradf) ,∇dϕ (X,Y ))− λ2g (gradf,∇XY ) .

Note that

g (∇Xgradf, Y ) = ∇df (X,Y ) ,

then we obtain

h (∇Xdϕ (gradf) , dϕ (Y )) = 2λ2X (lnλ)Y (f)+λ2∇df (X,Y )−h (dϕ (gradf) ,∇dϕ (X,Y )) .

By similary, we have

h (∇Y dϕ (gradf) , dϕ (X)) = 2λ2Y (lnλ)X (f)+λ2∇df (X,Y )−h (dϕ (gradf) ,∇dϕ (X,Y )) .

Then, we deduce that

h (∇Xdϕ (gradf) , dϕ (Y )) = h (dϕ (X) ,∇Y dϕ (gradf))

+ 2λ2 (X (lnλ)Y (f)− Y (lnλ)X (f)) .
(2.8)

For the term h (dϕ (X) ,∇Y dϕ (gradf)), we have

h (∇Y dϕ (gradf) , dϕ (X)) = h (∇dϕ (gradf, Y ) , dϕ (X)) + λ2g (∇Y gradf,X)

= h (∇gradfdϕ (Y ) , dϕ (X))− λ2g (∇gradfY,X)

+ λ2g (∇Y gradf,X)

= gradf
(
λ2g (X,Y )

)
− h (∇gradfdϕ (X) , dϕ (Y ))

− λ2g (∇gradfY,X) + λ2g (∇Y gradf,X)

= 2λ2d lnλ (gradf) g (X,Y )− h (∇dϕ (X, gradf) , dϕ (Y ))

+ λ2g (∇Y gradf,X) .

We deduce that

h (∇Y dϕ (gradf) , dϕ (X)) = −h (∇Xdϕ (gradf) , dϕ (Y )) + 2λ2∇df (X,Y )

+ 2λ2d lnλ (gradf) g (X,Y ) .
(2.9)

Finally, if we replace (2.9) in (2.8), we obtain

h (∇Xdϕ (gradf) , dϕ (Y )) = λ2 (X (lnλ)Y (f)− Y (lnλ)X (f))

+ λ2∇df (X,Y ) + λ2d lnλ (gradf) g (X,Y ) .

This completes the proof of Lemma 2.1.
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Remark 2.1. Let ϕ : (Mn, g) → (Nn, h) be a conformal map with dilation λ, then if we consider
f = lnλ, the equation (2.7) gives

h (∇Xdϕ (grad lnλ) , dϕ (Y )) = λ2
(
∇d lnλ (X,Y ) + |grad lnλ|2 g (X,Y )

)
.

Proof of Theorem 2.1. By de�nition, the stress bi-energy tensor is given by :

S2(ϕ) =

(
−1

2
|τ(ϕ)|2 + divh (τ(ϕ), dϕ)

)
g − 2symh (∇τ(ϕ), dϕ) . (2.10)

Using the equations (1.2) et (1.4) for the Proposition 2.1, we have

−1

2
|τ(ϕ)|2 + divh (τ(ϕ), dϕ) = (2− n)λ2

(
n+ 2

2
|grad lnλ|2 + D lnλ

)
. (2.11)

Calculate now symh (∇τ(ϕ), dϕ), we have by de�nition for any X,Y ∈ G (TM)

symh (∇τ(ϕ), dϕ) (X,Y ) =
1

2
(h (∇Xτ (ϕ) , dϕ (Y )) + h (∇Y τ (ϕ) , dϕ (X)))

=
2− n

2
h (∇Xdϕ (grad lnλ) , dϕ (Y ))

+
2− n

2
h (∇Y (grad lnλ) , dϕ (X)) .

By Lemma 2.1, we have

h (∇Xdϕ (grad lnλ) , dϕ (Y )) = λ2
(
∇d lnλ (X,Y ) + |grad lnλ|2 g (X,Y )

)
and

h (∇Y dϕ (grad lnλ) , dϕ (X)) = λ2
(
∇d lnλ (X,Y ) + |grad lnλ|2 g (X,Y )

)
,

then

symh (∇τ(ϕ), dϕ) (X,Y ) = (2− n)λ2
(
∇d lnλ (X,Y ) + |grad lnλ|2 g (X,Y )

)
. (2.12)

If we substitute (2.11) and (2.12) in (2.10), we conclude that

S2(ϕ) = (2− n)λ2
{(

n− 2

2
|grad lnλ|2 + D lnλ

)
g − 2∇d lnλ

}
Calculate now the trace of stress bi-energy tensor. Let (ei)1≤i≤n be an orthonormal frame onM ,

we have
TrgS2(ϕ) = S2(ϕ)(ei, ei)

= (2− n)λ2
(
n− 2

2
|grad lnλ|2 + D lnλ

)
g (ei, ei)

− 2 (2− n)λ2∇d lnλ (ei, ei)

= (2− n)nλ2
(
n− 2

2
|grad lnλ|2 + D lnλ

)
− 2 (2− n)λ2 (D lnλ)

= (2− n)λ2
{
n (n− 2)

2
|grad lnλ|2 + (n− 2)D lnλ

}
.

Then

TrS2(ϕ) = − (2− n)
2
λ2

{n
2
|grad lnλ|2 + D lnλ

}
.

By calculating the Laplacian of the function λ
n
2 and by using

Dλ
n
2 =

n

2
λ

n
2

(n
2
|grad lnλ|2 + D lnλ

)
,

we obtain immediately the following corollary
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Corollary 2.1. Let ϕ : (Mn, g) → (Nn, h), (n ̸= 2) to be a conformal map of dilation λ, then
the trace of S2(ϕ) is zero if and only if the function λ

n
2 is harmonic.

The bi-tension �eld of the conformal map is given by

Theorem 2.2. Let ϕ : (Mn, g) → (Nn, h), (n ≥ 3) to be a conformal map of dilation λ, then
bi-tension �eld of ϕ is given by :

τ2(ϕ) = (n− 2) dϕ (H)

where

H = gradD lnλ− (n− 6)

2
grad

(
|grad lnλ|2

)
+ 2RicciM (grad lnλ)

−
(
2 (D lnλ) + (n− 2) |grad lnλ|2

)
grad lnλ.

(2.13)

To prove the Theorem 2.2, we need two Lemmas. In the �rst Lemma, we give a simple

formula of the term Trg
(
∇ϕ

)2
dϕ (gradγ) for a conformal map ϕ : (Mn, g) → (Nn, h) (n ≥ 3)

of dilation λ and for any function γ ∈ C∞ (M).

Lemma 2.2. Let ϕ : (Mn, g) → (Nn, h) (n ≥ 3) to be a conformal map of dilation λ, then for

any function γ ∈ C∞ (M), we have

Trg
(
∇ϕ

)2
dϕ (gradγ) = dϕ (gradDγ) + 4dϕ (∇grad lnλgradγ) + dϕ

(
RicciM (gradγ)

)
+ (D lnλ) dϕ (gradγ)− 2 (Dγ) dϕ (grad lnλ)

− (n− 2) d lnλ (gradγ) dϕ (grad lnλ) .
(2.14)

Proof of Lemma 2.2. Let γ ∈ C∞ (M), by de�nition, we have

Trg
(
∇ϕ

)2
dϕ (gradγ) = ∇ϕ

ei∇
ϕ
eidϕ (gradγ)−∇ϕ

∇ei
ei
dϕ (gradγ) . (2.15)

(Here henceforth we sum over repeated indices.) Let us start with the calculation of the term

∇ϕ
ei∇

ϕ
eidϕ (gradγ) , we have

∇ϕ
eidϕ (gradγ) = ∇dϕ (ei, gradγ) + dϕ (∇eigradγ) .

It is known that (see [3])

∇dϕ (ei, gradγ) = ei (lnλ) dϕ (gradγ) + d lnλ (gradγ) dϕ (ei)− ei (γ) dϕ (grad lnλ) ,

then
∇ϕ
eidϕ (gradγ) = ei (lnλ) dϕ (gradγ) + d lnλ (gradγ) dϕ (ei)

− ei (γ) dϕ (grad lnλ) + dϕ (∇eigradγ) .
(2.16)

It follows that

∇ϕ
ei∇

ϕ
eidϕ (gradγ) = ∇ϕ

ei {ei (lnλ) dϕ (gradγ)}+∇ϕ
ei {d lnλ (gradγ) dϕ (ei)}

− ∇ϕ
ei {ei (γ) dϕ (grad lnλ)}+∇ϕ

eidϕ (∇eigradγ) .
(2.17)

We will study term by term the right-hand of this expression. For the �rst term

∇ϕ
ei {ei (lnλ) dϕ (gradγ)}, we have

∇ϕ
ei {ei (lnλ) dϕ (gradγ)} = ei (lnλ)∇ϕ

eidϕ (gradγ) + ei (ei (lnλ)) dϕ (gradγ) .

By using the equation (2.16), we deduce that

∇ϕ
ei {ei (lnλ) dϕ (gradγ)} = ei (lnλ) ei (lnλ) dϕ (gradγ) + ei (lnλ) d lnλ (gradγ) dϕ (ei)

− ei (lnλ) ei (γ) dϕ (grad lnλ) + ei (lnλ) dϕ (∇eigradγ)

+ ei (ei (lnλ)) dϕ (gradγ) ,
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then, we obtain

∇ϕ
ei {ei (lnλ) dϕ (gradγ)} = |grad lnλ|2 dϕ (gradγ) + dϕ (∇grad lnλgradγ)

+ ei (ei (lnλ)) dϕ (gradγ) .
(2.18)

For the second term ∇ϕ
ei {d lnλ (gradγ) dϕ (ei)}, a similar calculation gives

∇ϕ
ei {d lnλ (gradγ) dϕ (ei)} = d lnλ (gradγ)∇ϕ

eidϕ (ei) + ei {g (grad lnλ, gradγ)} dϕ (ei)

= d lnλ (gradγ)∇ϕ
eidϕ (ei) + g (∇eigrad lnλ, gradγ) dϕ (ei)

+ g (grad lnλ,∇eigradγ) dϕ (ei)

= d lnλ (gradγ)∇ϕ
eidϕ (ei) + g (∇gradγgrad lnλ, ei) dϕ (ei)

+ g (∇grad lnλgradγ, ei) dϕ (ei) ,

it follows that

∇ϕ
ei {d lnλ (gradγ) dϕ (ei)} = d lnλ (gradγ)∇ϕ

eidϕ (ei) + dϕ (∇gradγgrad lnλ)

+ dϕ (∇grad lnλgradγ) .
(2.19)

For the third term ∇ϕ
ei {ei (γ) dϕ (grad lnλ)}, by using the same calculation method and the

equation (2.16), we have

∇ϕ
ei {ei (γ) dϕ (grad lnλ)} = ei (γ)∇ϕ

eidϕ (grad lnλ) + ei (ei (γ)) dϕ (grad lnλ)

= ei (γ) ei (lnλ) dϕ (grad lnλ) + ei (γ) d lnλ (grad lnλ) dϕ (ei)

− ei (γ) ei (lnλ) dϕ (grad lnλ) + ei (γ) dϕ (∇eigrad lnλ)

+ ei (ei (γ)) dϕ (grad lnλ) ,

which gives us

∇ϕ
ei {ei (γ) dϕ (grad lnλ)} = |grad lnλ|2 dϕ (gradγ) + dϕ (∇gradγgrad lnλ)

+ ei (ei (γ)) dϕ (grad lnλ) .
(2.20)

Now let us look at the last term ∇ϕ
eidϕ (∇eigradγ), a simple calculation gives

∇ϕ
eidϕ (∇eigradγ) = ei (lnλ) dϕ (∇eigradγ) + d lnλ (∇eigradγ) dϕ (ei)

− g (ei,∇eigradγ) dϕ (grad lnλ) + dϕ (∇ei∇eigradγ)

= 2dϕ (∇grad lnλgradγ)− (Dγ) dϕ (grad lnλ)

+ dϕ (∇ei∇eigradγ) ,

then
∇ϕ
eidϕ (∇eigradγ) = dϕ (∇ei∇eigradγ) + 2dϕ (∇grad lnλgradγ)

− (Dγ) dϕ (grad lnλ) .
(2.21)

If we replace (2.18), (2.19), (2.20) and (2.21) in (2.17), we obtain

∇ϕ
ei∇

ϕ
eidϕ (gradγ) = 4dϕ (∇grad lnλgradγ) + ei (ei (lnλ)) dϕ (gradγ)

+ d lnλ (gradγ)∇ϕ
eidϕ (ei)− ei (ei (γ)) dϕ (grad lnλ)

+ dϕ (∇ei∇eigradγ)− (Dγ) dϕ (grad lnλ) .

(2.22)

To complete the proof, it remains to investigate the term ∇ϕ
∇ei

ei
dϕ (gradγ), we have

∇ϕ
∇ei

ei
dϕ (gradγ) = ∇dϕ (∇eiei, gradγ) + dϕ

(
∇∇ei

eigradγ
)
,
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Therefore, by using the equation (2.16), we obtain

∇ϕ
∇ei

ei
dϕ (gradγ) = ∇eiei (lnλ) dϕ (gradγ) + d lnλ (gradγ) dϕ (∇eiei)

−∇eiei (γ) dϕ (grad lnλ) + dϕ
(
∇∇ei

eigradγ
)
.

(2.23)

By substituting (2.22) and (2.23) in (2.15), we deduce

Trg
(
∇ϕ

)2
dϕ (gradγ) = ∇ϕ

ei∇
ϕ
eidϕ (gradγ)−∇ϕ

∇ei
ei
dϕ (gradγ)

= dϕ
(
Trg∇2gradγ

)
+ 4dϕ (∇grad lnλgradγ)

+ (D lnλ) dϕ (gradγ) + d lnλ (gradγ) τ (ϕ)

− 2 (Dγ) dϕ (grad lnλ) .

Finally, using the fact that (see [13])

Trg∇2gradγ = gradDγ +RicciM (gradγ)

and

τ (ϕ) = (2− n) dϕ (grad lnλ) ,

we conclude that

Trg
(
∇ϕ

)2
dϕ (gradγ) = dϕ (gradDγ) + 4dϕ (∇grad lnλgradγ) + dϕ

(
RicciM (gradγ)

)
+ (D lnλ) dϕ (gradγ)− 2 (Dγ) dϕ (grad lnλ)

− (n− 2) d lnλ (gradγ) dϕ (grad lnλ) .

This completes the proof of Lemma 2.2. Now, in the second Lemma, we will calculate

TrgR
N (dϕ (gradγ) , dϕ) dϕ for a conformal maps ϕ : (Mn, g) → (Nn, h) (n ≥ 3) of dilation λ

and for any function γ ∈ C∞ (M)

Lemma 2.3. Let ϕ : (Mn, g) → (Nn, h) (n ≥ 3) to be a conformal map of dilation λ, then for

any function γ ∈ C∞ (M), we have

TrgR
N (dϕ (gradγ) , dϕ) dϕ = dϕ

(
RicciM (gradγ)

)
− (n− 2) dϕ (∇gradγgrad lnλ)

−
(
D lnλ+ (n− 2) |grad lnλ|2

)
dϕ (gradγ)

+ (n− 2) d lnλ (gradγ) dϕ (grad lnλ)

(2.24)

Proof of Lemma 2.3. Let γ ∈ C∞ (M), by de�nition we have

TrgR
N (dϕ (gradγ) , dϕ) dϕ = RN (dϕ (gradγ) , dϕ (ei)) dϕ (ei) (2.25)

but we know that (see [3])

RicN (dϕ (X) , dϕ (Y )) = RicM (X,Y ) + (n− 2)X (lnλ)Y (lnλ)

− (n− 2) |grad lnλ|2 g (X,Y )
− (n− 2)∇d lnλ (X,Y )− (D lnλ) g (X,Y ) .

Then

RicN (dϕ (gradγ) , dϕ (ei)) = RicM (gradγ, ei) + (n− 2) gradγ (lnλ) ei (lnλ)

− (n− 2) |grad lnλ|2 g (gradγ, ei)
− (n− 2)∇d lnλ (gradγ, ei)− (D lnλ) g (gradγ, ei)

it follows that

RicN (dϕ (gradγ) , dϕ (ei)) = RicM (gradγ, ei) + (m− 2) d lnλ (gradγ) ei (lnλ)

− (n− 2) |grad lnλ|2 ei (γ)− (n− 2)∇d lnλ (gradγ, ei)
− (D lnλ) ei (γ) .

(2.26)
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If we replace (2.26) in (2.25), we deduce that

TrgR
N (dϕ (gradγ) , dϕ) dϕ =RN (dϕ (gradγ) , dϕ (ei)) dϕ (ei)

=dϕ
(
RicciM (gradγ)

)
+ (n− 2) d lnλ (gradγ) dϕ (grad lnλ)

− (n− 2) |grad lnλ|2 dϕ (gradγ)− (D lnλ) dϕ (gradγ)

− (n− 2)∇d lnλ (gradγ, ei) dϕ (ei) .

To complete the proof, we will simplify the term ∇d lnλ (gradγ, ei) dϕ (ei), we obtain

∇d lnλ (gradγ, ei) dϕ (ei) = {ei (g (grad lnλ, gradγ))− d lnλ (∇eigradγ)} dϕ (ei)
= g (∇eigrad lnλ, gradγ) dϕ (ei)

= g (∇gradγgrad lnλ, ei) dϕ (ei)

= dϕ (∇gradγgrad lnλ) ,

which �nally gives

TrgR
N (dϕ (gradγ) , dϕ) dϕ = dϕ

(
RicciM (gradγ)

)
− (n− 2) dϕ (∇gradγgrad lnλ)

−
(
D lnλ+ (n− 2) |grad lnλ|2

)
dϕ (gradγ)

+ (n− 2) d lnλ (gradγ) dϕ (grad lnλ) .

This completes the proof of Lemma 2.3. We are now able to prove Theorem 2.2.

Proof of Theorem 2.2. By de�nition, the bitension �eld is given by

τ2 (ϕ) = −Trg
(
∇ϕ

)2
τ (ϕ)− TrgR

N (τ (ϕ) , dϕ) dϕ.

The tension �eld of the conformal map ϕ is given by

τ (ϕ) = (2− n) dϕ (grad lnλ) ,

it follows that

τ2 (ϕ) = (n− 2)
(
Trg

(
∇ϕ

)2
dϕ (grad lnλ) + TrgR

N (dϕ (grad lnλ) , dϕ) dϕ
)
. (2.27)

By Lemma 2, we have

Trg
(
∇ϕ

)2
dϕ (grad lnλ) = dϕ (gradD lnλ) + 2dϕ

(
grad

(
|grad lnλ|2

))
− (D lnλ) dϕ (grad lnλ) + dϕ

(
RicciM (grad lnλ)

)
− (n− 2) |grad lnλ|2 dϕ (grad lnλ) .

(2.28)

By using lemma 2.3 and the fact that ∇grad lnλgrad lnλ = 1

2
grad

(
|grad lnλ|2

)
TrgR

N (dϕ (grad lnλ) , dϕ) dϕ = dϕ
(
RicciM (grad lnλ)

)
− (D lnλ) dϕ (grad lnλ)

− (n− 2)

2
dϕ

(
grad

(
|grad lnλ|2

))
.

(2.29)

If we replace (2.28) and (2.29) in (2.27), we deduce that

τ2 (ϕ) = (n− 2) dϕ (gradD lnλ)− (n− 2) (n− 6)

2
dϕ

(
grad

(
|grad lnλ|2

))
− (n− 2)

(
2 (D lnλ) + (n− 2) |grad lnλ|2

)
dϕ (grad lnλ)

+ 2 (n− 2) dϕ
(
RicciM (grad lnλ)

)
.
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Then the bi-tension �eld of ϕ is given by :

τ2(ϕ) = (n− 2) dϕ (H)

where

H = gradD lnλ− (n− 6)

2
grad

(
|grad lnλ|2

)
+ 2RicciM (grad lnλ)

−
(
2 (D lnλ) + (n− 2) |grad lnλ|2

)
grad lnλ.

The proof of Theorem 2.2 is complete. By application of Theorem 2.2, we get the following

result (see [5]).

Theorem 2.3. ([5]) Let ϕ : (Mn, g) → (Nn, h) (n ≥ 3) to be a conformal map of dilation λ,
then ϕ is biharmonic if and only if the dilation λ satis�es

grad (D lnλ)−
(
2 (D lnλ) + (n− 2) |grad lnλ|2

)
grad lnλ

+
6− n

2
grad

(
|grad lnλ|2

)
+ 2RicciM (grad lnλ) = 0.

In particular, we prove that the biharmonicity of the conformal map ϕ : (Rn, g) → (Nn, h)
(n ≥ 3) where the dilation λ is radial (lnλ = α (r) , r = |x| and α ∈ C∞ (R,R)) is equivalent to
an ordinary differential equation of the second order. More precisely, we have

Corollary 2.2. Let ϕ : (Rn, g) → (Nn, h) (n ≥ 3) to be a conformal map of dilation λ when

we suppose that lnλ is radial (lnλ = α (r) , r = |x| and α ∈ C∞ (R,R)). Then ϕ is biharmonic

if and only if β = α′ satis�es the following ordinary differential equation :

β′′ − (n− 4)ββ′ +
n− 1

r
β′ − n− 1

r2
β − 2 (n− 1)

r
β2 − (n− 2)β3 = 0. (2.30)

Proof of Corollary 2.2 Let ϕ : (Rn, g) → (Nn, h) (n ≥ 3) to be a conformal map of dilation

λ such that lnλ = α (r). By Theorem 2.3, ϕ is biharmonic if and only if the dilation λ satis�es

grad (D lnλ)−
(
2 (D lnλ) + (n− 2) |grad lnλ|2

)
grad lnλ

+
6− n

2
grad

(
|grad lnλ|2

)
+ 2RicciM (grad lnλ) = 0.

A direct calculation gives

grad lnλ = α′ ∂

∂r
,

|grad lnλ|2 = (α′)
2
,

grad
(
|grad lnλ|2

)
= 2α′α′′ ∂

∂r
,

D lnλ = α′′ +
n− 1

r
α′

and

grad (D lnλ) =

(
α′′′ +

n− 1

r
α′′ − n− 1

r2
α′
)
∂

∂r
.

Therefore ϕ is biharmonic if and only if the function α satis�es the following differential equa-

tion

α′′′ − (n− 4)α′α′′ +
n− 1

r
α′′ − n− 1

r2
α′ − 2 (n− 1)

r
(α′)

2 − (n− 2) (α′)
3
= 0.
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If we denote β = α′, the biharmonicity of ϕ is equivalent to the differential equation

β′′ − (n− 4)ββ′ +
n− 1

r
β′ − n− 1

r2
β − 2 (n− 1)

r
β2 − (n− 2)β3 = 0.

As a consequence of the Corollary 2.2, We will present some remarks which we give a particular

solutions of the equation (2.30) that allows us to construct a biharmonic non-harmonic maps.

Remark 2.2. . Looking for particular solutions of type β = a
r (a ∈ R∗). By (2.30), we deduce

that ϕ : (Rn, g) → (Nn, h) (n ≥ 3) is biharmonic if and only if a is a solution of the algebraic

equation

(n− 2) a2 + (n+ 2) a+ 2n− 2 = 0.

This equation has real solutions if and only if n ∈ {3, 4}.

(i) If n = 3, we �nd a = −5+
√
17

2
or a = −5−

√
17

2
, so λ = Cr

−
(

5−
√

17

2

)
or λ = Cr

−
(

5+
√

17

2

)
(C ∈

R∗
+). It follows that any conformal map ϕ : (R3, g) → (N3, h) of dilation λ = Cr

−
(

5−
√

17

2

)
or λ = Cr

−
(

5+
√

17

2

)
is biharmonic non-harmonic.

(ii) If n = 4, we �nd a = −1 or a = −2, so λ = C
r2

or λ = C
r (C ∈ R∗

+). Then, in this

case any conformal map ϕ : (R4, g) → (N4, h) of dilation λ = C
r2

or λ = C
r is biharmonic

non-harmonic.

Remark 2.3. . Looking for particular solutions of type β = ar
1+r2

(a ∈ R∗). By (2.30), ϕ :

(Rn, g) → (Nn, h) (n ≥ 3) is biharmonic if and only we have

(n− 2) a2 + (n+ 2) a+ 2n− 2 = 0

and

3 (n− 2) a+ 2n+ 4 = 0.

These two equations gives a = −2 and n = 4, it follows that the dilation is equal to λ = Cr
r2+1

(C ∈ R∗
+). Then, all conformal maps ϕ : (R4, g) → (N4, h) of dilation λ = Cr

r2+1
are biharmonic

non-harmonic.

3 Biharmonic maps and the warped product

Let (Mm, g) and (Nn, h) two Riemannian manifolds and let f ∈ C∞ (M) be a positive function.
The warped product M ×f N is the product manifolds M × N endowed with the Riemannian

metric Gf de�ned, for X,Y ∈ G (T (M ×N)), by

Gf (X,Y ) = g (dπ (X) , dπ (Y )) + (f ◦ π)2 h (dη (X) , dη (Y )) ,

where π : M × N −→ M and η : M × N −→ N are respectively the �rst and the second

projection. The function f is called the warping function of the warped product. Let X,Y ∈
G (T (M ×N)), X = (X1, X2), Y = (Y1, Y2) . Denote by ∇ the Levi-Civita connection on the

Riemannian productM ×N . The Levi-Civita connection ∇̃ of the warped productM ×f N is

given by

∇̃XY = ∇XY +X1 (ln f) (0, Y2) + Y1 (ln f) (0, X2)− f2h (X2, Y2) (grad ln f, 0) . (3.1)

In the �rst, we consider a smooth map ϕ : (Mm, g) −→ (P p, k) and we de�ned the map ϕ̃ :

(Mm ×f Nn, Gf ) −→ (P p, k) by ϕ̃ (x, y) = ϕ (x). We will study the biharmonicity of ϕ̃. By

calculating the tension �eld of ϕ̃, we obtain the following result :

Proposition 3.1. Let ϕ : (Mm, g) −→ (P p, k) be a smooth map. The tension �eld of the map

ϕ̃ : (Mm ×f Nn, Gf ) −→ (P p, k) de�ned by ϕ̃ (x, y) = ϕ (x) is given by

τ
(
ϕ̃
)
= τ (ϕ) + ndϕ (grad ln f) (3.2)
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Proof of Proposition 3.1. Let us choose {ei}1≤i≤m to be an orthonormal frame on M and

{fj}1≤j≤n to be an orthonormal frame on N . An orthonormal frame on M ×f N is given

by
{
(ei, 0) ,

1

f (0, fj)
}
. Note that in this case we have dϕ̃ (X,Y ) = (dϕ (X) , 0) for any X ∈

G (TM) and Y ∈ G (TN). By de�nition to the tension �eld, we have

τ
(
ϕ̃
)
= TrGf

∇dϕ̃

= ∇ϕ̃
(ei,0)

dϕ̃ (ei, 0) +
1

f2
∇ϕ̃

(0,fj)
dϕ̃ (0, fj)

− dϕ̃
(
∇̃(ei,0) (ei, 0)

)
− 1

f2
dϕ̃

(
∇̃(0,fj) (0, fj)

)
.

A simple calculation gives

∇ϕ̃
(ei,0)

dϕ̃ (ei, 0) = ∇ϕ
eidϕ (ei)

and

∇ϕ̃
(0,fj)

dϕ̃ (0, fj) = 0,

By using the equation (3.1), we deduce that

∇̃(ei,0) (ei, 0) = (∇eiei, 0)

and

∇̃(0,fj) (0, fj) =
(
0,∇fjfj

)
− nf2 (grad ln f, 0) .

It follows that

τ
(
ϕ̃
)
= ∇ϕ

eidϕ (ei)− dϕ
(
∇M
ei ei

)
+ ndϕ (grad ln f) ,

then, we obtain

τ
(
ϕ̃
)
= τ (ϕ) + ndϕ (grad ln f) .

Remark 3.1. If ϕ : (Mm, g) −→ (Pm, k) (m ≥ 3) is a conformal map with dilation λ, the

tension �eld of ϕ̃ is given by

τ
(
ϕ̃
)
= (2−m) dϕ (grad lnλ) + ndϕ (grad ln f) = dϕ

(
grad ln

(
λ2−mfn

))
.

Then ϕ̃ is harmonic if and only if the function λ2−mfn is constant.

We will now calculate the bitension �eld of the map ϕ̃ : (Mm ×f Nn, Gf ) −→ (P p, k).

Theorem 3.1. Let ϕ : (Mm, g) −→ (P p, k) be a smooth map. The bitension �eld of the map

ϕ̃ : (Mm ×f Nn, Gf ) −→ (P p, k) de�ned by ϕ̃ (x, y) = ϕ (x) is given by

τ2

(
ϕ̃
)
= τ2 (ϕ)− n

(
Trg∇2dϕ (grad ln f) + TrgR

p (dϕ (grad ln f) , dϕ) dϕ
)

− n∇grad ln fτ (ϕ)− n2∇grad ln fdϕ (grad ln f) .
(3.3)

Proof of Theorem 3.1. By de�nition of the bitension �eld, we have

τ2

(
ϕ̃
)
= −TrGf

(
∇ϕ̃

)2

τ
(
ϕ̃
)
− TrGf

RP
(
τ
(
ϕ̃
)
, dϕ̃

)
dϕ̃ (3.4)

For the �rst term TrGf

(
∇ϕ̃

)2

τ
(
ϕ̃
)
, we have

TrGf

(
∇ϕ̃

)2

τ
(
ϕ̃
)
= ∇ϕ̃

(ei,0)
∇ϕ̃

(ei,0)
τ
(
ϕ̃
)
+

1

f2
∇ϕ̃

(0,fj)
∇ϕ̃

(0,fj)
τ
(
ϕ̃
)

−∇ϕ̃

∇̃(ei,0)
(ei,0)

τ
(
ϕ̃
)
− 1

f2
∇ϕ̃

∇̃(0,fj)
(0,fj)

τ
(
ϕ̃
)
.
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We will study term by term the right-hand of this expression. A simple calculation gives

∇ϕ̃
(ei,0)

∇ϕ̃
(ei,0)

τ
(
ϕ̃
)
= ∇ϕ̃

(ei,0)
∇ϕ̃

(ei,0)
τ (ϕ) + n∇ϕ̃

(ei,0)
∇ϕ̃

(ei,0)
dϕ (grad ln f)

= ∇ϕ
ei∇

ϕ
eiτ (ϕ) + n∇ϕ

ei∇
ϕ
eidϕ (grad ln f)

and

∇ϕ̃
(0,fj)

∇ϕ̃
(0,fj)

τ
(
ϕ̃
)
= 0.

By using the equation (3.1), we obtain

∇ϕ̃

∇̃(ei,0)
(ei,0)

τ
(
ϕ̃
)
= ∇ϕ

∇M
ei
ei
τ (ϕ) + n∇ϕ

∇M
ei
ei
dϕ (grad ln f) ,

and

∇ϕ̃

∇̃(0,fj)
(0,fj)

τ
(
ϕ̃
)
= −nf2∇ϕ

grad ln fτ (ϕ)− n2f2∇ϕ
grad ln fdϕ (grad ln f) .

Then, we deduce that

TrGf

(
∇ϕ̃

)2

τ
(
ϕ̃
)
= Trg

(
∇ϕ

)2
τ (ϕ) + nTrg

(
∇ϕ

)2
dϕ (grad ln f)

+ n∇ϕ
grad ln fτ (ϕ) + n2∇ϕ

grad ln fdϕ (grad ln f) .

(3.5)

To complete the proof, we will simplify the term TrGf
RP

(
τ
(
ϕ̃
)
, dϕ̃

)
dϕ̃, we have

TrGf
RP

(
τ
(
ϕ̃
)
, dϕ̃

)
dϕ̃ = RP

(
τ
(
ϕ̃
)
, dϕ̃ (ei, 0)

)
dϕ̃ (ei, 0)

+
1

f2
RP

(
τ
(
ϕ̃
)
, dϕ̃ (0, fj)

)
dϕ̃ (0, fj)

= RP
(
τ
(
ϕ̃
)
, dϕ̃ (ei, 0)

)
dϕ̃ (ei, 0)

= RP (τ (ϕ) , dϕ (ei)) dϕ (ei)

+ nRP (dϕ (grad ln f) , dϕ (ei)) dϕ (ei) .

It follows that

TrGf
RP

(
τ
(
ϕ̃
)
, dϕ̃

)
dϕ̃ = TrgR

P (τ (ϕ) , dϕ) dϕ+ nTrgR
P (dϕ (grad ln f) , dϕ) dϕ. (3.6)

If we replace (3.5) and (3.6) in (3.4), we obtain

τ2

(
ϕ̃
)
= τ2 (ϕ)− n

(
Trg∇2dϕ (grad ln f) + TrgR

p (dϕ (grad ln f) , dϕ) dϕ
)

− n∇grad ln fτ (ϕ)− n2∇grad ln fdϕ (grad ln f) .

The proof of Theorem 3.1 is complete. As a consequence, if ϕ is harmonic, we have

Corollary 3.1. Let ϕ : (Mm, g) −→ (P p, k) a harmonic map. the map ϕ̃ :
(
Mm ×f 2 Nn, Gf 2

)
−→

(P p, k) de�ned by ϕ̃ (x, y) = ϕ (x) is biharmonic if and only if

Trg∇2dϕ (grad ln f) + TrgR
p (dϕ (grad ln f) , dϕ) dϕ+ n∇grad ln fdϕ (grad ln f) = 0.

In the following we shall present an example of biharmonic non-harmonic maps.

Example 3.1. Let φ̃ : Rm \ {0} ×f Nn −→ Rm \ {0} de�ned by φ̃ (x, y) = x
|x|2 when we

suppose that ln f is radial (ln f = α (r)). Then by Theorem 3.1, we deduce that the map φ̃ :

Rm \ {0}×f Nn −→ Rm \ {0} is biharmonic if and only if the function α satis�es the following

differential equation

nα′′′ +
n (m− 5)

r
α′′ − 3n (3m− 7)

r2
α′ + n2α′α′′ − 2n2

r
(α′)

2 − 8 (m− 2) (m− 4)

r3
= 0.
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Let β = α′, this equation becomes

nβ′′ +
n (m− 5)

r
β′ − 3n (3m− 7)

r2
β + n2ββ′ − 2n2

r
β2 − 8 (m− 2) (m− 4)

r3
= 0.

Looking for particular solutions of type β = a
r (a ∈ R∗), then φ̃ : Rm \{0}×f Nn −→ Rm \{0}

is biharmonic if and only if

3n2a2 + 2n (5m− 14) a+ 8 (m− 2) (m− 4) = 0.

This equation has two solutions a = 4−2m
n and a = 4(4−m)

3n .

(i) For a = 4−2m
n , we obtain f (r) = Cr

4−2m
n and in this case φ̃ : Rm\{0}×fNn −→ Rm\{0}

is harmonic so biharmonic.

(ii) For a = 4(4−m)
3n , we obtain f (r) = Cr

4(4−m)
3n and in this case φ̃ : Rm \ {0} ×f Nn −→

Rm \ {0} is biharmonic non-harmonic.

Now, we consider a smooth map ψ : (Nn, g) −→ (P p, k) and we de�ne the map ψ̃ :

(Mm ×f Nn, Gf ) −→ (P p, k) by ψ̃ (x, y) = ψ (y). We will study the biharmonicity of ψ̃,
we obtain the following result :

Theorem 3.2. Let ψ : (Nn, h) → (P p, k) be a smooth map, we de�ne ψ̃ :
(
Mm ×f 2 Nn, Gf 2

)
→

(P p, k) by ψ̃ (x, y) = ψ (y) . The tension �eld and the bitension �eld of ψ̃ are given by

τ
(
ψ̃
)
=

1

f2 ◦ π
τ (ψ) (3.7)

and

τ2

(
ψ̃
)
=

1

f4 ◦ π
τ2 (ψ)−

2

f2 ◦ π

((
D ln f + (n− 2) |grad ln f |2

)
◦ π

)
τ (ψ) . (3.8)

Proof of Theorem 3.2. In the �rst, we calculate the tension �eld of of ψ̃. By de�nition, we
have By de�nition to the tension �eld, we have

τ
(
ψ̃
)
= TrGf

∇dψ̃

= ∇ψ̃
(ei,0)

dψ̃ (ei, 0) +
1

f2 ◦ π
∇ψ̃

(0,fj)
dψ̃ (0, fj)

− dψ̃
(
∇̃(ei,0) (ei, 0)

)
− 1

f2 ◦ π
dψ̃

(
∇̃(0,fj) (0, fj)

)
.

By using the equation (3.1), we obtain

τ
(
ψ̃
)
=

1

f2 ◦ π
∇ψ
fj
dψ (fj)−

1

f2 ◦ π
dψ

(
∇fjfj

)
=

1

f2 ◦ π
τ (ψ) ,

then

τ
(
ψ̃
)
=

1

f2 ◦ π
τ (ψ) .

By this expression, we deduce that ψ̃ is harmonic if and only if ψ is harmonic. Now, we will

calculate the bitension �eld of ψ̃. By de�nition, we have

τ2

(
ψ̃
)
= −TrGf

(
∇ψ̃

)2

τ
(
ψ̃
)
− TrGf

RP
(
τ
(
ψ̃
)
, dψ̃

)
dψ̃. (3.9)

For the �rst term TrGf

(
∇ψ̃

)2

τ
(
ψ̃
)
, we have

TrGf

(
∇ψ̃

)2

τ
(
ψ̃
)
= ∇ψ̃

(ei,0)
∇ψ̃

(ei,0)
τ
(
ψ̃
)
+

1

f2 ◦ π
∇ψ̃

(0,fj)
∇ψ̃

(0,fj)
τ
(
ψ̃
)

−∇ψ̃

∇̃(ei,0)
(ei,0)

τ
(
ψ̃
)
− 1

f2 ◦ π
∇ψ̃

∇̃(0,fj)
(0,fj)

τ
(
ψ̃
)
.
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A long calculation gives

∇ψ̃
(ei,0)

∇ψ̃
(ei,0)

τ
(
ψ̃
)
=

2

f2 ◦ π

((
2 |grad ln f |2 − ei (ei (ln f))

)
◦ π

)
τ (ψ)

and
1

f2 ◦ π
∇ψ̃

(0,fj)
∇ψ̃

(0,fj)
τ
(
ψ̃
)
=

1

f4 ◦ π
∇ψ
fj
∇ψ
fj
τ (ψ) .

Finally, by (3.1), we obtain

∇ψ̃

∇̃(ei,0)
(ei,0)

τ
(
ψ̃
)
=

2

f2 ◦ π (∇eiei ((ln f)) ◦ π) τ (ψ)

and

1

f2 ◦ π
∇ψ̃

∇̃(0,fj)
(0,fj)

τ
(
ψ̃
)
=

1

f4 ◦ π
∇ψ

∇fj
fj
τ (ψ) +

2n

f2 ◦ π

((
|grad ln f |2

)
◦ π

)
τ (ψ) .

Which gives us

TrGf

(
∇ψ̃

)2

τ
(
ψ̃
)
=

1

f4 ◦ π
Trh∇2τ (ψ)−

2

f2 ◦ π

((
D ln f + (n− 2) |grad ln f |2

)
◦ π

)
τ (ψ)

(3.10)

Finally for the �rst term TrGf
RP

(
τ
(
ψ̃
)
, dψ̃

)
dψ̃, it is easy to verify that

TrGf
RP

(
τ
(
ψ̃
)
, dψ̃

)
dψ̃ =

1

f4 ◦ π
TrhR

P (τ (ψ) , dψ) dψ. (3.11)

If we substitute (3.11) and (3.11) in (3.9), we obtain

τ2

(
ψ̃
)
=

1

f4 ◦ π
τ2 (ψ)−

2

f2 ◦ π

((
D ln f + (n− 2) |grad ln f |2

)
◦ π

)
τ (ψ) .

This completes the proof of Theorem 3.2. An immediate consequence of Theorem 3.2 is given

by the following corollary :

Corollary 3.2. Let ψ : (Nn, h) −→ (P p, k) a biharmonic non-harmonic map. The map ϕ̃ :(
Mm ×f Nn, Gf 2

)
−→ (P p, k) de�ned by ψ̃ (x, y) = ψ (y) is biharmonic if and only if the

function fn−2 is harmonic.

References

(i) P. Baird, Harmonic maps with symmetry, harmonic morphisms and deformation of metrics,

Pitman Books Limited, (1983), 27-39.

(ii) P. Baird, J. Eells, A conservation law for harmonic maps, Lecture Notes in Math. 894,

Springer (1981), 1-25.

(iii) P. Baird, J. Eells, Harmonic morphisms between Riemannain manifolds, Oxford Sciences

Publications (2003).

(iv) P. Baird, D. Kamissoko, On constructing biharmonic maps and metrics, Annals of Global

Analysis and Geometry 23, (2003), 65-75.

(v) Baird, P. Fardoun, A. Ouakkas, S. : Conformal and semi-conformal biharmonic maps, Ann.

Glob Anal Geom 34, 403-414 (2008).

(vi) A. Balmus, Biharmonic properties and conformal changes, An. Stiint. Univ. Al.I. Cuza

Iasi Mat. (N.S.) 50 (2004), 367-372

(vii) J. Eells, L. Lemaire, A report on harmonic maps, Bull. London Math. Soc. 16 (1978),

1-68.



94 Seddik Ouakkas

(viii) J. Eells, L. Lemaire, Another report on harmonic maps, Bull. London Math. Soc. 20

(1988), 385-524.

(ix) J. Eells, L. Lemaire, Selected topics in harmonic maps, CNMS Regional Conference Series

of the National Sciences Foundation, November 1981.

(x) J. Eells, A. Ratto, Harmonic Maps and Minimal Immersions with Symmetries, Princeton

University Press 1993.

(xi) G. Y. Jiang, 2-harmonic maps and their �rst and second variational formulas, Chinese Ann.

Math. Ser. A 7(1986), 389-402.

(xii) S. Montaldo, C. Oniciuc, A short survey of biharmonic maps between Riemannian mani-

folds, Rev. Un. Mat. Argentina, 47(2) (2006), 1-22.

(xiii) Ouakkas, S.: Biharmonic maps, conformal deformations and the Hopf maps.Diff. Geom.

Appl, 26 (2008), 495-502.

(xiv) Y.-L. Ou, p-harmonic morphisms, biharmonic morphisms, and non-harmonic biharmonic

maps, J. Geom. Phys. Volume 56, 3 (2006),358-374.

Author information

Seddik Ouakkas, Laboratory of Geometry, Analysis, Control and Applications, UniversitÃl' de Saida, BP138,
En-Nasr, 20000 Saida, ALGERIA.
E-mail: ayman.kashmar@gmail.com

Received: December 24, 2015.

Accepted: March 17, 2016.


