UNIQUE FIXED POINT THEOREM FOR WEAKLY B-CONTRACTIVE MAPPINGS IN 2-METRIC SPACES

V. S. Bright and M. Marudai
Communicated by T. Tamizh Chelvam

MSC 2010 Classifications: Primary 47H10; Secondary 54H25.
Keywords and phrases: Fixed Points, 2-Metric Space, Weak B-contraction.

Abstract

The aim of this paper is to present a unique fixed point result for weak B-contractions in 2-metric spaces and an example is also given to illustrate the result. Further, from the particular cases of weakly B- contractive mappings, one can obtain weakly C-contractive, weakly S-contractive mappings etc., and the theorem proved herein is true for these cases as well. In fact, weak B-contraction is a generalization of all these so-called weak contractions.

1 Introduction and preliminaries

V.S. Bright in [12], [2] and [3] introduced the notions of B-contraction and weak B-contraction.

Definition 1.1. [12]: A mapping $T: X \rightarrow X$, where (X, d) is a metric space, is called a Bcontractive if there exist positive real numbers α, β, γ such that $0 \leq \alpha+2 \beta+2 \gamma<1$ for all $x, y \in X$ the following inequality holds:

$$
\begin{equation*}
d(T x, T y) \leq \alpha d(x, y)+\beta[d(x, T x)+d(y, T y)]+\gamma[d(x, T y)+d(y, T x)] \tag{1.1}
\end{equation*}
$$

This notion was also generalized to a weak B- contraction by V.S. Bright in [12]
Definition 1.2. ([12], definition 1.7): A mapping $T: X \rightarrow X$, where (X, d) is a metric space, is said to be weakly B-contractive or a weak B- contraction if for all $x, y \in X$ such that

$$
\begin{align*}
d(T x, T y) \leq & \alpha d(x, y)+\beta[d(x, T x)+d(y, T y)]+\gamma[d(x, T y)+d(y, T x)] \\
& -\psi[d(x, y), d(x, T x), d(y, T y), d(x, T y), d(y, T x)] \tag{1.2}
\end{align*}
$$

where $\psi:[0, \infty)^{5} \rightarrow[0, \infty)$ is a continuous mapping such that $0<\alpha+2 \beta+2 \gamma \leq 1$ and α, β and γ are non-zero positive real numbers.
$\psi(x, y, z, u, v)=0$ if and only if $x=y=z=u=v=0$
Note 1. If we take $\psi(x, y, z, u, v)=\alpha_{1} x+\beta_{1}(y+z)+\gamma_{1}(u+v)$,
where $0<\alpha_{1}+2 \beta_{1}+2 \gamma_{1}<1$ with $\alpha>\alpha_{1}, \beta>\beta_{1}$ and $\gamma>\gamma_{1}$ and α_{1}, β_{1} and γ_{1} are non-zero positive real numbers, and that (1.2) reduces to (1.1).
That is, weak B-contraction is a generalization of B-contraction.
In [12], V.S. Bright et al, proved if X is a complete metric space, then every weak Bcontraction has a unique fixed point, see ([12] theorem 2.1). This result was generalized to a complete, partially ordered metric space in [2]; see [[2], theorem 2.2, 2.3, 2.6 and 3.2]

There were some generalizations of a metric, namely, 2 - metric, a D-metric, a G-metric, a cone metric, a complex valued metric, dislocated metric space and dislocated quasic - metric space [1].

The notion of a 2-metric has been introduced by Gähler in [7]. Nevertheless, a 2-metric is not a continuous function of its variable as in the case of ordinary metric. This enabled Dhage to introduce the notion called a D-metric is [5]. However, in [13] Mustafa and Sims proved that most of topological properties of D-metric were not fulfilled. In [14] Mustafa and sims introduced the notion of G-metric to overcome certain flaws of a D-metric and therefore many fixed point theorems on G-metric spaces have been established.

Note that there was no easy relationship between results obtained in 2-metric spaces and metric spaces. In fact, the fixed point theorem on 2-metric spaces and metric spaces may be unrelated easily.
The purpose of the paper is to prove unique fixed point result for weak B - contraction in a complete 2 - metric space.A simple example is also given to illustrate the theorem followed by discussing some particular cases of weak B-contraction in 2-metric spaces, which in turn, are true to this theorem.

Now we recall some definitions and lemmas which are useful in what follows.
Definition 1.3. [7] Let X be a non empty set and $d: X \times X \times X \rightarrow \mathbb{R}$ be a map satisfying the following conditions:
(i) For every pair of distinct point $x, y \in X$, there exists a point $z \in X$ such that $d(x, y, z) \neq 0$.
(ii) If at least two of three points x, y, z are the same, then $d(x, y, z)=0$
(iii) The symmetry: $d(x, y, z)=d(y, x, z)=d(y, z, x)=d(x, z, y)=d(z, x, y)=d(z, y, x)$.
(iv) The rectangle inequality: $d(x, y, z) \leq d(x, y, t)+d(y, z, t)+d(z, x, t)$ for all $x, y, z, t \in X$.

Then d is called 2-metric on X and (X, d) is called a 2-metric space which will be sometimes denoted by X if there is no confusion. For each element $x \in X$ is called a point in X.

Definition 1.4. [7] Let (X, d) be a 2-metric space and $a, b \in X, r \geq 0$. The set

$$
\mathbb{B}(a, b, r)=\{x \in X: d(a, b, x)<r\}
$$

is called a 2-ball centred at a and b with radius r. The topology generated by the collection of all 2-balls as a subbasis is called a 2-metric topology on X.

Definition 1.5. [9] Let $\left\{x_{n}\right\}$ be a sequence in a 2-metric space (X, d).
(i) $\left\{x_{n}\right\}$ is said to be convergent to x in (X, d), written $\lim _{n \rightarrow \infty} x_{n}=x$, if for all $a \in X$, $\lim _{n \rightarrow \infty} d\left(x_{n}, x, a\right)=0$.
(ii) $\left\{x_{n}\right\}$ is said to be Cauchy in X if for all $a \in X, \lim _{m, n \rightarrow \infty} d\left(x_{m}, x_{n}, a\right)=0$, that is, for each $\epsilon>0$, there exists n_{0} such that $d\left(x_{m}, x_{n}, a\right)<\epsilon$ for all $m, n \geq n_{0}$.
(iii) (X, d) is said to be complete if every Cauchy sequence is a convergent sequence.

Definition 1.6. ([11], definition 8) : A 2-metric space (X, d) is said to be compact if every sequence in X has a convergent subsequence.

Lemma 1.1. ([11], lemma 3): Every 2-metric space is a T_{1} space.
Lemma 1.2. ([11], lemma 4): $\lim _{n \rightarrow \infty} x_{n}=x$ in a 2-metric space (X, d) if and only if $\lim _{n \rightarrow \infty} x_{n}=x$ in the 2-metric topological space X.

Lemma 1.3. ([11], lemma 5): If $T: X \rightarrow Y$ is a continuous map from 2-metric space X to a 2-metric space Y, then
$\lim _{n \rightarrow \infty} x_{n}=x$ in X implies $\lim _{n \rightarrow \infty} T x_{n}=T x$ in Y.
Note 2. (i) It is straight forward from definition (1.3) that every 2-metric is non-negative and every 2 - metric space contains at least three distinct points.
(ii) A convergent sequence in a 2-metric spaces need not be a Cauchy sequence [[15], remark 1 and example 1].
(iii) In a 2-metric space (X, d), every convergent sequence is a Cauchy sequence if d is continuous [[15], remark 2].
(iv) There exists a 2-metric space (X, d) such that every convergent sequence is a Cauchy sequence but d is not continuous [[15], remark 2 and example 2].

2 Main results

We shall first introduce the notion of a Weak B-contraction in 2-metric space.
Definition 2.1. ([12], [2] and [3]) Let (X, d) be a 2-metric space and $T: X \rightarrow X$ be a map. Then T is called a Weak B-contraction if there exists $\psi:[0, \infty)^{5} \rightarrow[0, \infty)$ which is continuous and $\psi(x, y, z, u, v)=0$ if and only if $x=y=z=u=v=0$ such that

$$
\begin{align*}
d(T x, T y, a) \leq & \alpha d(x, y, a)+\beta[d(x, T x, a)+d(y, T y, a)] \\
+ & \gamma[d(x, T y, a)+d(y, T x, a)]-\psi[d(x, y, a), \tag{2.1}\\
& d(x, T x, a), d(y, T y, a), d(x, T y, a), d(y, T x, a)]
\end{align*}
$$

for all $x, y, a \in X$ and $0<\alpha+2 \beta+2 \gamma \leq 1$ and α, β and γ are non-zero positive real numbers. The following example gives an example of ψ in definition (2.1), see ([12], example 2.3) and other example see ([12], definition 1.7)

Example 2.1.

$$
\psi(a, b, c, d, e)=\frac{1}{5} \max \{a, b, c, d, e\} .
$$

In this section we are going to prove in a complete 2-metric space a weak B-contraction has a unique fixed point and we support it by an example. Also some particular cases of Bcontraction and weak B-contraction have been given, which had been proved by different authors, can easily be drawn as corollaries of weak B-contraction.

Theorem 2.1. Let (X, \leq, d) be a complete 2 - metric space and $T: X \rightarrow X$ be a weak B contraction. Then T has a unique fixed point.

Proof. Let $x_{0} \in X$ and $n \geq 1$

$$
\begin{equation*}
x_{n+1}=T x_{n} \tag{2.2}
\end{equation*}
$$

If $x_{n}=x_{n+1}=T x_{n}$, then x_{n} is a fixed point of T. So we assume $x_{n} \neq x_{n+1}$. Putting $x=x_{n-1}$ and $y=x_{n}$ in (2.1), we have for all $n=1,2, \ldots$

$$
\begin{align*}
& d\left(x_{n+1}, x_{n}, a\right) \\
&= d\left(T x_{n}, T x_{n-1}, a\right) \\
& \leq \alpha d\left(x_{n}, x_{n-1}, a\right)+\beta\left[d\left(x_{n}, T x_{n}, a\right)+d\left(x_{n-1}, T x_{n-1}, a\right)\right] \\
&+\gamma\left[d\left(x_{n}, T x_{n-1}, a\right)+d\left(x_{n-1}, T x_{n}, a\right)\right]-\psi\left[d\left(x_{n}, x_{n-1}, a\right),\right. \\
& \quad d\left(x_{n}, T x_{n}, a\right), d\left(x_{n-1}, T x_{n-1}, a\right), d\left(x_{n}, T x_{n-1}, a\right), \\
&\left.\quad d\left(x_{n-1}, T x_{n}, a\right)\right] \\
&= \alpha d\left(x_{n}, x_{n-1}, a\right)+\beta\left[d\left(x_{n}, x_{n+1}, a\right)+d\left(x_{n-1}, x_{n}, a\right)\right] \\
&+\gamma\left[d\left(x_{n}, x_{n}, a\right)+d\left(x_{n-1}, x_{n+1}, a\right)\right]-\psi\left[d\left(x_{n}, x_{n-1}, a\right),\right. \\
& \quad d\left(x_{n}, x_{n+1}, a\right), d\left(x_{n-1}, x_{n}, a\right), d\left(x_{n}, x_{n}, a\right), \\
&\left.\quad \quad \quad d\left(x_{n-1}, x_{n+1}, a\right)\right] \\
&=\alpha d\left(x_{n}, x_{n-1}, a\right)+\beta\left[d\left(x_{n}, x_{n+1}, a\right)+d\left(x_{n-1}, x_{n}, a\right)\right] \\
& \quad+\gamma\left[0+d\left(x_{n-1}, x_{n+1}, a\right)\right]-\psi\left[d\left(x_{n}, x_{n-1}, a\right), d\left(x_{n}, x_{n+1}, a\right),\right. \\
&\left.\quad \quad \quad d\left(x_{n-1}, x_{n}, a\right), 0, d\left(x_{n-1}, x_{n+1}, a\right)\right] \tag{2.3}\\
& \leq \alpha d\left(x_{n}, x_{n-1}, a\right)+\beta\left[d\left(x_{n}, x_{n+1}, a\right)+d\left(x_{n-1}, x_{n}, a\right)\right] \\
& \quad+\gamma\left[d\left(x_{n-1}, x_{n+1}, a\right)\right] \tag{2.4}
\end{align*}
$$

for all $a \in X$. By choosing $a=x_{n-1}$ in (2.4), we have

$$
d\left(x_{n+1}, x_{n}, x_{n-1}\right) \leq \beta d\left(x_{n}, x_{n+1}, x_{n-1}\right),
$$

that is $d\left(x_{n+1}, x_{n}, x_{n-1}\right) \leq 0$
This implies that

$$
\begin{equation*}
d\left(x_{n+1}, x_{n}, x_{n-1}\right)=0 \tag{2.5}
\end{equation*}
$$

It follows from (2.4) by using (2.5) that

$$
\begin{align*}
d\left(x_{n+1}, x_{n}, a\right) \leq & \alpha d\left(x_{n}, x_{n-1}, a\right)+\beta\left[d\left(x_{n}, x_{n+1}, a\right)+d\left(x_{n-1}, x_{n}, a\right)\right] \\
& +\gamma\left[d\left(x_{n-1}, x_{n+1}, x_{n}\right)+d\left(x_{n+1}, x_{n}, a\right)\right. \\
& \left.\quad+d\left(x_{n}, x_{n-1}, a\right)\right] \\
= & \alpha d\left(x_{n}, x_{n-1}, a\right)+\beta\left[d\left(x_{n}, x_{n+1}, a\right)+d\left(x_{n-1}, x_{n}, a\right)\right] \\
& +\gamma\left[d\left(x_{n+1}, x_{n}, a\right)+d\left(x_{n}, x_{n-1}, a\right)\right] . \tag{2.6}
\end{align*}
$$

It implies that

$$
d\left(x_{n+1}, x_{n}, a\right) \leq\left(\frac{\alpha+\beta+\gamma}{1-\beta-\gamma}\right) d\left(x_{n}, x_{n-1}, a\right)
$$

But

$$
\begin{aligned}
& \alpha+2 \beta+2 \gamma \leq 1 \\
& \Rightarrow \alpha+\beta+\gamma \leq 1-\beta-\gamma \\
& \Rightarrow \frac{\alpha+\beta+\gamma}{1-\beta-\gamma} \leq 1
\end{aligned}
$$

Then

$$
\begin{equation*}
d\left(x_{n}, x_{n+1}, a\right) \leq d\left(x_{n-1}, x_{n}, a\right) \tag{2.7}
\end{equation*}
$$

Therefore $\left\{d\left(x_{n}, x_{n+1}, a\right)\right\}$ is a decreasing sequence of non-negative real numbers and hence it is convergent. Let

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+1}, a\right)=r \tag{2.8}
\end{equation*}
$$

Taking the limit as $n \rightarrow \infty$ in (2.4),(2.6) and using (2.8), we get

$$
\begin{aligned}
& r \leq \alpha r+\beta 2 r+\gamma \lim _{n \rightarrow \infty} d\left(x_{n-1}, x_{n+1}, a\right) \leq \alpha r+\beta 2 r+\gamma 2 r \\
& \frac{(1-\alpha-2 \beta) r}{\gamma} \leq \lim _{n \rightarrow \infty} d\left(x_{n-1}, x_{n+1}, a\right) \leq 2 r
\end{aligned}
$$

But

$$
\begin{aligned}
\alpha+2 \beta+2 \gamma & \leq 1 \\
\Rightarrow \frac{1-\alpha-2 \beta}{\gamma} & \geq 2 \\
\therefore 2 r \leq \lim _{n \rightarrow \infty} d\left(x_{n-1}, x_{n+1}, a\right) & \leq 2 r
\end{aligned}
$$

That is,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(x_{n-1}, x_{n+1}, a\right)=2 r \tag{2.9}
\end{equation*}
$$

Taking the limit as $n \rightarrow \infty$ in (2.3) and using (2.8) and (2.9), we get

$$
\begin{aligned}
r \leq & \alpha r+\beta 2 r+\gamma 2 r-\psi(r, r, r, 0,2 r) \\
= & (\alpha+2 \beta+2 \gamma) r-\psi(r, r, r, 0,2 r) \\
\leq & r-\psi(r, r, r, 0,2 r), \quad \text { since } \quad \alpha+2 \beta+2 \gamma \leq 1 \\
& \quad r \leq r-\psi(r, r, r, 0,2 r) \leq r \quad \text { as } \quad \psi \geq 0
\end{aligned}
$$

That is,

$$
\begin{aligned}
\psi(r, r, r, 2 r, 0) & =0 \\
\Rightarrow r & =0
\end{aligned}
$$

Thus (2.8) becomes

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(x_{n+1}, x_{n}, a\right)=0 \tag{2.10}
\end{equation*}
$$

From (2.7), we have if $d\left(x_{n-1}, x_{n}, a\right)=0$ then $d\left(x_{n}, x_{n+1}, a\right)=0$.
Since $d\left(x_{0}, x_{1}, x_{0}\right)=0$, we have $d\left(x_{n}, x_{n+1}, x_{0}\right)=0$ for all $n \in N$.
Since $d\left(x_{m-1}, x_{m}, x_{m}\right)=0$, we have

$$
\begin{align*}
d\left(x_{n}, x_{m}, x_{m}\right) & =0 \\
d\left(x_{n}, x_{n+1}, x_{m}\right) & =0 \quad \text { for all } \quad n \geq m-1 \tag{2.11}
\end{align*}
$$

For $0 \leq n<m-1$, noting that $m-1 \geq n+1$,from (2.11) we have

$$
d\left(x_{m-1}, x_{m}, x_{n+1}\right)=d\left(x_{m-1}, x_{m}, x_{n}\right)=0
$$

Now, by rectangle inequality, it follows that

$$
\begin{align*}
d\left(x_{n}, x_{n+1}, x_{m}\right) \leq & d\left(x_{n}, x_{n+1}, x_{m-1}\right)+d\left(x_{n+1}, x_{m}, x_{m-1}\right) \\
& +d\left(x_{m}, x_{n}, x_{m-1}\right) \\
= & d\left(x_{n}, x_{n+1}, x_{m-1}\right) \tag{2.12}
\end{align*}
$$

Since $d\left(x_{n}, x_{n+1}, x_{m-1}\right)=0$ for $m-1 \geq n+1$, from (2.12) it follows that

$$
\begin{equation*}
d\left(x_{n}, x_{n+1}, x_{m}\right)=0 \quad \text { for all } \quad 0 \leq n \leq m-1 \tag{2.13}
\end{equation*}
$$

From (2.11) and (2.13) it follows that $d\left(x_{n}, x_{n+1}, x_{m}\right)=0$ for all $m, n \in N$.
Now for all $i, j, k \in N$ with $i<j$, we have $d\left(x_{j-1}, x_{j}, x_{i}\right)=d\left(x_{j-1}, x_{j}, x_{k}\right)=0$.
Now,

$$
\begin{aligned}
d\left(x_{i}, x_{j}, x_{k}\right) & \leq d\left(x_{i}, x_{j}, x_{j-1}\right)+d\left(x_{j}, x_{k}, x_{j-1}\right)+d\left(x_{k}, x_{i}, x_{j-1}\right) \\
& \leq d\left(x_{i}, x_{j-1}, x_{k}\right) \leq \ldots . \leq d\left(x_{i}, x_{i}, x_{k}\right)=0
\end{aligned}
$$

This show that for all $i, j, k \in N$

$$
\begin{equation*}
d\left(x_{i}, x_{j}, x_{k}\right)=0 \tag{2.14}
\end{equation*}
$$

Next we show that $\left\{x_{n}\right\}$ is a cauchy sequence. Suppose to the contrary $\left\{x_{n}\right\}$ is not a cauchy sequence. Then there exists $\epsilon>0$ for which we can find subsequences $\left\{x_{m(k)}\right\}$ and $\left\{x_{n(k)}\right\}$, where $n(k)$ is the smallest integer such that $n(k)>m(k)>k$ and

$$
\begin{equation*}
d\left(x_{n(k)}, x_{m(k)}, a\right) \geq \epsilon, \quad \text { for all } \quad k \in N \quad \text { and for all } \quad a \in X \tag{2.15}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
d\left(x_{n(k)-1}, x_{m(k)}, a\right)<\epsilon \tag{2.16}
\end{equation*}
$$

By using (2.14),(2.15) and (2.16), we have

$$
\begin{align*}
\epsilon & \leq d\left(x_{n(k)}, x_{m(k)}, a\right) \\
& \leq d\left(x_{n(k)}, x_{n(k)-1}, a\right)+d\left(x_{n(k)-1}, x_{m(k)}, a\right)+d\left(x_{n(k)}, x_{m(k)}, x_{n(k)-1}\right) \\
& \leq d\left(x_{n(k)}, x_{n(k)-1}, a\right)+d\left(x_{n(k)-1}, x_{m(k)}, a\right) \\
& <d\left(x_{n(k)}, x_{n(k)-1}, a\right)+\epsilon . \tag{2.17}
\end{align*}
$$

Taking limit as $k \rightarrow \infty$ in (2.17)using (2.10) we have

$$
\begin{equation*}
\lim _{k \rightarrow \infty} d\left(x_{n(k)}, x_{m(k)}, a\right)=\lim _{k \rightarrow \infty} d\left(x_{n(k)-1}, x_{m(k)}, a\right)=\varepsilon \tag{2.18}
\end{equation*}
$$

Also, using (2.14), we have

$$
\begin{align*}
d\left(x_{m(k)}, x_{n(k)-1}, a\right) \leq & d\left(x_{m(k)}, x_{m(k)-1}, a\right)+d\left(x_{m(k)-1}, x_{n(k)-1}, a\right) \\
& +d\left(x_{m(k)}, x_{n(k)-1}, x_{m(k)-1}\right) \\
= & d\left(x_{m(k)}, x_{m(k)-1}, a\right)+d\left(x_{m(k)-1}, x_{n(k)-1}, a\right) \\
\leq & d\left(x_{m(k)}, x_{m(k)-1}, a\right)+d\left(x_{m(k)-1}, x_{n(k)-1}, x_{n(k)}\right) \\
& +d\left(x_{n(k)-1}, x_{n(k)}, a\right)+d\left(x_{n(k)}, x_{m(k)-1}, a\right) \\
= & d\left(x_{m(k)}, x_{m(k)-1}, a\right)+d\left(x_{n(k)-1}, x_{n(k)}, a\right) \\
& +d\left(x_{n(k)}, x_{m(k)-1}, a\right) \tag{2.19}
\end{align*}
$$

and

$$
\begin{align*}
d\left(x_{m(k)-1}, x_{n(k)}, a\right) \leq & d\left(x_{m(k)-1}, x_{m(k)}, a\right)+d\left(x_{n(k)}, x_{m(k)}, a\right) \\
& +d\left(x_{m(k)-1}, x_{n(k)}, x_{m(k)}\right) \\
= & d\left(x_{m(k)-1}, x_{m(k)}, a\right)+d\left(x_{n(k)}, x_{m(k)}, a\right) \tag{2.20}
\end{align*}
$$

Taking limit as $k \rightarrow \infty$ in (2.19),(2.20)using (2.10),(2.18), we get

$$
\epsilon \leq \lim _{k \rightarrow \infty}\left(x_{m(k)-1}, x_{n(k)}, a\right) \leq \epsilon
$$

Hence

$$
\begin{equation*}
\lim _{k \rightarrow \infty} d\left(x_{m(k)-1}, x_{n(k)}, a\right)=\epsilon \tag{2.21}
\end{equation*}
$$

Since $n(k)>m(k)$ and from (2.15) by using (2.1), we have

$$
\begin{align*}
\epsilon \leq & d\left(x_{n(k)}, x_{m(k)}, a\right) \\
= & d\left(T x_{n(k)-1}, T x_{m(k)-1}, a\right) \\
\leq & \alpha d\left(x_{n(k)-1}, x_{m(k)-1}, a\right)+\beta\left[d\left(x_{n(k)-1}, x_{n(k)}, a\right)+d\left(x_{m(k)-1}, x_{m(k)}, a\right)\right] \\
& +\gamma\left[d\left(x_{n(k)-1}, x_{m(k)}, a\right)+d\left(x_{m(k)-1}, x_{n(k)}, a\right)\right]-\psi\left[d\left(x_{n(k)-1}, x_{m(k)-1}, a\right)\right. \\
& \left.d\left(x_{n(k)-1}, x_{n(k)}, a\right), d\left(x_{m(k)-1}, x_{m(k)}, a\right), d\left(x_{n(k)-1}, x_{m(k)}, a\right), d\left(x_{m(k)-1}, x_{n(k)}, a\right)\right] \tag{2.22}
\end{align*}
$$

Taking limit as $k \rightarrow \infty$ in (2.22) and using (2.21), (2.18),(2.10) and the continuity of ψ, we have

$$
\begin{align*}
\epsilon \leq & \alpha \lim _{k \rightarrow \infty} d\left(x_{n(k)-1}, x_{m(k)-1}, a\right)+\beta\left[\lim _{k \rightarrow \infty} d\left(x_{n(k)-1}, x_{n(k)}, a\right)\right. \\
& \left.+\lim _{k \rightarrow \infty} d\left(x_{m(k)-1}, x_{m(k)}, a\right)\right]+\gamma 2 \epsilon-\psi\left(\lim _{k \rightarrow \infty} d\left(x_{n(k)-1}, x_{m(k)-1}, a\right), 0,0, \epsilon, \epsilon\right) \tag{2.23}
\end{align*}
$$

Now we shall show

$$
\lim _{k \rightarrow \infty} d\left(x_{n(k)-1}, x_{m(k)-1}, a\right)=\epsilon
$$

Now

$$
\begin{aligned}
d\left(x_{n(k)-1}, x_{m(k)}, a\right) \leq & d\left(x_{n(k)-1}, x_{m(k)}, x_{m(k)-1}\right)+d\left(x_{m(k)}, x_{m(k)-1}, a\right) \\
& +d\left(x_{n(k)-1}, x_{m(k)-1}, a\right) \\
= & d\left(x_{m(k)}, x_{m(k)-1}, a\right)+d\left(x_{m(k)-1}, x_{n(k)-1}, a\right)
\end{aligned}
$$

Now from (2.18), we have

$$
\begin{align*}
& \epsilon=\lim _{k \rightarrow \infty} d\left(x_{n(k)-1}, x_{m(k)}, a\right) \\
& \leq \lim _{k \rightarrow \infty} d\left(x_{n(k)-1}, x_{m(k)-1}, a\right)+\lim _{k \rightarrow \infty} d\left(x_{m(k)-1}, x_{m(k)}, a\right) \\
& \leq \lim _{k \rightarrow \infty} d\left(x_{m(k)-1}, x_{n(k)-1}, a\right) \\
& \leq \lim _{k \rightarrow \infty} d\left(x_{m(k)-1}, x_{n(k)-1}, x_{n(k)}\right)+\lim _{k \rightarrow \infty} d\left(x_{m(k)-1}, x_{n(k)}, a\right) \\
& \quad \quad+\lim _{k \rightarrow \infty} d\left(x_{n(k)}, x_{n(k)-1}, a\right) \tag{2.24}
\end{align*}
$$

using (2.21) and (2.14) in (2.24) we get

$$
\begin{align*}
\epsilon \leq \lim _{k \rightarrow \infty} d\left(x_{m(k)-1}, x_{n(k)-1}, a\right) & \leq \epsilon \\
\lim _{k \rightarrow \infty} d\left(x_{m(k)-1}, x_{n(k)-1}, a\right) & =\epsilon \tag{2.25}
\end{align*}
$$

In (2.23), using (2.25) and the continuity of ψ, we get

$$
\begin{aligned}
& \epsilon \leq \alpha \epsilon+2 \epsilon \gamma-\psi(\epsilon, 0,0, \epsilon, \epsilon) \\
& \epsilon \leq(\alpha+2 \gamma) \epsilon-\psi(\epsilon, 0,0, \epsilon, \epsilon)
\end{aligned}
$$

since $\alpha+2 \beta+2 \gamma \leq 1$ and since α, β, γ are non zero real numbers, it follows that $\alpha+2 \gamma<1$. Therefore,
$\epsilon<\epsilon-\psi(\epsilon, 0,0, \epsilon, \epsilon) \leq \epsilon$, since $\psi \geq 0$

$$
\Longrightarrow \psi(\epsilon, 0,0, \epsilon, \epsilon)=0 \Longrightarrow \epsilon=0
$$

which is a contradiction. This proves that $\left\{x_{n}\right\}$ is a Cauchy sequence.
Since X is complete, there exists $z \in X$ such that $\lim _{n \rightarrow \infty} x_{n}=z$.
Next, we show that $\lim _{n \rightarrow \infty} d\left(x_{n+1}, T z, a\right)=d(T z, z, a)$ for all $a \in X$.
By rectangle inequality, we have

$$
\begin{equation*}
d\left(x_{n+1}, T z, a\right) \leq d\left(x_{n+1}, T z, z\right)+d(T z, z, a)+d\left(x_{n+1}, z, a\right) \quad \text { for } \quad n=0,1,2, \ldots \tag{2.26}
\end{equation*}
$$

Since $\lim _{n \rightarrow \infty} x_{n}=z, \lim _{n \rightarrow \infty} d\left(x_{n}, z, a\right)=0$ for all $a \in X$.
Taking $n \rightarrow \infty$ in (2.26) we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(x_{n+1}, T z, a\right) \leq d(T z, z, a) \tag{2.27}
\end{equation*}
$$

Again,

$d(T z, z, a) \leq d\left(T z, x_{n+1}, z\right)+d\left(z, a, x_{n+1}\right)+d\left(T z, x_{n+1}, a\right)$ for $n=0,1,2, \ldots$
Taking $n \rightarrow \infty$ in the above inequality, we have $d(T z, z, a) \leq \lim _{n \rightarrow \infty} d\left(T z, x_{n+1}, a\right)$ That is,

$$
\begin{equation*}
d(T z, z, a) \leq \lim _{n \rightarrow \infty} d\left(x_{n+1}, T z, a\right) \tag{2.28}
\end{equation*}
$$

From (2.27) and (2.28) it follows that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(x_{n+1}, T z, a\right)=d(T z, z, a) \text { for all } \quad a \in X \tag{2.29}
\end{equation*}
$$

Now in the following rectangle inequality and using (2.1) and (2.10), we have

$$
\begin{aligned}
d(z, T z, a) & \leq d\left(z, T z, x_{n+1}\right)+d\left(z, x_{n+1}, a\right)+d\left(x_{n+1}, T z, a\right) \\
& =d\left(z, T z, x_{n+1}\right)+d\left(z, x_{n+1}, a\right)+d\left(T x_{n}, T z, a\right) \\
& \leq d\left(z, T z, x_{n+1}\right)+d\left(z, x_{n+1}, a\right)+\alpha d\left(x_{n}, z, a\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\beta\left[d\left(z, T x_{n}, a\right)+d(z, T z, a)\right]+\gamma\left[d\left(x_{n}, T z, a\right)+d\left(z, T x_{n}, a\right)\right] \\
& -\psi\left[d\left(x_{n}, z, a\right), d\left(x_{n}, T x_{n}, a\right), d(z, T z, a), d\left(x_{n}, T z, a\right), d\left(z, T x_{n}, a\right)\right]
\end{aligned}
$$

Taking $n \rightarrow \infty$ on either side and using (2.29), we get

$$
d(z, T z, a) \leq \beta d(z, T z, a)+\gamma d(z, T z, a)-\psi[0,0, d(z, T z, a), d(z, T z, a), 0]
$$

That is,
$d(z, T z, a) \leq(\beta+\gamma) d(z, T z, a)$, since $\psi \geq 0$.
That is,
$[1-(\beta+\gamma)] d(z, T z, a) \leq 0$.
Since $1-(\beta+\gamma)>0$, we have $d(z, T z, a)=0$ for all $a \in X$
$\Rightarrow T z=z$.
Next we shall establish the fixed point z is unique. Let z_{1} and z_{2} be two fixed points of T.

$$
\begin{aligned}
& d\left(z_{1}, z_{2}, a\right)= d\left(T z_{1}, T z_{2}, a\right) \\
& \leq \alpha d\left(z_{1}, z_{2}, a\right)+\beta\left[d\left(z_{1}, T z_{1}, a\right)+d\left(z_{2}, T z_{2}, a\right)\right] \\
&+\gamma\left[d\left(z_{1}, T z_{2}, a\right)+d\left(z_{2}, T z_{1}, a\right)\right] \\
&-\psi\left[d\left(z_{1}, z_{2}, a\right), d\left(z_{1}, T z_{1}, a\right), d\left(z_{2}, T z_{2}, a\right), d\left(z_{1}, T z_{2}, a\right), d\left(z_{2}, T z_{1}, a\right)\right] \\
&= \alpha d\left(z_{1}, z_{2}, a\right)+\beta\left[d\left(z_{1}, z_{1}, a\right)+d\left(z_{2}, z_{2}, a\right)\right] \\
&+\gamma\left[d\left(z_{1}, z_{2}, a\right)+d\left(z_{2}, z_{1}, a\right)\right] \\
&-\psi\left[d\left(z_{1}, z_{2}, a\right), d\left(z_{1}, z_{1}, a\right), d\left(z_{2}, z_{2}, a\right), d\left(z_{1}, z_{2}, a\right), d\left(z_{2}, z_{1}, a\right)\right] \\
&=(\alpha+2 \gamma) d\left(z_{1}, z_{2}, a\right)-\psi\left[d\left(z_{1}, z_{2}, a\right), 0,0, d\left(z_{1}, z_{2}, a\right), d\left(z_{2}, z_{1}, a\right)\right] \\
&< d\left(z_{1}, z_{2}, a\right)-\psi\left[d\left(z_{1}, z_{2}, a\right), 0,0, d\left(z_{1}, z_{2}, a\right), d\left(z_{2}, z_{1}, a\right)\right], \text { since } \quad(\alpha+2 \gamma)<1 \\
&< d\left(z_{1}, z_{2}, a\right), \quad \text { since } \quad \psi \geq 0 \\
& \Rightarrow \psi\left[d\left(z_{1}, z_{2}, a\right), 0,0, d\left(z_{1}, z_{2}, a\right), d\left(z_{2}, z_{1}, a\right)\right]=0 \\
& \Rightarrow d\left(z_{1}, z_{2}, a\right)=0 \quad \text { for all } \quad a \in X \\
& \Rightarrow z_{1}=z_{2} .
\end{aligned}
$$

This completes the proof.
The above theorem can be illustrated by the following example.
Example 2.2. Let $X=\{a, b, c\}$. Let d be a 2-metric on X defined by a symmetry of all three variables and

$$
d(x, y, z)= \begin{cases}1, & \text { if } x \neq y \neq z \\ 0, & \text { otherwise }\end{cases}
$$

Let $T: X \rightarrow X$ be define by $T(a)=c, T(b)=c, T(c)=c$. It is easy to see that X is complete and T is a weak B-contraction by defining ψ as in example 2.1. Here T has a unique fixed point.
Note 3. In (2.1) if we take $\alpha=0, \beta=0$ then $2 \gamma \leq 1 \Rightarrow \gamma \leq \frac{1}{2}$ Therefore, we have

$$
d(T x, T y, a) \leq \gamma\{d(x, T y, a)+d(y, T x, a)\}-\psi\{d(x, T y, a), d(y, T x, a)\}
$$

$\gamma \in\left(0, \frac{1}{2}\right]$ for all $x, y, a \in X$, where $\psi:[0, \infty)^{2} \rightarrow[0, \infty)$ is continuous and $\psi(s, t)=0$ if and only if $s=t=0$ and in particular, if we take $\gamma=\frac{1}{2}$, we get,

$$
d(T x, T y, a) \leq \frac{1}{2}\{d(x, T y, a)+d(y, T x, a)\}-\psi\{d(x, T y, a), d(y, T x, a)\}
$$

for all $x, y, a \in X$, which is a weak C-contraction [4], [6]. In a similar manner, if we take in (2.1) and give $\beta=0$ with the condition $0<\alpha+2 \beta+2 \gamma \leq 1$ and $\alpha=\gamma$, we get $0<3 \alpha \leq 1$. This implies $0<\alpha \leq \frac{1}{3}$, ie, $\alpha \in\left(0, \frac{1}{3}\right]$ and the corresponding $\psi:[0, \infty)^{3} \rightarrow[0, \infty)$ continuous
and $\psi(s, t, u)=0$ if and only if $s=t=u=0$ and in particular, if we take $\alpha=\gamma=\frac{1}{3}$, the weak B-contraction (2.1) turns out to be

$$
\begin{aligned}
d(T x, T y, a) \leq & \frac{1}{3}\{d(x, y, a)+d(x, T y, a)+d(y, T x, a)\} \\
& -\psi\{d(x, y, a), d(x, T y, a), d(y, T x, a)\}
\end{aligned}
$$

for all $x, y, a \in X$, which is known as weak S -contraction [18]. So also, if we take (2.1) and put $\beta=0, \gamma=0$ with the condition $0<\alpha+2 \beta+2 \gamma \leq 1$ and this α in turn becomes $0<\alpha \leq 1$. ie, $\alpha \in(0,1]$ and in particular, if $\beta=0, \gamma=0$ and $\alpha=1$ in (2.1), it becomes weakly contractive mappings [16].
Further, in (1.1) if we take $\alpha=0$ and $\gamma=0$ in the condition $0<\alpha+2 \beta+2 \gamma<1$ it becomes $0 \leq 2 \beta<1$. ie, $\beta \in\left[0, \frac{1}{2}\right)$ and it becomes similar to Kannan type mappings [17] [19].
From the proof of theorem, it is clear that for all the aforesaid particular cases of weak Bcontraction such as weak C-contraction [4], weak S-contraction [18] and Kannan contraction [17] are hold good for this theorem.
Also from note(1) it may be recalled that weak B-contraction becomes B-contraction and hence the above theorem is true for this case as well.
Hence weak B-contraction is a generalization of all the so-called contractions.

References

[1] Aage C.T and Salunke J.N, The results on fixed points in dislocated and dislocated quasi - metric space, Appl. Math Sci. 2(59), 2941-2948 (2008).
[2] Bright V.S and Marudai M, Fixed point theorem for weakly B-contractive mapping in ordered metric spaces, Gen. Math. notes 35(2), 1-14 (2016).
[3] Bright V.S and Marudai M, Best Proximity points for generalized proximal B-Contraction mappings in metric spaces with partial orders, J. of the calcutta Math. Soc. 12(1), 31-46 (2016).
[4] Choudhury B.S, Unique fixed point theorem for weakly C-Contractive mappings, Kathmandu Univ. J.Sci. Eng. Technol. 5, 6-13 (2009).
[5] Dhage B.C, A study of some fixed point theorems, Ph.D thesis, Marathwada, Aurangabad, india (1984).
[6] Dung and Le Hang, Fixed point theorems for weak C-contractions in partially ordered 2-metric spaces, Fixed point theory and appl. 161, 1-12 (2013).
[7] Gählar V.S, 2-metrische Räume und ihre topologische, struktur. Math. Nachr. 26, 115-118(1963/64).
[8] Harjani J, Lopaz B and Sadarangani K, Fixed Point theorems for weakly C-Contractive mappings in ordered metric spaces, Comput. Math. Appl. 61, 790-796 (2011).
[9] Iseki K, Fixed point theorems in 2-metric spaces, Math-semi-Notes 3, 133-136 (1975).
[10] Kannan R, Some results on fixed points, Bull. calcutta Math. soc. 60, 71-76 (1968).
[11] Lahiri B.K , Das P, Dey L.K, Cantor's theorem in 2.metric spaces and its applications to fixed point problems, Taiwan J. Math 15, 337-352 (2011).
[12] Marudai M and Bright V.S, Unique fixed point theorem for weakly B-contractive mapping, Far East j. of Math. sci. (FJMS) 98(7), 897-914 (2015).
[13] Mustafa Z and Sims B, Some remarks concerning D-metric Spaces, In Pro. of the int. conf. on fixed point theory and Appl. Valencia, Spain (2003).
[14] Mustafa Z, Sims B, A new approach to generalized metric spaces, J.Nonlinear Convex Anal. 7(2), 289297 (2006).
[15] Naidu S.V.R, Prasad J.R, Fixed point theorem in 2-metric spaces, Indian J.Pure Appl. Math. 17(8), 974-993 (1986).
[16] Rhoads B.E, Some theorems on weakly contractive maps, Nonlinear Anal. 47, 2683-2693 (2001).
[17] Shioji N, Sazuki T and Takahashi W, Contractive mappings, Kannan mappings and Metric Completeness, 126, Pro. Amer. Math. Soc. (1998).
[18] Shukla D.P and Shiv kant Tiwari, Unique fixed point theorem for weakly S-contractive mappings, Gen. Math. Notes 4(1), 28-34 (2011).
[19] Zamfirescu T, Fixed point theorems in metric spaces, Arch. Math. 23, 292-298 (1972).

Author information

V. S. Bright, Department of Mathematics, Mary Matha college of Arts and Science, Periyakulam 625604, India. E-mail: bright681957@gmail.com
M. Marudai, Bharathidasan University, Tiruchirappalli 620024, India.

E-mail: mmarudai@yahoo.co.in

