SOME PROPERTIES OF SEMIGROUPS GENERATED FROM A CAYLEY FUNCTION

Lejo J. Manavalan, P.G. Romeo

Communicated by M. R. Pournaki

MSC 2010 Classifications: Primary 20M99,

Keywords and phrases: Semigroups, Idempotents, Cayley functions, Greens relation

Abstract Any transformation on a set S is called a Cayley function on S if there exists a semigroup operation on S such that β is an inner-translation. In this paper we describe a method to generate a semigroup with k number of idempotents, study some properties of such semigroups like greens relations and bi-ordered sets.

1 Introduction

Let β be a transformation on a set S. Following [8] we say that β is a Cayley function on S if there is a semigroup with universe S such that β is an inner translation of the semigroup S. A section of group theory has developed historically through the characterisation of inner translations as regular permutations. The problem of characterising inner translations of semigroups was raised by Schein [7] and solved by Goralcik and Hedrlin [3].In 1972 Zupnik characterised all Cayley functions algebraically(in powers of β) [8]. In 2016, Araoujo et all characterised the Cayley functions using functional digraphs[1]. In this paper we use a Cayley permutation to generate a semigroup with n elements and $k \leq n$ idempotents and discuss some of its properties.

In the sequel β will denote a function on a non-empty set S onto itself. For any positive integer n, β^n denotes the n^{th} iterate of β . By β^0 we mean the identity function on S, so $\beta^0(x) = x$. Let S be a set, then T(S) denotes the set of all transformations from S to S.

2 Preliminaries

A semigroup is a non empty set S along with a binary operation * on S such that (S, *) is associative. An idempotent element ϵ in S is an element such that $\epsilon^2 = \epsilon * \epsilon = \epsilon$. The set of all idempotents in S is denoted by E(S)

If a is an element of a semigroup S, the smallest left ideal containing a is $Sa \cup \{a\}$ or S^1a the principal left ideal generated by a. The equivalence relation \mathcal{L} on S is defined on S by $a \mathcal{L} b$ if and only if $S^1a = S^1b$. Similarly we say that $a \mathcal{R} b$ if and only if $aS^1 = bS^1$. The following is due to J.A. Green.

Lemma 2.1. Let a, b be elements of a semigroup S. Then

- $a \mathcal{L} b$ if and only if $\exists x, y \in S^1$ such that xa = b and yb = a
- $a \mathcal{R} b$ if and only if $\exists x, y \in S^1$ such that ax = b and by = a

The following lemma is lemma 2.1 of [2]

Lemma 2.2. [2] The relations \mathcal{L} and \mathcal{R} commute and so the relation $\mathcal{D} = \mathcal{L} \circ \mathcal{R} = \mathcal{R} \circ \mathcal{L}$ is the smallest equivalence relation $\mathcal{L} \lor \mathcal{R}$ containing both \mathcal{L} and \mathcal{R} . We define $\mathcal{H} = \mathcal{L} \cap \mathcal{R}$

Let S be a semigroup. For a fixed $a \in S$, the mapping $\lambda_a : S \to S \ [\rho_a : S \to S]$ defined by $\lambda_a(x) = ax \ [\rho_a(x) = xa]$ is called a left [right] inner translation of S.

Definition 2.3. Let β be a transformation on a set S. We say that β is a Cayley function on S if there is a semigroup with universe S such that β is an inner translation of the semigroup S.

Note that β is a left inner translation of a semigroup (S, *) if and only if β is a right inner translation of the semigroup (S, .), where for all $a, b \in S$, a * b = b.a.

By a partial algebra E we mean a set with a partial binary operation. That is a mapping from $D_E \subseteq E \times E$ into E. We call D_E the domain of the partial binary operation. Let E be a partial algebra. On E define:

$$\begin{split} \omega^r &= \{(e,f): fe = e\} \\ \omega^l &= \{(e,f): ef = e\} \\ \mathcal{R} &= \omega^r \cap \omega^{r^{-1}} \\ \mathcal{L} &= \omega^l \cap \omega^{l^{-1}} \\ \omega &= \omega^r \cap \omega^l \end{split}$$

Definition 2.4. The partial algebra E is called a biordered set if it satisfies the following axioms and their duals. For $e, f \in E$

B11 ω^r and ω^l are quasi-orders on E

B12 $D_E = (\omega^r \cup \omega^l) \cup (\omega^r \cup \omega^l)^{-1}$

B21 for all $e\omega^r f \implies e\mathcal{R}ef\omega f$

B22 $g\omega^r f\omega^r e \implies gf = gef$

B3 For $g, h \in \omega^r(e)$ and $g\omega^l f \implies ge\omega^l fe$ and (fg)e = (fe)(ge)

B4 If $f, g \in \omega^r(e)$ and $ge\omega^l fe$, then there exists $g_1 \in \omega^r(e)$ such that $g_1\omega^l f$ and $g_1e = ge$

Definition 2.5. Let *E* be a biordered set. For $e, f \in E$, let

$$M(e, f) = (\omega^l(e) \cap \omega^r(f), <)$$

where < is the relation defined by

$$g,h \iff g,h \in \omega^l(e) \cap \omega^r(f) \text{ and } eg\omega^r eh, gf\omega^l hf$$

The **Sandwich set** of e and f is defined as

$$S(e, f) = \{h \in M(e, f) : g, h \forall g \in M(e, f)\}$$

The biordered set of a semigroup S to be the set E = E(S) with a partial multiplication inherited from S with domain

$$D_E = \{(e, f) \in /E \times E : e\omega^r f \text{ or } e\omega^l f \text{ or } f\omega^r e \text{ or } f\omega^l e\}$$

Products of idempotents e and f such that ef = e or ef = f or fe = e or fe = f are called basic products of idempotents.

Definition 2.6. The stabilizer of $\beta \in T(S)$ is the smallest integer $s \ge 0$ such that $img(\beta^s) = img(\beta^{s+1})$. If such an s does not exist, we say that β has no stabilizer.

The following definition originally defined by Zupnik was modified by Araujo [1] and the same is recalled here.

Definition 2.7. Suppose $\beta \in T(S)$ has the stabilizer s. If s > 0, we define the subset Ω_{β} of S by:

$$\Omega_{\beta} = \{a \in S : \beta^n(a) \in Ran(\beta^s) \text{ if and only if } n \ge s - 1\}$$

If s = 0, we define Ω_{β} to be S.

Theorem 2.8. [8] Let $\beta \in T(S)$. Then β is a Cayley function if and only if exactly one of the following conditions holds:

- **a** has no stabilizer and there exists $a \in S$ such that $\beta^n(a) \notin img(\beta^{n+1})$ for every $n \ge 0$;
- **b** has the stabilizer s such that $\beta | img(\beta^s)$ is one-to-one and there exists $a \in \Omega_\beta$ such that $\beta^m(a) = \beta^n(a)$ implies $\beta^m = \beta^n$ for all $m, n \ge 0$; or

c has the stabilizer s such that $\beta | img(\beta^s)$ is not one-to-one and there exists $a \in \Omega_\beta$ such that:

- (i) $\beta^m(a) = \beta^n(a)$ implies m = n for all $m, n \ge 0$; and
- (ii) For every n > s, there are pairwise distinct elements $y_1, y_2, ...of S$ such that $\beta(y_1) = \beta^n(a), \beta(y_k) = y_{k-1}$ for every $k \ge 2$, and if n > 0 then $y_1 \ne \beta^{n-1}(a)$.

A Cayley function that is also a permutation is called a Cayley permutation. Similarly a Cayley function that also an idempotent is called a Cayley Idempotent.

3 A Semigroup from Cayley functions

In this section we construct a semigroup S_{β} from a Cayley permutation β on a finite set and study some of its properties.

Let S be a set with n elements, and $a \in S$ be a fixed element. For any a_1 , in S we consider set $\{r : \beta^r(a) = a_1\}$ of all non-negative integers such that $\beta^r(a) = a_1$ in case the set is non empty we define $\delta_{a_i} = \min\{r : \beta^r(a) = a_i\}$.

Theorem 3.1. Let S be a set with n elements for any K ($0 < k \le n$) there exists a semigroup with k idempotents using a Cayley function a Cayley permutation.

Proof.

Let 0 < k < n, and a_1 be a fixed element of S. Let β be the permutation that such that $\beta = (a_1a_2a_3....a_{n-k}a_{n-k+1})$ an n-k+1 cycle in S_n that permutes n-k+1 terms and fixes the rest of the k-1 terms, it is a Cayley function by theorem 1 above. Now consider the binary operation on S given by

$$a_i * a_j = \begin{cases} \beta^{\delta_{a_i} + 1}(a_j) & \text{if } a_i \text{ is not a fixed element of } \beta \\ a_i & \text{if } a_i \text{ is a fixed element of } \beta \end{cases}$$

where $\delta_{a_i} = \min\{r : \beta^r(a_1) = a_i\}$. For k = n consider the identity permutation with the same construction. We can see that * is well defined binary operation and that * is associative. So (S, *) is a semigroup. By the choice of the permutation β and the definition of *, we can see that a_{n-k+1} is an idempotent as

$$a_{n-k+1} * a_{n-k+1} = \beta^{n-k+1}(a_{n-k+1}) = a_{n-k+1}$$

and all the k-1 fixed elements of β are also idempotents. \Box

Example 3.2. Let $S = \{a, b, c, d, e\}$ and let k = 3 choosing

 $\beta = \left(\begin{array}{ccc} a & b & c & d & e \\ b & c & a & d & e \end{array} \right)$ and following the construction as in the above theorem, we get the following Cayley table on S.

*	a	b	c	d	e
a	b	с	a	d	e
b	c	a	b	d	e
c	a	b	c	d	e
d	d	d	d	d	d
e	e	e	e	e	e

For the rest of the paper we denote the semigroup generated in the above theorem as S_{β} . In this section we study the greens relation of the semigroup S_{β} generated by the permutation

Lemma 3.3. Let $a, b \in S_{\beta}$. Then

- (i) If a, b are both non-fixed elements of β , then a \mathcal{R} b. If a is a fixed element of β , then a is \mathcal{R} related only to itself.
- (ii) If a, b are both non-fixed elements of β , then $a \mathcal{L} b$. If a, b are both fixed elements of β then $a \mathcal{L} b$
- (iii) S_{β} contains two D classes.
- (iv) S_{β} contains k number of H classes.
- *Proof.* (i) If a is not a fixed element of β then $aS_{\beta} = S_{\beta}$, if a is a fixed element of β then $aS_{\beta} = \{a\}$. Hence (1). In correspondence to lemmal we have for non-fixed elements a_i , a_j of $S_{\beta} a_q * a_i = a_j$ where q + i = jmod(n k + 1) for fixed elements $a_i * a_i = a_i$
- (ii) If a is not a fixed element of β then $S_{\beta}a = S_{\beta}$, if a is a fixed element of β then $S_{\beta}a = \{b : b \text{ is a fixed element of } \}$. And in correspondence to lemmal
- (iii) from lemma 2 $\mathcal{D} = \mathcal{L} \circ \mathcal{R} = \mathcal{R} \circ \mathcal{L}$. Hence from 1 and 2 we get two \mathcal{D} classes
- (iv) from lemma 2 $\mathcal{H} = \mathcal{L} \cap \mathcal{R}$ and hence k $\mathcal{H} classes$

Generally the egg box picture of the semigroup S_{β} is as follows.

$a_1, a_2, \ldots, a_{n-k+1}$				
a_{n-k+2}				
a_{n-k+3}				
a_{n-k+4}				
•				
•				
•				
•				
a_n				

Remark 3.4. Some Properties of S_{β}

- $\{a_1, a_2, \dots, a_{n-k+1}\}$ forms a subgroup of S_β .
- a_{n-k+1} is the identity element of S_{β} .
- k-1 idempotents act as left zeros (absorbing elements).
- Idempotents do not commute.
- S_{β} is a regular semigroup.
- In fact S_{β} is a completely regular semigroup
- S_{β} is a not an inverse semigroup.
- S_{β} is a union of a group and a band.
- $E(S_{\beta})$ forms a subsemigroup of S_{β} (i. e, S_{β} is an orthodox semigroup.)

β

Let us now consider the Biordered set of S_{β} . Since $E(S_{\beta})$ forms a sub-semigroup of S_{β} , $E(S_{\beta})$ with its semigroup operation forms a biordered set where for every $e, f \in E(S_{\beta})$

$$\begin{split} \omega^r &= \{(e,e)\} \cup \{(e,f) : f = a_{n-k+1}\} \\ \omega^l &= \{(e,f) : e \neq a_{n-k+1}\} \cup \{(a_{n-k+1}, a_{n-k+1})\} \\ \mathcal{R} &= \{(e,e)\} \\ \mathcal{L} &= \{(e,e)\} \cup \{(e,f) : e, f \neq a_{n-k+1}\} \\ \omega &= \{e,e\} \cup \{(e,f) : f = a_{n-k+1}\}r \end{split}$$

$$M(e, f) = \begin{cases} E(S_{\beta}) & \text{if } e, f = a_{n-k+1} \\ f & \text{if } e = a_{n-k+1}, f \neq a_{n-k+1} \\ E(S_{\beta}) - a_{n-k+1} & \text{if } e \neq a_{n-k+1}, f = a_{n-k+1} \\ f & \text{if } e, f \neq a_{n-k+1} \end{cases}$$

and the sandwich set will be

$$S(e, f) = \begin{cases} a_{n-k+1} & \text{if } e, f = a_{n-k+1} \\ f & \text{if } e = a_{n-k+1}, f \neq a_{n-k+1} \\ E(S_{\beta}) - a_{n-k+1} & \text{if } e \neq a_{n-k+1}, f = a_{n-k+1} \\ f & \text{if } e, f \neq a_{n-k+1} \end{cases}$$

To conclude we have constructed a semigroup with k-idempotents and n elements and also studied some basic properties on the biordered set of the generated semigroup.

References

- Araújo, J., Bentz, W., Konieczny, J.:Directed graphs of inner translations of semigroups. Semigroup Forum (2016)
- [2] A. H. Clifford and G.B. Preston(1961) The algebraic theory of semigroups, vol1, American Mathematical Society, USA.
- [3] Goralcik. P. and Z. Hedrlin, Translations of semiqroups I. Periodic and quasiperiodic transformations (Russian) Mat. asopis Sloven. Akad.Vied 18 (1968),161-176.
- [4] J.A. Green, On the structure of semigroups. Annals of Math, 54:163-172,(1951)
- [5] P.A. Grillet(1995) Semigroups, An introduction to the structure theory, Tulane University, New Orleans Louisiana. ISBN 0-8247-9662-4
- [6] J.M.Howie(1995) Fundamentals of semigroup theory, Clarendon Press, Oxford. ISBN 0-19-851194-9
- [7] Schein B. M., On Translations in semigroups and groups (Russian) Volzski [Matem. Sbornik 2 (1964) 163-169.
- [8] Zupnik, D(1972) Cayley functions. Semigroup Forum 3, 349-358

Author information

Lejo J. Manavalan, P.G. Romeo, Department of Mathematics, Cochin university of Science and Technology, Kalamassery, Kerala 682022, India.

E-mail: lejojmanavalan1710gmail.com