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Abstract We introduce the concept of a CLESS lattice which is a generalization of the con-
cept of an extending lattice (or a CS lattice). We study relationship between various general-
izations of the concept of an extending lattice namely, CLS lattice, CLESS lattice and CESS
lattice. We also prove that, if a, b are direct summands of 1 which are CLESS elements then 1 is
a CLESS element.

1 Introduction

The concept of an extending module (or a CS module) played an important role in module
theory and also offered a rich topic of research. A module is called extending (or CS module,
i.e., complements are summands) if every submodule of it is essential in a direct summand.
This concept was introduced by Chatters and Hajarnavis [4]. These modules and generalizations
are studied by several researchers such as Harmanci and Smith [9], Dung et. al. [6], Akalan,
Birkenmeir and Tercan [1], Müller and Rizvi [12], Celik, Harmanci and Smith [3] and many
others. Tercan [19] studied the concept of a CLS module. A module M is called a CLS module
provided every closed submodule of M is a direct summand of M . Crivei and Sahinkaya [5]
studied the concept of a CLESS module. A module M is called a CLESS module if every closed
submodule N of M with essential socle is a direct summand of M .

Călugăreanu [2] used lattice theory in module theory and studied several concepts from mod-
ule theory in lattice theory. Keskin [10] obtained some properties of extending modules using
modular lattices. Nimbhorkar and Shroff [15], [16], [14] have studied, respectively ojective ide-
als, generalized extending ideals and Goldie extending elements in modular lattices. Nimbhorkar
and Banswal [13] studied CESS lattices.

In the present paper, we introduce the concept of a CLESS lattice and obtain some properties
of such lattices. We show that, if a, b are direct summands of 1 which are CLESS elements, then
1 is a CLESS element. We show a relationship between various generalizations of extending
lattices such as a CLS lattice, a CLESS lattice and a CESS lattice. This work extends the results
of Crevei and Sahinkaya [5] in the context of certain modular lattices.

Throughout in this paper L denotes a lattice with 0.

2 Priliminaries

We recall some terms from lattice theory. These and undefined terms can be found in Grätzer
[7].

Definition 2.1. A lattice L is said to be a modular lattice if for a, b, c ∈ L with a ≤ c, a∨(b∧c) =
(a ∨ b) ∧ c.

Călugăreanu [2] developed the concept of an essential element in a lattice with least element
0, see also Grzeszczuk and Puczylowski [8].

Definition 2.2. Let L be a lattice with 0. An element a ∈ L is called an essential element if
a ∧ b 6= 0, for any nonzero b ∈ L.

If a is essential in [0, b], then we say that a is essential in b and write a ≤e b and call b as an
essential extension of a.
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If a ≤e b and there is no c ∈ L such that a ≤e c and b ≤ c, then we say that b is a maximal
essential extension of a.

Definition 2.3. Let a, b be elements of a lattice L with 0. We say that a is closed (or essentially
closed) in b if a does not have a proper essential extension in b. If a is closed in b then we write
a ≤cl b. If a does not have a proper essential extension in L, then we say that a is closed in L.

The concepts of a semicomplement and a maximal semicomplement are known in a lattice
with 0, see Szāsz [18, p. 47]. Let a, b ∈ L, we say that a, b are semicomplements of each other if
a ∧ b = 0.

Definition 2.4. If a, b ∈ L and b is a maximal element in the set {x ∈ L | a ∧ x = 0}, then we
say that b is a max-semicomplement of a in L.

In the theory of modules (e.g. Lam [11, Proposition 6.24], Chatters and Hajarnavis [4, Propo-
sition 2.2] and others), it is known that if A,B,C are modules of a ring R with A ⊆ B ⊆ C and
if A is closed in B and B is closed in C then A is closed in C.

The following proposition is an analog of this result, the proof of which is due to Wehrung.

Proposition 2.5. (Nimbhorkar and Shroff [16]). Let L be a modular lattice with 0. For a, b, c ∈
L, if a ≤cl b and b ≤cl c, then a ≤cl c.

Definition 2.6. If a, b, c ∈ L are such that a∨ b = c and a∧ b = 0, then we say that a, b are direct
summands of c and we write c = a⊕ b. We say that c is a direct sum of a and b.

The set of all direct summands of an element c ∈ L is denoted by D(c). That is, for every
a ∈ D(c) there exists b ∈ D(c) such that c = a⊕ b.

Definition 2.7. A lattice L with the least element 0 is said to be an atomic lattice if every nonzero
element of L contains an atom.

Definition 2.8. [2, p. 47] The join of all atoms in L, denoted by Soc(L), is called the socle of
the lattice L.

For a ∈ L, Soc(a) is the socle of the lattice [0, a].

Throughout in this paper, wherever necessary, we assume that L satisfies one or more of the
following conditions.
Condition (1): For any a ≤ b in L, there exists a maximal essential extension of a in b.
Condition (2): For any a ≤ b and for any c ≤ b in L with a ∧ c = 0, there exists a max-
semicomplement d ≥ c of a in b.
Condition (3): If the socle is involved, Soc(a) exists for any a ∈ L .
Condition (4): If a ∈ L is a join of atoms in L then any b ≤ a is a join of atoms.

The following result is from Nimbhorkar and Banswal [13].

Lemma 2.9. Let L be a lattice satisfying the conditions (1) and (3). Then every CS lattice is a
CESS lattice and every CESS lattice is a weak CS lattice.

The following results are from Nimbhorkar and Shroff [15].

Theorem 2.10. Let L be a modular lattice and a, b ∈ L be such that a ∧ b = 0. Then a is a
max-semicomplement of b in L if and only if a is closed in L and a⊕ b is essential in L.

Theorem 2.11. Let L be a modular lattice and a, b, c, d, e ∈ L be such that e = c⊕d and a, b ≤ c.
Then following statements are equivalent:
(1) b is a max-semicomplement of a in c.
(2) b⊕ d is a max-semicomplement of a in e.
(3) b is a max-semicomplement of a⊕ d in e.

The following results are from Nimbhorkar and Shroff [16].

Lemma 2.12. In a modular lattice L, if a, b, c ∈ L are such that c = a ⊕ b then a is a max-
semicomplement of b in c.
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Lemma 2.13. Let L be a modular lattice satisfying the condition (2). Let a, b ∈ L and a ≤ b.
Then a is closed in b if and only if a is a max-semicomplement of some c ≤ b.

The following results are from Nimbhorkar and Shroff [14].

Lemma 2.14. Every max-semicomplement in L is closed in L.

Lemma 2.15. In a lattice L the following statement hold.
(1) Let a, b ∈ L. Then a ≤e b, if and only if for any c ∈ L, a ∧ c = 0 implies that b ∧ c = 0.
(2) If a, b, c ∈ L, then a ≤e b implies a ∧ c ≤e b ∧ c.
(3) If a ≤ b ≤ c, then a ≤e b, b ≤e c if and only if a ≤e c.

The following lemma is from Grzeszczuk and Puczylowski [8, Lemma 3].

Lemma 2.16. Let L be a modular lattice. Suppose that a, b, c, d ∈ L are such that a ≤ b, c ≤ d
and b ∧ d = 0. Then a ≤e b, c ≤e d if and only if a⊕ c ≤e b⊕ d.

The following lemma is from Nimbhorkar and Shroff [15, Lemma 2.1].

Lemma 2.17. Let L be a modular lattice and a, b, c ∈ L be such that a∧b = 0 and (a∨b)∧c = 0
then a ∧ (b ∨ c) = 0.

The following lemma is from Nimbhorkar and Banswal [13].

Lemma 2.18. Let L be a lattice satisfying the conditions (3) and (4). If a ≤ b, then Soc(a) =
a ∧ Soc(b).

The following definitions is from Nimbhorkar and Banswal [13].

Definition 2.19. Let L be a lattice with 0 and a, b ∈ L. If b is a maximal element in the set
{x | x ∈ L and a ≤e x}, then we say that b is an essential closure of a in L.

Definition 2.20. A lattice L is called a UC-lattice if each of its nonzero element has a unique
essential closure in L.

The following theorem is from Nimbhorkar and Banswal [13].

Theorem 2.21. Let L be a lattice satisfying the conditions (1) and (2). A lattice L is a UC-lattice
if and only if for any closed element a in L and for any b ∈ L, a ∧ b is closed in b.

3 CLESS lattices

Definition 3.1. A nonzero element a ∈ L is called CS or extending if, every max-semicomplement
in a is a direct summand of a.

A bounded lattice L is called CS or extending if every max-semicomplement in L is a direct
summand of 1.
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In the lattice shown in Figure 1, elements a, c, d ∈ L are max-semicomplements in L which
are direct summands of 1. Hence L is a CS lattice.

In the lattice L shown in Figure 2, the element d ∈ L is a max-semicomplement in L which
is not a direct summand of 1. Hence L is not extending.

The following definition is from Nimbhorkar and Banswal [13].

Definition 3.2. An element a ∈ L is called a CESS element, if every
max-semicomplement b ≤ a such that Soc(b) ≤e b is a direct summand of a.

A bounded lattice L is called a CESS-lattice if 1 is a CESS element.

In the lattice L shown in Figure 1, a, c, d are max-semicomplements in L such that Soc(a) ≤e

a , Soc(c) ≤e c and Soc(d) ≤e d. Also, 1 = a⊕ b = a⊕ c = a⊕ d. Hence L is a CESS lattice.

0

a b c

d

1

Figure 3

In the lattice L shown in Figure 3, a, b, c are max-semicomplements in L such that Soc(a) ≤e

a , Soc(b) ≤e b and Soc(c) ≤e c. But none of a, b, c is a direct summand of 1. Hence L is not a
CESS lattice. However, d is a CESS-element.

Tercan [19] defined the concept of a CLS-module which is a generalization of a CS-module.
We introduce this concept in a lattice.

Definition 3.3. An element a ∈ L is called a CLS element if every closed element b ≤ a is a
direct summand of a.

A bounded lattice L is called CLS lattice if 1 is a CLS element.
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In the Lattice L shown in Figure 4, elements a, b, e ∈ L are closed elements in L which are
direct summands of 1. Hence L is a CLS lattice.

In the Lattice L shown in Figure 5, the element b ∈ L is closed in L which is not a direct
summand of 1. Hence L is not a CLS lattice.

Definition 3.4. An element a ∈ L is called a CLESS element if every closed element b ≤ a such
that Soc(b) ≤e b is a direct summand of a.

A bounded lattice L is called CLESS lattice if 1 is a CLESS element.
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In the lattice L shown in Figure 6, all elements are closed in L with Soc(x) ≤e x for all x ∈ L
are direct summand of 1. Hence L is a CLESS lattice.

In the lattice L shown in Figure 7, c ∈ L closed in L with Soc(c) ≤e c but not a direct
summand of 1. Hence L is not a CLESS lattice.

Lemma 3.5. Let L be a lattice satisfying the conditions (1) to (4). If L is a CLS lattice, then L is
a CLESS lattice and if L is a CLESS lattice, then L is a CESS lattice.

Proof. Let L be a CLS lattice. Let a ∈ L be a closed element in L such that Soc(a) ≤e a. Since
L is a CLS lattice, a is a direct summand of 1. Hence L is a CLESS lattice.

Next, Suppose that L is a CLESS lattice. Let a ∈ L be a max-semicomplement in L with
Soc(a) ≤e a. Then by Lemma 2.14, a is closed in L. Since L is a CLESS lattice, a is a direct
summand of 1. 2

Lemma 3.6. Let L be a lattice satisfying the condition (2). If L is a CLS lattice, then L is a CS
lattice and if L is a CS lattice then L is a CESS lattice.

Proof. Let L be a CLS lattice. Let a ∈ L be a max-semicomplement in L. Then by Lemma 2.14,
a is closed in L. Since L is a CLS lattice, a is a direct summand of 1. The second part follows
from Lemma 2.9. 2

Lemma 3.7. Let L be a modular lattice satisfying the conditions (1) to (4). If L is a CESS lattice,
then L is a CLESS lattice.

Proof. Let L be a CESS lattice. Let a ∈ L be a closed element in L with Soc(a) ≤e a. Then by
Lemma 2.13, a is a max-semicomplement in L. Since L is a CESS lattice, a is a direct summand
of 1. 2

Lemma 3.8. Let L be a modular lattice satisfying the condition (2). If L is a CS lattice, then L
is a CLS lattice.

Proof. Let L be a CS lattice. Let a ∈ L be a closed element in L. Then by Lemma 2.13, a is a
max-semicomplement in L. Since L is a CS lattice, a is a direct summand of 1. 2

The proof of the following lemma follows from Lemma 3.5 and Lemma 3.8.

Lemma 3.9. Let L be a modular lattice satisfying the conditions (1) to (4). If L is a CS lattice,
then L is a CLESS lattice.

Lemma 3.10. Let L be a modular, atomic lattice satisfying the conditions (1) to (4). If L is a
CLESS lattice, then L is a CLS lattice.
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Proof. Let x ∈ L. Then by the condition (1), there exist a maximal essential extension y ∈ L
such that x ≤e y. Being a maximal essential extension, y is closed in L. To show that
Soc(y) ≤e y. Let 0 6= a ≤ y. since L is an atomic lattice, there exist an atom b ≤ a and
therefore, Soc(y) ∧ b = b 6= 0. Thus Soc(y) ≤e y. Since L is a CLESS lattice, y is a direct
summand of 1. Hence L is a CLS lattice. 2

Theorem 3.11. Let L be a modular lattice satisfying the conditions (1), (3) and (4). Suppose
that L is a CLESS lattice. If a ∈ L is closed in L, then a is a CLESS element.

Proof. Let b ∈ L, b ≤ a be a closed element in a such that Soc(b) ≤e b. To show that b is a direct
summand of a. Since b is closed in a and a is closed in L, by Proposition 2.5, b is closed in L.
Since L is a CLESS lattice, b is a direct summand of 1 that is b ⊕ c = 1, for some c ∈ L. Now
using modularity, as b ≤ a, b∨ (c∧ a) = (b∨ c)∧ a = 1∧ a = a and b∧ (c∧ a) = 0. Thus b is a
direct summand of a. Hence a is a CLESS element. 2

Theorem 3.12. Let L be a modular atomic lattice satisfying the conditions (1), (3) and (4).
Suppose that L is a CLESS lattice. Let a, b ∈ L be such that a⊕ b = 1 and Soc(a) ≤e a. Then b
is a CLESS element.

Proof. Let c ∈ L be a closed element in b with Soc(c) ≤e c. Then by Theorem 2.11, a ⊕ c is
closed in L. To show that Soc(a⊕ c) ≤e a⊕ c. Let 0 6= x ≤ (a∨ c). Since L is an atomic lattice
there exists an atom y ≤ x and therefore Soc(a ∨ c) ∧ y = y 6= 0. Thus Soc(a ⊕ c) ≤e a ⊕ c.
Since L is a CLESS lattice, a ⊕ c is a direct summand of 1, that is (a ⊕ c) ⊕ d = 1, for some
d ∈ L. Now as c ≤ b, using modularity, c ∨ [(a⊕ d) ∧ b] = (c ∨ (a ∨ d)) ∧ b = 1 ∧ b = b. Here
a ∧ c = 0 and (a ∨ c) ∧ d = 0 then by Lemma 2.17, c ∧ (a ∨ d) ∧ b = c ∧ (a ∨ d) = 0. Thus c is
a direct summand of b. Hence b is a CLESS element. 2

Remark 3.13. Let a, b ∈ L such that Soc(a) ≤e a. Then Soc(a ∧ b) ≤e a ∧ b.

Proof. Since Soc(a) ≤e a by Lemma 2.15, we have Soc(a) ∧ b ≤e a ∧ b. Now a ∧ b ≤ a, then
by Lemma 2.18, we have Soc(a∧ b) = a∧ b∧ Soc(a) = b∧ Soc(a). Since Soc(a)∧ b ≤e a∧ b,
we have Soc(a ∧ b) ≤e a ∧ b. 2

Theorem 3.14. Let L be a modular UC-lattice satisfying the conditions (1), (3) and (4). Let
a, b ∈ L be such that a⊕ b = 1. Then L is a CLESS lattice if and only if every closed element c
in L with Soc(c) ≤e c such that c∧a = 0 or c∧ b = 0 is a direct summand of 1 and c is a CLESS
element.

Proof. Since L is a CLESS lattice, there exists a closed element c in L such that Soc(c) ≤e c
and c is a direct summand of 1.

Conversely, Suppose that every closed element c in L with Soc(c) ≤e c such that c ∧ a = 0
or c ∧ b = 0 is a direct summand of 1.

To show that L is a CLESS lattice. By Theorem 2.21, c ∧ a is closed in a and Soc(c ∧ a) ≤e

c∧ a. Since c∧ a is closed in a and a is closed in L then by Proposition 2.5, c∧ a is closed in L.
Since c ∧ a ∧ b = 0, by hypothesis c ∧ a is a direct summand of 1, say 1 = (c ∧ a)⊕ d for some
d ∈ L. By assumption, d is a CLESS element. Now by Theorem 2.21, c ∧ d is closed in d and
Soc(c ∧ d) ≤e c ∧ d follows that c ∧ d is a direct summand of d that is d = (c ∧ d)⊕ e for some
e ∈ L. To show that c is a direct summand of 1. As c ∧ a ≤ c, using modularity,

(c ∧ a) ∨ d = (c ∧ a) ∨ (c ∧ d) ∨ e

= (c ∧ a) ∨ (c ∧ d) ∨ e = [[(c ∧ a) ∨ d] ∧ c] ∨ e

= (1 ∧ c) ∨ e = c ∨ e = 1

and

c ∧ e = c ∧ e ∧ d = 0.

Thus c is a direct summand of 1. Hence L is a CLESS lattice. 2
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4 Direct Sum of CLESS Lattices

The following definition is from Nimbhorkar and Shroff [16].

Definition 4.1. Let a, b, c ∈ L be such that a = b ⊕ c. Then c is said to be b − injective in a if
for every d ≤ a with d ∧ c = 0, there exists e ≤ a such that a = e⊕ c and d ≤ e.

Theorem 4.2. Let L be a modular atomic UC-lattice satisfying the conditions (1) to (4) and
every closed elements in L are CLESS. Let a, b ∈ L such that 1 = a⊕b be a direct sum of CLESS
elements and b is a− injective. Then 1 is a CLESS element.

Proof. Let c ∈ L be a closed element of L with Soc(c) ≤e c. By Theorem 2.21, c ∧ b is closed
in b and Soc(c ∧ b) ≤e c ∧ b. Since b is a CLESS element c ∧ b is a direct summand of b that is
b = (c ∧ b)⊕ d for some d ≤ b. Now,

(c ∧ b) ∨ (a ∨ d) = a ∨ (c ∧ b) ∨ d

= a ∨ b = 1

and

(c ∧ b) ∧ (a ∨ d) = (c ∧ b) ∧ (a ∨ d) ∧ b

= (c ∧ b) ∧ [d ∨ (a ∧ b)]

= (c ∧ b) ∧ d

= 0.

Thus c ∧ b is a direct summand of 1. As c ∧ b ≤ c, using modularity we have,

(c ∧ b) ∨ [(d ∨ a) ∧ c] = [(c ∧ b) ∨ (d ∨ a)] ∧ c

= 1 ∧ c

= c

and

(c ∧ b) ∧ (d ∨ a) ∧ c = (c ∧ b) ∧ (d ∨ a) ∧ b

= (c ∧ b) ∧ [d ∨ (a ∧ b)]

= (c ∧ b) ∧ d

= 0.

Hence c∧ b is a direct summand of c that is c = (c∧ b)⊕ [(d∨a)∧ c]. Putting (d∨a)∧ c = e, we
have c = (c∧b)⊕e. Here, e∧b = 0, since b is a - injective, there exists f ∈ L such that 1 = f⊕b
and e ≤ f . By assumption f is a CLESS element. Since e is closed in f and Soc(e) ≤e e implies
e is a direct summand of f that is f = e⊕ g for some g ≤ f . We have

c ∨ g ∨ b = e ∨ g ∨ (c ∧ b) ∨ b

= e ∨ g ∨ b

= f ∨ b

= 1

and

c ∧ g ∧ b = c ∧ g ∧ b ∧ f

= 0.

Thus c is a direct summand of 1. Hence L is a CLESS lattice. 2

The following definition is from Nimbhorkar and Shroff [14].
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Definition 4.3. Let a, b ∈ L be such that a⊕ b = 1. An element b is said to be a− ojective if for
any max-semicomplement c ∈ L of b in L, 1 can be decomposed as 1 = a′ ⊕ b′ ⊕ c with a′ ≤ a
and b′ ≤ b.

The proof of the following theorem is the same as that of Proposition 4.1 from Nimbhorkar
and Shroff [14].

Theorem 4.4. Let L be a modular lattice satisfying the conditions (1) and (2). Let a, b ∈ L be
such that 1 = a⊕b. Let a1 and b1 be direct summands of a and b, respectively. If b is a−ojective,
then
(1) b1 is a− ojective;
(2) b is a1 − ojective;
(3) b1 is a1 − ojective.

Theorem 4.5. Let L be a modular UC-lattice satisfying the conditions (1) to (4). Let a, b ∈ L be
such that a⊕ b = 1, a is a CLESS element and b is a− ojective. Then for every closed element
c ∈ L with Soc(c) ≤e c and c ∧ b = 0, 1 = c⊕ a′ ⊕ b′ for some a′ ≤ a and b′ ≤ b.

Proof. Let c ∈ L be a closed element in L with Soc(c) ≤e c and c ∧ b = 0. By Theorem 2.21,
c ∧ a is closed in a and by Remark 3.13, Soc(c ∧ a) ≤e c ∧ a. since a is a CLESS element, it
follows that c ∧ a is a direct summand of a. Say a = (c ∧ a)⊕ f1 for some f1 ≤ a. By Theorem
3.12, f1 is a CLESS element. Now, let k = (c⊕ b)∧a. Let f ′

1 be the maximal essential extension
of k ∧ f1 in f1 that is k ∧ f1 ≤e f

′
1, f ′

1 ≤ f1.
Since f1 is CLESS element, f ′

1 is a direct summand of f1 say, f1 = f ′
1⊕f ′′

1 for some f ′′
1 ≤ f1.

k ∨ b = [(c⊕ b) ∧ a] ∨ b

= [(c ∨ b) ∧ a] ∨ b

= (c ∨ b) ∧ (a ∨ b) (using modularity, as b ≤ c ∨ b)

= (c ∨ b) ∧ 1

= c ∨ b

and k ∧ b = [(c ∨ b) ∧ a] ∧ b = 0. Thus k ⊕ b = c⊕ b. Now,

k ⊕ b = [(c⊕ b) ∧ a]⊕ b

= [(c⊕ b) ∧ [(c ∧ a)⊕ f1]]⊕ b

= [(c ∨ b) ∧ [(c ∧ a) ∨ f1]] ∨ b

= [(c ∧ a) ∨ [f1 ∧ (c ∨ b)]] ∨ b (using modularity, as c ∧ a ≤ c ∨ b)

= [(c ∧ a) ∨ [f1 ∧ a ∧ (c ∨ b)]] ∨ b

= (c ∧ a) ∨ (k ∧ f1) ∨ b

= (c ∧ a)⊕ (k ∧ f1)⊕ b.

Now by Lemma 2.16, (c ∧ a)⊕ (k ∧ f1)⊕ b ≤e (c ∧ a)⊕ f ′
1 ⊕ b that is

c ⊕ b = k ⊕ b = (c ∧ a) ⊕ (k ∧ f1) ⊕ b ≤e (c ∧ a) ⊕ f ′
1 ⊕ b. Now by Theorem 2.10, it fol-

lows that, c is a max-semicomplement of b in f = (c ∧ a) ⊕ f ′
1 ⊕ b. By Theorem 4.4 , b is

(c ∧ a) ⊕ f ′
1 − ojective, so f = c ⊕ a′′ ⊕ b′ for some a′′ ≤ (c ∧ a) ⊕ f ′

1 and b′ ≤ b. Now
1 = f ⊕ f ′′

1 = c⊕ a′′ ⊕ b′ ⊕ f ′′
1 = c⊕ a′ ⊕ b′ with a′ = a′′ ⊕ f ′′

1 ≤ a, b′ ≤ b. 2

The following definition is from Nimbhorkar and Shroff [16].

Definition 4.6. Let a, b ∈ L be such that 1 = a⊕ b. Then a is said to be b− ejective in L, if for
every d ∈ L such that d ∧ a = 0 there exists an f ∈ L such that 1 = a⊕ f and d ∧ f ≤e d.

The following result is proved for modules by Wang and Wu [20]. We state and prove it in
the context of lattices.

Theorem 4.7. Let L be a modular lattice satisfying the condition (1). Let a1 ∈ L be a direct
summand of a ∈ L and b1 ∈ L be a direct summand of b ∈ L. If a is b − ejective then a1 is
b1 − ejective.
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Proof. Write 1 = a ⊕ b, a = a1 ⊕ a2 and b = b1 ⊕ b2 for some a1, a2 ≤ a and b1, b2 ≤ b. To
prove: a1 is b− ejective. Let c = a1 ⊕ b. Let x ≤ c with x ∧ a1 = 0. Then

x ∧ a = x ∧ c ∧ a = x ∧ (a1 ⊕ b) ∧ a

= x ∧ (a1 ∨ b) ∧ a = x ∧ [a1 ∨ (b ∧ a)]

= x ∧ a1 = 0.

Since a is b − ejective there exist an element d ∈ L such that 1 = a ⊕ d and x ∧ d ≤e x. As
a1 ≤ c, using modularity,

a1 ∨ [c ∧ (a2 ∨ d)] = [a1 ∨ (a2 ∨ d)] ∧ c

= (a1 ∨ a2 ∨ d) ∧ c

= (a ∨ d) ∧ c

= 1 ∧ c

= c

and

a1 ∧ [c ∧ (a2 ⊕ d)] = a1 ∧ c ∧ (a2 ∨ d) ∧ a

= a1 ∧ c ∧ [a2 ∨ (d ∧ a)]

= a1 ∧ c ∧ a2

= 0.

Thus c = a1 ⊕ [c ∧ (a2 ⊕ d)]. Also x ∧ [c ∧ (a2 ⊕ d)] ≤e x. Hence a1 is b− ejective.
To prove : a is b1 − ejective. Write c′ = a ⊕ b1. Let x′ ≤ c′ with x′ ∧ a = 0. Since a is
b − ejective there exist an element d′ ∈ L such that 1 = a ⊕ d′ and d′ ∧ x′ ≤e x′. As a ≤ c′,
using modularity,

a ∨ [c′ ∧ d′] = [a ∨ d′] ∧ c

= 1 ∧ c′

= c′.

And a ∧ (c′ ∧ d′) = 0. Thus c′ = a ⊕ (c′ ∧ d′) and x′ ∧ (c′ ∧ d′) = x′ ∧ d′ ≤e x′. Thus a is
b1 − ejective.
Hence a1 is b1 − ejective. 2

The following theorem is a lattice theoretic analogue of Corollary 2.8 from Akalan et. al.[1].

Theorem 4.8. Let L be a modular lattice satisfying the condition (1). Let a, b ∈ L be such that
1 = a⊕ b. Then a is b− injective if and only if a is b− ejective.

Proof. First suppose that a is b − injective. To show that a is b − ejective. Let c ∈ L be such
that c ∧ a = 0. Since a is b− injective there exist d ∈ L such that c ≤ d and 1 = a⊕ d and also
d ∧ c = c ≤e c. Hence a is b− ejective.

Conversely, Suppose that a is b − ejective. To show that a is b − injective. Let c ∈ L such
that c ∧ a = 0. Since a is b− ejective, there exists d ∈ L such that 1 = a⊕ d and c ∧ d ≤e c. To
show that c ≤ d. Since c is a maximal essential extension in L, c is closed in L. As d is a direct
summand, d is closed in L by Lemma 2.12. Now by Theorem 2.21, c ∧ d is closed in d. Since
c ∧ d ≤cl d ≤cl L, by Proposition 2.5, c ∧ d ≤cl L. Thus c ∧ d = c and c = c ∧ d ≤ d. Thus
c ≤ d. Hence a is b− injective. 2

Theorem 4.9. Let L be a modular lattice satisfying the conditions (1), (3), (4) and let a, b ∈ L.
Let 1 = a⊕b be a direct sum of CLESS elements such that b is a−ejective. Then 1 is a CLESS
element.
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Proof. Let c ∈ L be a closed element in L with Soc(c) ≤e c. Then by Theorem 2.21, c ∧ a is
closed in a and Soc(c ∧ a) ≤e c ∧ a. Since a is a CLESS element, c ∧ a is a direct summand
of a. Say a = (c ∧ a) ⊕ d1 for some d1 ≤ a. Then by Theorem 3.12, d1 is a CLESS element.
Similarly, we may write b = (c ∧ b) ⊕ d2 for some CLESS element d2 ≤ b. Now by Theorem
4.7, d2 is d1 − ejective. Also by Theorem 4.8,
d2 is d1 − injective. Also by Theorem 4.2, d1 ⊕ d2 is a CLESS element. Now let

(c ∧ a) ∨ (c ∧ b) ∨ [c ∧ (d1 ⊕ d2)] = [c ∧ (a ∨ b)] ∨ [c ∧ (d1 ∨ d2)]

= (c ∧ 1) ∨ [c ∧ (d1 ∨ d2)]

= c ∨ [c ∧ (d1 ∨ d2)]

= c

and (c∧a)∧(c∧b)∧[c∧(d1⊕d2)] = 0. Thus c = (c∧a)⊕(c∧b)⊕[c∧(d1⊕d2)]. Let [c∧(d1⊕d2)]
be a closed element in d1⊕d2 and Soc([c∧(d1⊕d2)]) ≤e [c∧(d1⊕d2)]. Since d1⊕d2 is a CLESS
element, [c∧ (d1⊕d2)] is a direct summand of d1⊕d2 that is d1⊕d2 = [c∧ (d1⊕d2)]⊕ [d′1⊕d′2]
for some d′1 ⊕ d′2 ≤ d1 ⊕ d2, d′1 ≤ d1 and d′2 ≤ d2. Now,

1 = a⊕ b = (c ∧ a)⊕ (c ∧ b)⊕ d1 ⊕ d2

= (c ∧ a)⊕ (c ∧ b)⊕ [c ∧ (d1 ⊕ d2)]⊕ [d′1 ⊕ d′2]

= c⊕ d′1 ⊕ d′2

and c ∧ d′1 ∧ d′2 = 0. Thus c is a direct summand of 1. Hence 1 is a CLESS element. 2
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