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Abstract We introduce the concept of a CLESS lattice which is a generalization of the con-
cept of an extending lattice (or a CS lattice). We study relationship between various general-
izations of the concept of an extending lattice namely, CLS lattice, CLESS lattice and CESS
lattice. We also prove that, if a, b are direct summands of 1 which are CLESS elements then 1 is
a CLESS element.

1 Introduction

The concept of an extending module (or a CS module) played an important role in module
theory and also offered a rich topic of research. A module is called extending (or CS module,
i.e., complements are summands) if every submodule of it is essential in a direct summand.
This concept was introduced by Chatters and Hajarnavis [4]. These modules and generalizations
are studied by several researchers such as Harmanci and Smith [9], Dung et. al. [6], Akalan,
Birkenmeir and Tercan [1], Miller and Rizvi [12], Celik, Harmanci and Smith [3] and many
others. Tercan [19] studied the concept of a CLS module. A module M is called a CLS module
provided every closed submodule of M is a direct summand of M. Crivei and Sahinkaya [5]
studied the concept of a CLESS module. A module M is called a CLESS module if every closed
submodule NV of M with essential socle is a direct summand of M.

Calugareanu [2] used lattice theory in module theory and studied several concepts from mod-
ule theory in lattice theory. Keskin [10] obtained some properties of extending modules using
modular lattices. Nimbhorkar and Shroff [15], [16], [14] have studied, respectively ojective ide-
als, generalized extending ideals and Goldie extending elements in modular lattices. Nimbhorkar
and Banswal [13] studied CESS lattices.

In the present paper, we introduce the concept of a CLESS lattice and obtain some properties
of such lattices. We show that, if a, b are direct summands of 1 which are CLESS elements, then
1 is a CLESS element. We show a relationship between various generalizations of extending
lattices such as a CLS lattice, a CLESS lattice and a CESS lattice. This work extends the results
of Crevei and Sahinkaya [5] in the context of certain modular lattices.

Throughout in this paper L denotes a lattice with 0.

2 Priliminaries

We recall some terms from lattice theory. These and undefined terms can be found in Gritzer

[7].

Definition 2.1. A lattice L is said to be a modular lattice if for a, b, ¢ € L witha < ¢, aV (bAc) =
(aVb)Ac.

Calugareanu [2] developed the concept of an essential element in a lattice with least element
0, see also Grzeszczuk and Puczylowski [8].

Definition 2.2. Let L be a lattice with 0. An element a € L is called an essential element if
a Ab # 0, for any nonzero b € L.

If a is essential in [0, b], then we say that a is essential in b and write a <, b and call b as an
essential extension of a.
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If a <. b and there is no ¢ € L such that a <. cand b < ¢, then we say that b is a maximal
essential extension of a.

Definition 2.3. Let a, b be elements of a lattice L with 0. We say that a is closed (or essentially
closed) in b if a does not have a proper essential extension in b. If a is closed in b then we write
a <. b. If a does not have a proper essential extension in L, then we say that a is closed in L.

The concepts of a semicomplement and a maximal semicomplement are known in a lattice
with 0, see Szasz [18, p. 47]. Let a,b € L, we say that a, b are semicomplements of each other if
aNb=0.

Definition 2.4. If a,b € L and b is a maximal element in the set {x € L | a A z = 0}, then we
say that b is a max-semicomplement of a in L.

In the theory of modules (e.g. Lam [11, Proposition 6.24], Chatters and Hajarnavis [4, Propo-
sition 2.2] and others), it is known that if A, B, C' are modules of a ring R with A C B C C and
if Ais closed in B and B is closed in C' then A is closed in C'.

The following proposition is an analog of this result, the proof of which is due to Wehrung.

Proposition 2.5. (Nimbhorkar and Shroff [16]). Let L be a modular lattice with 0. For a,b,c €
Liifa<gbandb <. c, then a <. c.

Definition 2.6. If a, b, c € L are such that a Vb = c and a A b = 0, then we say that a, b are direct
summands of ¢ and we write ¢ = a @ b. We say that c is a direct sum of « and b.

The set of all direct summands of an element ¢ € L is denoted by ©(c). That is, for every
a € D(c) there exists b € D(c) such that c = a & b.

Definition 2.7. A lattice L with the least element O is said to be an atomic lattice if every nonzero
element of L contains an atom.

Definition 2.8. [2, p. 47] The join of all atoms in L, denoted by Soc(L), is called the socle of
the lattice L.
For a € L, Soc(a) is the socle of the lattice [0, a).

Throughout in this paper, wherever necessary, we assume that L satisfies one or more of the
following conditions.
Condition (1): For any a < b in L, there exists a maximal essential extension of a in b.
Condition (2): For any ¢ < b and for any ¢ < b in L with a A ¢ = 0, there exists a max-
semicomplement d > ¢ of @ in b.
Condition (3): If the socle is involved, Soc(a) exists for any a € L .
Condition (4): If @ € L is a join of atoms in L then any b < a is a join of atoms.

The following result is from Nimbhorkar and Banswal [13].

Lemma 2.9. Let L be a lattice satisfying the conditions (1) and (3). Then every CS lattice is a
CESS lattice and every CESS lattice is a weak CS lattice.

The following results are from Nimbhorkar and Shroff [15].

Theorem 2.10. Let L be a modular lattice and a,b € L be such that a N'b = 0. Then a is a
max-semicomplement of b in L if and only if a is closed in L and a & b is essential in L.

Theorem 2.11. Let L be a modular lattice and a, b, c,d, e € L be such that e = c®d and a,b < c.
Then following statements are equivalent:

(1) b is a max-semicomplement of a in c.

(2) b ® d is a max-semicomplement of a in e.

(3) b is a max-semicomplement of a @ d in e.

The following results are from Nimbhorkar and Shroff [16].

Lemma 2.12. In a modular lattice L, if a,b,c € L are such that ¢ = a @ b then a is a max-
semicomplement of b in c.
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Lemma 2.13. Let L be a modular lattice satisfying the condition (2). Let a,b € L and a < b.
Then a is closed in b if and only if a is a max-semicomplement of some ¢ < b.

The following results are from Nimbhorkar and Shroff [14].
Lemma 2.14. Every max-semicomplement in L is closed in L.

Lemma 2.15. In a lattice L the following statement hold.

(1) Let a,b € L. Then a <. b, if and only if for any c € L, a \ ¢ = 0 implies that b \ ¢ = 0.
(2)If a,b,c € L, then a <. bimpliesa Nc <.bAc.
(3)Ilfa<b<cthena<,bb<,cifandonlyifa <. c

The following lemma is from Grzeszczuk and Puczylowski [8, Lemma 3].

Lemma 2.16. Let L be a modular lattice. Suppose that a,b,c,d € L are such thata < b, ¢ < d
andbNd=0.Thena <.b c<.difandonlyifa ®c <. b®d.

The following lemma is from Nimbhorkar and Shroff [15, Lemma 2.1].

Lemma 2.17. Let L be a modular lattice and a, b, ¢ € L be such that aANb = 0 and (aVb)Ac =0
thena A (bV c) =0.

The following lemma is from Nimbhorkar and Banswal [13].

Lemma 2.18. Let L be a lattice satisfying the conditions (3) and (4). If a < b, then Soc(a) =
a A Soc(b).

The following definitions is from Nimbhorkar and Banswal [13].

Definition 2.19. Let L be a lattice with 0 and a,b € L. If b is a maximal element in the set
{z |z € Land a <. x}, then we say that b is an essential closure of a in L.

Definition 2.20. A lattice L is called a UC-lattice if each of its nonzero element has a unique
essential closure in L.

The following theorem is from Nimbhorkar and Banswal [13].

Theorem 2.21. Let L be a lattice satisfying the conditions (1) and (2). A lattice L is a UC-lattice
if and only if for any closed element a in L and for any b € L, a A is closed in b.

3 CLESS lattices

Definition 3.1. A nonzero element a € L is called CS or extending if, every max-semicomplement
in @ is a direct summand of a.

A bounded lattice L is called CS or extending if every max-semicomplement in L is a direct
summand of 1.

0 0
Figure 1 Figure 2
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In the lattice shown in Figure 1, elements a, c,d € L are max-semicomplements in L which
are direct summands of 1. Hence L is a CS lattice.

In the lattice L shown in Figure 2, the element d € L is a max-semicomplement in L which
is not a direct summand of 1. Hence L is not extending.

The following definition is from Nimbhorkar and Banswal [13].

Definition 3.2. An element a € L is called a CESS element, if every
max-semicomplement b < a such that Soc(b) <. b is a direct summand of a.
A bounded lattice L is called a CESS-lattice if 1 is a CESS element.

In the lattice L shown in Figure 1, a, ¢, d are max-semicomplements in L such that Soc(a) <,
a, Soc(c) <. cand Soc(d) <. d. Also,l =a @& b=a @ c=ad® d. Hence L is a CESS lattice.

1
®

0
Figure 3

In the lattice L shown in Figure 3, a, b, ¢ are max-semicomplements in L such that Soc(a) <,
a , Soc(b) <. band Soc(c) <, c. But none of a, b, c is a direct summand of 1. Hence L is not a
CESS lattice. However, d is a CESS-element.

Tercan [19] defined the concept of a CLS-module which is a generalization of a CS-module.
We introduce this concept in a lattice.

Definition 3.3. An element a € L is called a CLS element if every closed element b < «a is a
direct summand of a.
A bounded lattice L is called CLS lattice if 1 is a CLS element.

0
Figure 4 Figure 5

In the Lattice L shown in Figure 4, elements a, b, e € L are closed elements in L which are
direct summands of 1. Hence L is a CLS Ilattice.

In the Lattice L shown in Figure 5, the element b € L is closed in L which is not a direct
summand of 1. Hence L is not a CLS lattice.

Definition 3.4. An element a € L is called a CLESS element if every closed element b < a such
that Soc(b) <. b is a direct summand of a.
A bounded lattice L is called CLESS lattice if 1 is a CLESS element.
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0 0
Figure 6 Figure 7

In the lattice L shown in Figure 6, all elements are closed in L with Soc(z) <. zforallz € L
are direct summand of 1. Hence L is a CLESS lattice.

In the lattice L shown in Figure 7, ¢ € L closed in L with Soc(c) <. c but not a direct
summand of 1. Hence L is not a CLESS lattice.

Lemma 3.5. Let L be a lattice satisfying the conditions (1) to (4). If L is a CLS lattice, then L is
a CLESS lattice and if L is a CLESS lattice, then L is a CESS lattice.

Proof. Let L be a CLS lattice. Let a € L be a closed element in L such that Soc(a) <. a. Since
L is a CLS lattice, a is a direct summand of 1. Hence L is a CLESS lattice.

Next, Suppose that L is a CLESS lattice. Let a € L be a max-semicomplement in L with
Soc(a) <. a. Then by Lemma 2.14, a is closed in L. Since L is a CLESS lattice, a is a direct
summand of 1. O

Lemma 3.6. Let L be a lattice satisfying the condition (2). If L is a CLS lattice, then L is a CS
lattice and if L is a CS lattice then L is a CESS lattice.

Proof. Let L be a CLS lattice. Let a € L be a max-semicomplement in L. Then by Lemma 2.14,
a is closed in L. Since L is a CLS lattice, a is a direct summand of 1. The second part follows
from Lemma 2.9. O

Lemma 3.7. Let L be a modular lattice satisfying the conditions (1) to (4). If L is a CESS lattice,
then L is a CLESS lattice.
Proof. Let L be a CESS lattice. Let a € L be a closed element in L with Soc(a) <. a. Then by

Lemma 2.13, a is a max-semicomplement in L. Since L is a CESS lattice, « is a direct summand
of 1. O

Lemma 3.8. Let L be a modular lattice satisfying the condition (2). If L is a CS lattice, then L
is a CLS lattice.

Proof. Let L be a CS lattice. Let @ € L be a closed element in L. Then by Lemma 2.13, a is a
max-semicomplement in L. Since L is a CS lattice, a is a direct summand of 1. O

The proof of the following lemma follows from Lemma 3.5 and Lemma 3.8.

Lemma 3.9. Let L be a modular lattice satisfying the conditions (1) to (4). If L is a CS lattice,
then L is a CLESS lattice.

Lemma 3.10. Let L be a modular, atomic lattice satisfying the conditions (1) to (4). If L is a
CLESS lattice, then L is a CLS lattice.
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Proof. Let x € L. Then by the condition (1), there exist a maximal essential extension y € L
such that z <, y. Being a maximal essential extension, y is closed in L. To show that
Soc(y) <. y. Let 0 # a < y. since L is an atomic lattice, there exist an atom b < a and
therefore, Soc(y) Ab = b # 0. Thus Soc(y) <. y. Since L is a CLESS lattice, y is a direct
summand of 1. Hence L is a CLS lattice. O

Theorem 3.11. Let L be a modular lattice satisfying the conditions (1), (3) and (4). Suppose
that L is a CLESS lattice. If a € L is closed in L, then a is a CLESS element.

Proof. Letb € L,b < a be a closed element in a such that Soc(b) <. b. To show that b is a direct
summand of a. Since b is closed in a and a is closed in L, by Proposition 2.5, b is closed in L.
Since L is a CLESS lattice, b is a direct summand of 1 thatis b ® ¢ = 1, for some ¢ € L. Now
using modularity, as b < a, bV (cAa) = (bVe)Aa=1ANa=aandbA (cANa) =0. Thusbisa
direct summand of a. Hence a is a CLESS element. O

Theorem 3.12. Let L be a modular atomic lattice satisfying the conditions (1), (3) and (4).
Suppose that L is a CLESS lattice. Let a,b € L be such that a ® b =1 and Soc(a) <. a. Then b
is a CLESS element.

Proof. Let ¢ € L be a closed element in b with Soc(c¢) <. c¢. Then by Theorem 2.11, a @ c is
closed in L. To show that Soc(a @ ¢) <. a®c. Let 0 # x < (aV ¢). Since L is an atomic lattice
there exists an atom y < z and therefore Soc(a V ¢) Ay =y # 0. Thus Soc(a ® ¢) <. a P c.
Since L is a CLESS lattice, a & ¢ is a direct summand of 1, that is (a & ¢) & d = 1, for some
d € L. Now as ¢ < b, using modularity, ¢ V [(a ® d) Ab] = (¢ V (aV d)) Nb=1Ab=b. Here
aNc=0and (aVec)Ad=0thenby Lemma2.17,cA (aVd)Ab=cA (aVd)=0. Thus cis
a direct summand of b. Hence b is a CLESS element. O

Remark 3.13. Let a,b € L such that Soc(a) <. a. Then Soc(a Ab) <. a Ab.

Proof. Since Soc(a) <. a by Lemma 2.15, we have Soc(a) Ab <. a Ab. Now a A b < a, then
by Lemma 2.18, we have Soc(a Ab) = a AbA Soc(a) = b A Soc(a). Since Soc(a) ANb <. aAb,
we have Soc(a Ab) <. aAb. O

Theorem 3.14. Let L be a modular UC-lattice satisfying the conditions (1), (3) and (4). Let
a,b € L be such that a ® b = 1. Then L is a CLESS lattice if and only if every closed element c
in L with Soc(c) <. ¢ such that chNa = 0or cANb = 0is a direct summand of 1 and c is a CLESS
element.

Proof. Since L is a CLESS lattice, there exists a closed element ¢ in L such that Soc(c) <. ¢
and c is a direct summand of 1.

Conversely, Suppose that every closed element ¢ in L with Soc(c) <. ¢ such thatcAa =0
or c A b= 0is a direct summand of 1.

To show that L is a CLESS lattice. By Theorem 2.21, ¢ A a is closed in a and Soc(c A a) <,
¢ A a. Since ¢ A a is closed in a and « is closed in L then by Proposition 2.5, ¢ A a is closed in L.
Since ¢ A a A b = 0, by hypothesis ¢ A a is a direct summand of 1, say 1 = (¢ A a) @ d for some
d € L. By assumption, d is a CLESS element. Now by Theorem 2.21, ¢ A d is closed in d and
Soc(e A d) <. ¢ Adfollows that ¢ A d is a direct summand of d that is d = (¢ A d) @ e for some
e € L. To show that c is a direct summand of 1. As ¢ A a < ¢, using modularity,

(cha)Vd=(cha)V(cAd)Ve
=(cha)V(cnd)Ve=][[(cha)Vd AcVe
=(lAc)Ve=cVe=1

and
che=cheNd=0.

Thus cis a direct summand of 1. Hence L is a CLESS lattice. O
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4 Direct Sum of CLESS Lattices
The following definition is from Nimbhorkar and Shroff [16].

Definition 4.1. Let a,b,c € L be such that a = b @ ¢. Then c is said to be b — injective in a if
for every d < a with d A ¢ = 0, there exists e < a suchthata =e@ cand d < e.

Theorem 4.2. Let L be a modular atomic UC-lattice satisfying the conditions (1) to (4) and
every closed elements in L are CLESS. Let a,b € L such that 1 = a®b be a direct sum of CLESS
elements and b is a — injective. Then I is a CLESS element.

Proof. Let ¢ € L be a closed element of L with Soc(c) <. c¢. By Theorem 2.21, ¢ A b is closed
in b and Soc(c A b) <. ¢ Ab. Since b is a CLESS element ¢ A b is a direct summand of b that is
b= (cAb)® dforsome d < b. Now,

(cAb)V(aVvd)=aV(cAb)Vd
=aVb=1
and
(cAb)A(aVd)=(cAb)A(aVd)AD
=(cAb)A[dV (aAb)
=(cAb)ANd
=0.
Thus ¢ A b is a direct summand of 1. As ¢ A b < ¢, using modularity we have,
(cAD)VIdVa)Ad=[(cAb)V(dVa)]Ac
=1Ac
=C
and
(cAD)A({dVa)Ac=(cAb)A(dVa)A Db
(e AND)A[dV (a AD)]

Hence ¢ A b is a direct summand of ¢ thatis ¢ = (¢ Ab) ®[(dV a) Ac]. Putting (dVa) Ac = e, we
have ¢ = (cAb)@e. Here, e Ab = 0, since b is a - injective, there exists f € L suchthat 1 = f&b
and e < f. By assumption f is a CLESS element. Since e is closed in f and Soc(e) <. e implies
e is a direct summand of f thatis f = e @ ¢ for some g < f. We have

cVgVb=eVgV(cAb)Vb
=eVgVd
—fVb
=1

and

cANgGANb=cANgNDAf
=0.

Thus cis a direct summand of 1. Hence L is a CLESS lattice. O

The following definition is from Nimbhorkar and Shroff [14].
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Definition 4.3. Let a,b € L be such that a & b = 1. An element b is said to be a — ojective if for
any max-semicomplement ¢ € L of bin L, 1 can be decomposed as | = a’ ¢V’ & ¢ witha' < a
and ¥’ < b.

The proof of the following theorem is the same as that of Proposition 4.1 from Nimbhorkar
and Shroff [14].

Theorem 4.4. Let L be a modular lattice satisfying the conditions (1) and (2). Let a,b € L be
such that 1 = a®b. Let ay and by be direct summands of a and b, respectively. If b is a— ojective,
then

(1) by is a — ojective;

(2) bis a; — ojective;

(3) by is a; — ojective.

Theorem 4.5. Let L be a modular UC-lattice satisfying the conditions (1) to (4). Let a,b € L be
such that a ® b = 1, a is a CLESS element and b is a — ojective. Then for every closed element
¢ € L with Soc(c) <ccandcANb=0,1=c®d OV forsomea <aandl <b.

Proof. Let ¢ € L be a closed element in L with Soc(c) <. ¢ and ¢ A b = 0. By Theorem 2.21,
¢ A ais closed in a and by Remark 3.13, Soc(c A a) <. ¢ A a. since a is a CLESS element, it
follows that ¢ A a is a direct summand of a. Say a = (¢ A a) @ f; for some f; < a. By Theorem
3.12, f1 is a CLESS element. Now, let k = (c®b) Aa. Let f| be the maximal essential extension
of kA fiin fi thatis kA fi <. f], fi < fi.

Since f; is CLESS element, f| is a direct summand of f; say, f; = f{ & f|’ for some f{’ < fi.

Evb=[(c®b)Aa]Vb
=[(cVb)Aa]Vb

=(cVb)A(aVb) (usingmodularity,asb < cV b)
=(cVb Al
cVb

and k Ab=[(cVb)Aa]Ab=0. Thus k&b = c& b. Now,

kdb=[c®b)Nal ®
=[(ceb)A[lcha)® fi]] DD
=[(cVb)AllcAa)V fi]] VD
=[(cAna)V[fiA(cVD)]] VDb (using modularity,ascAa < cVb)
=[(cha)V[finaA(cVD]] VD
= (

cha)V (kA fi) Vb
=(cha)® (kA fi)@b.

Now by Lemma 2.16, (c Aa) & (kA fi) @b <. (cAa)® f{ & bthatis
chb=kdb=(cha)® (kN fi)®b <. (cANa)® f{ ®b. Now by Theorem 2.10, it fol-
lows that, ¢ is a max-semicomplement of b in f = (¢ A a) & f{ & b. By Theorem 4.4 , b is
(¢ Na) @ f| — ojective, so f = c@® a” ® b for some a” < (¢ Aa)® f{ and b < b. Now
l=fafl=cod dbaf=codab withd =d" @ f{' <a, ¥/ <b.0

The following definition is from Nimbhorkar and Shroff [16].

Definition 4.6. Let a,b € L be such that 1 = a @ b. Then a is said to be b — ejective in L, if for
every d € L suchthatd A a = 0O thereexistsan f € Lsuchthatl =a® fandd A f <. d.

The following result is proved for modules by Wang and Wu [20]. We state and prove it in
the context of lattices.

Theorem 4.7. Let L be a modular lattice satisfying the condition (1). Let ay € L be a direct
summand of a € L and by € L be a direct summand of b € L. If a is b — ejective then ay is
b1 — ejective.
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Proof. Write 1 = a® b, a = a1 ® a» and b = b; P b, for some a1,a, < a and by, b, < b. To
prove: a; is b — ejective. Let c = a; @ b. Let x < ¢ with x A a; = 0. Then
zrAha=xAcha=xA(a1®b)Aa
=xzA(agVd)Aa=zAN[aV (bAa)
=zANa; =0.
Since a is b — ejective there exist an element d € L suchthat ]l = a® dand x Ad <, x. As
a1 < ¢, using modularity,
ar VieA(aaVvVd)]=la;V(aaVd)]Ac
=(mVaVd) Ac
=(aVd)Ac
=1Ac¢

=C
and

agANfeA(az®d)]=arAcA(aaVd)Aa
=aiAcAfaaV (dAa)l
=a; NcA\ap
=0.

Thus ¢ = a; @ [c A (ap ® d)]. Also z A [c A (ay & d)] <. z. Hence aq is b — ejective.

To prove : a is by — ejective. Write ¢ = a ® b;. Let 2’ < ¢ with 2’ A a = 0. Since a is
b — ejective there exist an element d’ € L suchthat ]l = a® d andd A2’ <, 2'. Asa < ¢,
using modularity,

aV[dANd]=lavd]Nc
=1Ad

=c.
Anda A (dAd)=0. Thusc =a® (dAd)and 2/ A (d ANd') =a' ANd' <. 2'. Thus a is
b1 — ejective.
Hence a; is b; — ejective. O

The following theorem is a lattice theoretic analogue of Corollary 2.8 from Akalan et. al.[1].

Theorem 4.8. Let L be a modular lattice satisfying the condition (1). Let a,b € L be such that
1=a®b. Then a is b — injective if and only if a is b — ejective.

Proof. First suppose that a is b — injective. To show that a is b — ejective. Let ¢ € L be such
that ¢ A a = 0. Since a is b — injective there exist d € L such that c < dand 1 = a & d and also
dANc=c<,c Henceaisb— ejective.

Conversely, Suppose that a is b — ejective. To show that a is b — injective. Let ¢ € L such
that c A a = 0. Since a is b — ejective, there exists d € Lsuchthat ]l =a®d dand cAd <, c. To
show that ¢ < d. Since c is a maximal essential extension in L, c is closed in L. As d is a direct
summand, d is closed in L by Lemma 2.12. Now by Theorem 2.21, ¢ A d is closed in d. Since
cNd <gqd <y L,byProposition 2.5, cAd <y L. ThuscAd =cand ¢ =cAd < d. Thus
c < d. Hence a is b — injective. O

Theorem 4.9. Let L be a modular lattice satisfying the conditions (1), (3), (4) and let a,b € L.
Let 1 = a®b be a direct sum of CLESS elements such that b is a — ejective. Then 1 isa CLESS
element.
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Proof. Let ¢ € L be a closed element in L with Soc(c) <. c. Then by Theorem 2.21, ¢ A a is
closed in a and Soc(c A a) <, ¢ A a. Since a is a CLESS element, ¢ A a is a direct summand
of a. Say a = (¢ A a) & d; for some d; < a. Then by Theorem 3.12, d; is a CLESS element.
Similarly, we may write b = (¢ A b) & d, for some CLESS element d, < b. Now by Theorem
4.7, dy is d; — ejective. Also by Theorem 4.8,

dp is dj — injective. Also by Theorem 4.2, d| & d» is a CLESS element. Now let

(cha)V(cAD)VeA(di®dr)]=[cA(aVD)]VcA (diVdy)]
=(cA1)V][cA (dyVdy)]
=cV[eA(dVdy)]

=cC

and (cAa)A(cAb)A[eA(d1®dz)] = 0. Thus ¢ = (eAa)®(cAb)D[eA(di @ dy)]. Let [cA(d ®dy))
be a closed element in d; ®d; and Soc([cA (dy B dp)]) <. [¢A(d1@dy)]. Since d; &d, is a CLESS

element, [cA (d; ®dy)] is a direct summand of d; ® d, thatis d; ®dy = [c A (d) ® dp)] @ [d] ® db)
forsome d| & d), < d| © dp, d} < dj and d} < d». Now,

l=a®b=(cNa)®(cAb)ddi®d
=(cha)®(cAb)@[cA(d & dr)] & [d] & dj]
=cad ®d

and ¢ A d} A dj = 0. Thus c is a direct summand of 1. Hence 1 is a CLESS element. O
Acknowledgements The authors are thankful to the referee for helpful comments which im-
proved the presentation.
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