SOME PROPERTIES OF WEAKLY PRIMARY AND WEAKLY 2-ABSORBING PRIMARY IDEALS IN LATTICES

Meenakshi P. Wasadikar and Karuna T. Gaikwad

Communicated by T. Asir

MSC 2010 Classifications: 06B10.

Keywords and phrases: Primary ideal, weakly primary ideal, 2-absorbing ideal, weakly 2-absorbing ideal, 2-absorbing primary ideal, weakly 2-absorbing primary ideal.

Abstract We introduce the concepts of a weakly primary and a weakly 2-absorbing primary ideal in a lattice. We show that under certain condition, an ideal I of a lattice L is weakly primary if and only if I is primary. We define a free triple zero ideal of a lattice and give a result related to it.

1 Introduction

Many researchers have introduced different types of ideals such as primary, weakly primary etc. in a commutative ring. We introduce some of these concepts in a lattice. Anderson and Smith [1], defined a weakly prime ideal in a commutative ring, as a proper ideal P of R with the property that, if whenever $a, b \in R, 0 \neq ab \in P$ implies either $a \in P$ or $b \in P$. Badawi [2] generalized the concept of a prime ideal to a 2-absorbing ideal. A proper ideal I of a commutative ring R is said to be a 2-absorbing ideal, if whenever $abc \in I$ for $a, b, c \in R$, then either $ab \in I$ or $bc \in I$ or $ac \in I$. Badawi and Darani [3] call a proper ideal I of a commutative ring R to be a weakly 2-absorbing ideal, if whenever $a, b \in R, 0 \neq ab \in P$ implies either $a \in P$ or $b \in I$ or $bc \in I$ or $ac \in I$. Atani and Farzalipour [6] defined a proper ideal P of a commutative ring R to be a weakly primary ideal, if whenever $a, b \in R, 0 \neq ab \in P$ implies either $a \in P$ or $b \in \sqrt{P}$ (where \sqrt{P} is the radical of P). Badawi et al. [4] defined a proper ideal I of a commutative ring R to be a 2-absorbing primary ideal, if whenever $abc \in I$ for $a, b, c \in R$, then either $ab \in I$ or $bc \in \sqrt{I}$ or $ac \in \sqrt{I}$. Badawi et al. [5] defined a proper ideal I of a commutative ring R to be a 2-absorbing primary ideal, if whenever $abc \in I$ for $a, b, c \in R$, then either $ab \in I$ or $bc \in \sqrt{I}$ or $ac \in \sqrt{I}$. Badawi et al. [5] defined a proper ideal I of a commutative ring R to be a 2-absorbing primary ideal, if whenever $0 \neq abc \in I$ for $a, b, c \in R$, then either $ab \in I$ or $bc \in \sqrt{I}$ or $ac \in \sqrt{I}$. Badawi et al. [5] defined a proper ideal I of a commutative ring R to be a weakly 2-absorbing primary ideal, if whenever $0 \neq abc \in I$ for $a, b, c \in R$, then either $ab \in I$ or $bc \in \sqrt{I}$ or $ac \in \sqrt{I}$.

Moreover, Wasadikar and Gaikwad [9] introduced a 2-absorbing and a weakly 2-absorbing ideal in a lattice. A proper ideal I of a lattice L is called a 2-absorbing ideal, if whenever $a \wedge b \wedge c \in I$ for $a, b, c \in L$, then either $a \wedge b \in I$ or $a \wedge c \in I$ or $b \wedge c \in I$. A proper ideal I of a lattice L with zero is called a weakly 2-absorbing ideal, if whenever $0 \neq a \wedge b \wedge c \in I$ for $a, b, c \in L$, then either $a \wedge b \in I$ or $a \wedge c \in I$ or $b \wedge c \in I$. A proper ideal I of a lattice L with zero is called a weakly 2-absorbing ideal, if whenever $0 \neq a \wedge b \wedge c \in I$ for $a, b, c \in L$, then either $a \wedge b \in I$ or $a \wedge c \in I$ or $b \wedge c \in I$. Wasadikar and Gaikwad [10], [11] introduced the concepts of radical of an ideal, a primary ideal, a weakly primary ideal, a 2-absorbing primary ideal and a weakly 2-absorbing ideal in a lattice.

In this paper we introduce and study the concepts of a weakly primary and a weakly 2absorbing primary ideal in a lattice. Throughout in this paper L denotes a lattice with 0. The undefined terms are from Grätzer [7].

2 Preliminaries

In this paper we generalize the concepts of weakly primary, weakly 2-absorbing primary ideals studied in Wasadikar and Gaikwad [10], [11].

Definition 2.1. Let *I* be an ideal of *L*. The radical of *I* is the intersection of all prime ideals of *L* containing *I* and we denote it by \sqrt{I} .

Remark 2.2. If there does not exists a prime ideal containing an ideal *I*, then $\sqrt{I} = L$.

Definition 2.3. A proper ideal *I* of *L* is called weakly prime if for $a, b \in L$, $0 \neq a \land b \in I$ implies that either $a \in I$ or $b \in I$.

Example 2.4. Consider the lattice shown in Figure 1. Here the ideal (p] is a weakly prime ideal.

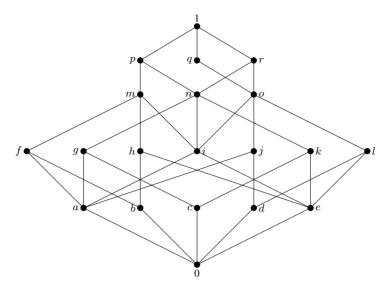


Figure 1

Definition 2.5. A proper ideal I of L is called primary if for $a, b \in L$, $a \wedge b \in I$ implies that either $a \in I$ or $b \in \sqrt{I}$.

Example 2.6. The ideal (m] in the lattice shown in Figure 1 is a primary ideal.

Definition 2.7. A proper ideal *I* of *L* is called weakly primary if for $a, b \in L$, $0 \neq a \land b \in I$ implies that either $a \in I$ or $b \in \sqrt{I}$.

Example 2.8. The ideal (m] in the lattice shown in Figure 1 is a weakly primary ideal.

Definition 2.9. A proper ideal *I* of *L* is called 2-absorbing if for every $a, b, c \in L$, $a \land b \land c \in I$ implies that either $a \land b \in I$ or $a \land c \in I$ or $b \land c \in I$.

Example 2.10. The ideal (j] in the lattice shown in Figure 1 is a 2-absorbing ideal.

Definition 2.11. A proper ideal *I* of *L* is called weakly 2-absorbing if for every $a, b, c \in L$, $0 \neq a \land b \land c \in I$ implies that either $a \land b \in I$ or $a \land c \in I$ or $b \land c \in I$.

Example 2.12. The ideal (*i*] in the lattice shown in Figure 1 is a weakly 2-absorbing ideal.

Definition 2.13. A proper ideal I of L is called 2-absorbing primary if for every $a, b, c \in L$, $a \wedge b \wedge c \in I$ implies that either $a \wedge b \in I$ or $a \wedge c \in \sqrt{I}$ or $b \wedge c \in \sqrt{I}$.

Example 2.14. The ideal (m] in the lattice shown in Figure 1 is a 2-absorbing primary ideal.

Definition 2.15. A proper ideal *I* of *L* is called weakly 2-absorbing primary if for every $a, b, c \in L$, $0 \neq a \land b \land c \in I$ implies that either $a \land b \in I$ or $a \land c \in \sqrt{I}$ or $b \land c \in \sqrt{I}$.

Example 2.16. The ideal (f] in the lattice shown in Figure 1 is a weakly 2-absorbing primary ideal.

3 Some Properties of Weakly Primary Ideals

We note that every primary ideal is weakly primary. However, the converse need not hold.

Example 3.1. Consider the ideal I = (0] of the lattice shown in Figure 1. Then $\sqrt{I} = (p] \cap (q] \cap (r] = (i]$. Here I is a weakly primary ideal. However, $j \wedge k = 0 \in I$, neither $j \in I$ nor $k \in I$. Also, neither $j \in \sqrt{I}$ nor $k \in \sqrt{I}$. Hence I is not a primary ideal.

Remark 3.2. If *I* is a prime ideal of *L*, then \sqrt{I} is a primary ideal of *L*.

We have the following example which shows that the converse is not true.

Example 3.3. Consider the ideal I = (m] of the lattice shown in Figure 1. Then $\sqrt{I} = (p]$. The ideal \sqrt{I} is prime. However, I is not a prime ideal since $n \wedge o = i \in I$, but neither $n \in I$ nor $o \in I$.

- **Remark 3.4.** (i) If I is a weakly primary ideal of L, then \sqrt{I} need not be a weakly primary ideal of L.
- (ii) If I is a weakly prime ideal of a lattice L, then \sqrt{I} need not be a weakly primary ideal of L.

We have the following example for above remarks.

Example 3.5. Consider the ideal I = (0] of the lattice shown in Figure 1. Hence $\sqrt{I} = (p] \cap (q] \cap (r] = (i]$. Here I is a weakly prime as well as a weakly primary ideal. However, \sqrt{I} is not a weakly primary ideal, since for $m \wedge n = i \in \sqrt{I}$, neither $m \in \sqrt{I}$ nor $n \in \sqrt{I}$.

Let *I* be a proper ideal of a lattice *L*. For $x \in L$, let $(I :_L x) = \{y \in L | y \land x \in I\}$. The following characterization is an analogue of Theorem 2.1 from Atani et al. [6].

Theorem 3.6. Let I be a proper ideal of L. Then the following statements are equivalent:

- (i) I is a weakly primary ideal of L.
- (*ii*) For $x \in L \sqrt{I}$, $(I :_L x) = I \cup (0 :_L x)$.

(iii) For $x \in L - \sqrt{I}$, $(I :_L x) = I$ or $(I :_L x) = (0 :_L x)$.

Proof. (1) \Rightarrow (2). Let $x \in L - \sqrt{I}$ and $y \in (I :_L x)$. Then $x \land y \in I$. If $x \land y \neq 0$ then $y \in I$. If $x \land y = 0$, then $y \in (0 :_L x)$. Thus $(I :_L x) \subseteq I \cup (0 :_L x)$. It is clear that $I \cup (0 :_L x) \subseteq (I :_L x)$. Hence $(I :_L x) = I \cup (0 :_L x)$.

(2) \Rightarrow (3). If an ideal is a union of two ideals, then it is equal to one of them. (3) \Rightarrow (1). Let $0 \neq x \land y \in I$ with $x \notin \sqrt{I}$. Then $y \in (I :_L x) = I \cup (0 :_L x)$, by (3). Since $x \land y \neq 0$, we have $y \in I$. Thus I is a weakly primary ideal of L. \Box

Definition 3.7. Let *I* be a weakly primary ideal of *L*. Let $x, y \in L$ be such that $x \wedge y = 0$, $x \notin I, y \notin \sqrt{I}$, then (x,y) is called a twin-zero of *I*.

Example 3.8. Consider the ideal I = (a] of the lattice shown in Figure 2. Then $\sqrt{I} = (d]$ as (d] is the only prime ideal containing I. I is a weakly primary ideal. For $d \wedge e = 0 \in I$, neither $d \in I$ nor $e \in \sqrt{I}$. Thus (d, e) is a twin zero of I.

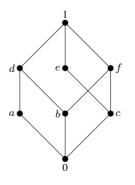


Figure 2

Remark 3.9. The following example shows if (x, y) is a twin-zero of an ideal *I*, then (y, x) need not be a twin-zero of *I*.

Example 3.10. In the Example 3.8 we observe that (d, e) is a twin-zero of I. However, $e \wedge d = 0 \in I$, $e \notin I$ but $d \in \sqrt{I}$. Thus (e, d) is not a twin-zero of I. Hence $(d, e) \neq (e, d)$.

Remark 3.11. If I is a weakly primary ideal of L such that I is not a primary ideal, then I has a twin-zero (x, y) for some $x, y \in L$.

Definition 3.12. For an ideal *I* of a lattice *L*, we define $x \wedge I = \{x \wedge i : i \in I\}$.

We prove some results by using the concept of twin-zero.

The following Theorem is an analogue of Theorem 3.2 from Badawi et al. [5].

Theorem 3.13. Let I be a weakly primary ideal of a modular lattice L. Suppose that (x, y) is a twin-zero of I for some $x, y \in L$. Then $x \wedge I = y \wedge I = 0$.

Proof. Suppose that $x \wedge I \neq 0$. Then $x \wedge i \neq 0$ for some $i \in I$. Hence $0 \neq (x \wedge y) \lor (x \wedge i) \in I$. As *L* is modular, $0 \neq x \land (y \lor (x \land i)) \in I$. As $x \notin I$ and *I* is a weakly primary ideal, we have $y \lor (x \land i) \in \sqrt{I}$. Implies that $y \in \sqrt{I}$, a contradiction to (x, y) is a twin-zero of *I*. Thus $x \land I = 0$.

Similarly, we can show that $y \wedge I = 0$. \Box

The following Theorem is an analogue of Theorem 3.5 from Badawi et al. [5].

Theorem 3.14. Let I be a weakly prime ideal of a lattice L and suppose that (x, y) is a twin-zero of I. If $x \land l \in I$ for some $l \in L$, then $x \land l = 0$.

Proof. Suppose that $0 \neq x \land l \in I$ for some $l \in L$. As *I* is weakly prime, $l \in I$. By Theorem 3.13 $x \land l = 0$, a contradiction. Thus $x \land l = 0$. \Box

In the following theorem we show that under some condition the concepts of a primary ideal and a weakly primary ideal coincide.

Theorem 3.15. Suppose that $\sqrt{0}$ is a prime ideal of *L*. Let *I* be a proper ideal of *L*. Then *I* is a weakly primary ideal of *L* if and only if *I* is a primary ideal of *L*.

Proof. Suppose that *I* is a weakly primary ideal of *L*. Let $a \land b \in I$ for some $a, b \in L$. Case 1: Suppose that $a \land b \neq 0$. As *I* is a weakly primary ideal and $0 \neq a \land b \in I$, either $a \in I$ or $b \in \sqrt{I}$.

Case 2: Suppose that $a \wedge b = 0$ and $a \notin I$. Since $a \wedge b = 0$ and $\sqrt{0}$ is a prime ideal of L, we conclude that either $a \in \sqrt{0}$ or $b \in \sqrt{0}$. Since $\sqrt{0} \subseteq \sqrt{I}$, we have $a \in \sqrt{I}$ or $b \in \sqrt{I}$. Thus I is a primary ideal of L.

The converse is clear. \Box

We omit the obvious proof of the following lemma.

Lemma 3.16. Let I be an ideal of L. Then $\sqrt{I} = \sqrt{\sqrt{I}}$.

Lemma 3.17. Let I be an ideal of L. If \sqrt{I} is a primary ideal, then I is a primary ideal.

Proof. Let $a \wedge b \in I$. Then $a \wedge b \in \sqrt{I}$. As \sqrt{I} is primary, either $a \in \sqrt{I}$ or $b \in \sqrt{\sqrt{I}}$. By Lemma 3.16, $\sqrt{I} = \sqrt{\sqrt{I}}$. Hence, either $a \in \sqrt{I}$ or $b \in \sqrt{I}$. \Box

Now we prove some results in product lattices.

The following Theorem is from Wasadikar and Gaikwad [10].

Theorem 3.18. Let $L = L_1 \times L_2$, where each L_i , (i = 1, 2) is a lattice with 1. Then the following hold:

(i) If I_1 is an ideal of L_1 , then $\sqrt{I_1 \times L_2} = \sqrt{I_1} \times L_2$.

(ii) If I_2 is an ideal of L_2 , then $\sqrt{L_1 \times I_2} = L_1 \times \sqrt{I_2}$.

The following Theorem is an analogue of Lemma 2.5 from Atani et al. [6].

Theorem 3.19. Let $L = L_1 \times L_2$ where L_1 and L_2 are bounded lattices. Then the following statements hold:

- (i) I_1 is a primary ideal of L_1 if and only if $I_1 \times L_2$ is a primary ideal of L.
- (ii) I_2 is a primary ideal of L_2 if and only if $L_1 \times I_2$ is a primary ideal of L.

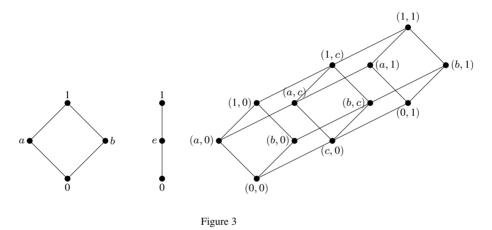
Proof. (1) Let $(a_1, a_2) \land (b_1, b_2) \in I_1 \times L_2$ where $(a_1, a_2), (b_1, b_2) \in L$. That is $(a_1 \land b_1, a_2 \land b_2) \in I_1 \times L_2$. Then $a_1 \land b_1 \in I_1$. As I_1 is a primary ideal of L_1 , either $a_1 \in I_1$ or $b_1 \in \sqrt{I_1}$. Hence either $(a_1, a_2) \in I_1 \times L_2$ or $(b_1, b_2) \in \sqrt{I_1} \times L_2$. By Theorem 3.18, either $(a_1, a_2) \in I_1 \times L_2$ or $(b_1, b_2) \in \sqrt{I_1} \times L_2$.

Conversely, let $a \wedge b \in I_1$. Then $(a \wedge b, c) \in I_1 \times L_2$. That is $(a, c) \wedge (b, c) \in I_1 \times L_2$. As $I_1 \times L_2$ is a primary ideal of L, either $(a, c) \in I_1 \times L_2$ or $(b, c) \in \sqrt{I_1 \times L_2}$. By Theorem 3.18, either $(a, c) \in I_1 \times L_2$ or $(b, c) \in \sqrt{I_1} \times L_2$. Thus, either $a \in I_1$ or $b \in \sqrt{I_1}$. Hence I_1 is a primary ideal of L_1 .

(2) Proof is similar as in statement (1). \Box

Remark 3.20. The following example shows that, if I_1 is a weakly primary ideal of L_1 , then $I_1 \times L_2$ need not be a weakly primary ideal of $L = L_1 \times L_2$.

Example 3.21. Consider the ideal $I_1 = (0]$ of the lattice L_1 shown in Figure 3. Thus $I_1 \times L_2 = \{(0,0), (0,c), (0,1)\}$. Clearly $\sqrt{I_1} = (0]$ and $\sqrt{I_1 \times L_2} = \{(0,0), (0,c), (0,1)\}$. Here I_1 is a weakly primary ideal of L_1 . However, $I_1 \times L_2$ is not a weakly primary ideal of $L = L_1 \times L_2$ since $(a, 0) \land (b, 0) = (0, 0) \in I_1 \times L_2$ but neither $(a, 0) \in \sqrt{I_1 \times L_2}$ nor $(b, 0) \in \sqrt{I_1 \times L_2}$ and hence neither $(a, 0) \in I_1 \times L_2$ nor $(b, 0) \in I_1 \times L_2$.



4 Some properties of weakly 2-absorbing primary ideals

We start with the definition of a triple zero from Wasadikar and Gaikwad [9].

Definition 4.1. Let *I* be a weakly 2-absorbing ideal of *L*. Let $a, b, c \in L$ be such that $a \wedge b \wedge c = 0$, $a \wedge b \notin I$, $a \wedge c \notin I$ and $b \wedge c \notin I$, then (a, b, c) is called a triple zero of *I*.

Definition 4.2. Let *I* be a weakly 2-absorbing primary ideal of *L* and suppose that $I_1 \cap I_2 \cap I_3 \subseteq I$ for some ideals I_1 , I_2 and I_3 of *L*. We say that *I* is a free triple-zero with respect to $I_1 \cap I_2 \cap I_3$ if (a, b, c) is not a triple-zero of *I* for any $a \in I_1, b \in I_2$ and $c \in I_3$.

Example 4.3. Consider the lattice shown in Figure 1. Here the ideal I = (l] is a free triple zero with respect to $(a] \cap (d] \cap (e]$.

Conjecture 4.4. Let *I* be a weakly 2-absorbing primary ideal of a lattice *L*. Suppose that $(0] \neq I_1 \cap I_2 \cap I_3 \subseteq I$ for some ideals I_1 , I_2 and I_3 of *L*. Then *I* is a free triple-zero with respect to $I_1 \cap I_2 \cap I_3$.

The following Theorem is an analogue of Lemma 2.29 from Badawi et al. [5].

Theorem 4.5. Let *I* be a weakly 2-absorbing primary ideal of a lattice *L* and suppose that $x \wedge y \wedge J \subseteq I$ for some $x, y \in L$ and some ideal *J* of *L* such that (a, b, c) is not a triple-zero of *I* for every $z \in J$. If $x \wedge y \notin I$, then $x \wedge J \subseteq \sqrt{I}$ or $y \wedge J \subseteq \sqrt{I}$.

Proof. Let $x \land y \notin I$. Suppose that $x \land J \nsubseteq \sqrt{I}$ and $y \land J \nsubseteq \sqrt{I}$. Then there exist $j_1, j_2 \in J$ such that $x \land j_1 \notin \sqrt{I}$ and $y \land j_2 \notin \sqrt{I}$. As (x, y, j_1) is not a triple-zero of I and $x \land y \land j_1 \in I$, we have $y \land j_1 \in \sqrt{I}$. As (x, y, j_2) is not a triple-zero of I and $x \land y \land j_2 \in \sqrt{I}$.

Since $(x, y, j_1 \lor j_2)$ is not a triple-zero of I and $x \land y \land (j_1 \lor j_2) \in I$ and $x \land y \notin I$, we have either $x \land (j_1 \lor j_2) \in \sqrt{I}$ or $y \land (j_1 \lor j_2) \in \sqrt{I}$. Suppose that $x \land (j_1 \lor j_2) \in \sqrt{I}$. Therefore, $(x \land j_1) \lor (x \land j_2) \leq x \land (j_1 \lor j_2) \in \sqrt{I}$ and so $(x \land j_1) \lor (x \land j_2) \in \sqrt{I}$. Hence $x \land j_2 \in \sqrt{I}$ and $x \land j_1 \in \sqrt{I}$, which is a contradiction.

Similarly, if $y \land (j_1 \lor j_2) \in \sqrt{I}$ then $(y \land j_1) \lor (y \land j_2) \in \sqrt{I}$. Hence $y \land j_1 \in \sqrt{I}$ and $y \land j_2 \in \sqrt{I}$, which is a contradiction. Hence $x \land J \subseteq \sqrt{I}$ or $y \land J \subseteq \sqrt{I}$. \Box

Remark 4.6. Let *I* be a weakly 2-absorbing primary ideal of *L* and suppose that $I_1 \cap I_2 \cap I_3 \subseteq I$ for some ideals I_1, I_2, I_3 of *L* such that *I* is free triple-zero with respect to $I_1 \cap I_2 \cap I_3$. Then if $a \in I_1, b \in I_2$ and $c \in I_3$, then either $a \wedge b \in I$ or $a \wedge c \in \sqrt{I}$ or $b \wedge c \in \sqrt{I}$.

Let *I* be a weakly 2-absorbing primary ideal of *L*. In view of the below result, one can see that Conjecture 1 is valid if and only if whenever $0 \neq I_1 \cap I_2 \cap I_3 \subseteq I$ for some ideals I_1, I_2, I_3 of *L*, then either $I_1 \cap I_2 \subseteq I$ or $I_1 \cap I_3 \subseteq \sqrt{I}$ or $I_2 \cap I_3 \subseteq \sqrt{I}$.

The following Theorem is an analogue of Lemma 2.30 from Badawi et al. [5].

Theorem 4.7. Let I be a weakly 2-absorbing primary ideal of a lattice L and suppose that $(0] \neq I_1 \cap I_2 \cap I_3 \subseteq I$ for some ideals I_1, I_2, I_3 of L such that I is a free triple-zero with respect to $I_1 \cap I_2 \cap I_3$. Then $I_1 \cap I_2 \subseteq I$ or $I_1 \cap I_3 \subseteq \sqrt{I}$ or $I_2 \cap I_3 \subseteq \sqrt{I}$.

Proof. Suppose that *I* is a weakly 2-absorbing primary ideal. Let $(0] \neq I_1 \cap I_2 \cap I_3 \subseteq I$ for some ideals I_1, I_2, I_3 of *L* such that *I* is free triple-zero with respect to $I_1 \cap I_2 \cap I_3$. Suppose that $I_1 \cap I_2 \nsubseteq I$. We show that $I_1 \cap I_3 \subseteq \sqrt{I}$ or $I_2 \cap I_3 \subseteq \sqrt{I}$. Suppose that $I_1 \cap I_3 \nsubseteq \sqrt{I}$ and $I_2 \cap I_3 \oiint \sqrt{I}$. Then there exist $q_1 \in I_1$ and $q_2 \in I_2$ such that $q_1 \wedge I_3 \oiint \sqrt{I}$ and $q_2 \wedge I_3 \oiint \sqrt{I}$. As $q_1 \wedge q_2 \wedge I_3 \subseteq I$, we have $q_1 \wedge q_2 \in I$ by Theorem 4.5.

Since $I_1 \cap I_2 \nsubseteq I$, we have $a \land b \notin I$ for some $a \in I_1$, $b \in I_2$. Since $a \land b \land I_3 \subseteq I$ and $a \land b \notin I$, we have $a \land I_3 \subseteq \sqrt{I}$ or $b \land I_3 \subseteq \sqrt{I}$ by Theorem 4.5. We consider three cases. Case 1: Suppose that $a \land I_3 \subseteq \sqrt{I}$ but $b \land I_3 \nsubseteq \sqrt{I}$.

Since $q_1 \wedge b \wedge I_3 \subseteq I$ and $b \wedge I_3 \not\subseteq \sqrt{I}$ and $q_1 \wedge I_3 \not\subseteq \sqrt{I}$, we conclude that $q_1 \wedge b \in I$ by Theorem 4.5. Since $(a \vee q_1) \wedge b \wedge I_3 \subseteq I$ and $a \wedge I_3 \subseteq \sqrt{I}$, but $q_1 \wedge I_3 \not\subseteq \sqrt{I}$, we conclude that $(a \vee q_1) \wedge I_3 \not\subseteq \sqrt{I}$. Since $b \wedge I_3 \not\subseteq \sqrt{I}$ and $(a \vee q_1) \wedge I_3 \not\subseteq \sqrt{I}$, we conclude that $(a \vee q_1) \wedge b \in I$ by Theorem 4.5. Since $(a \wedge b) \vee (q_1 \wedge b) \leq (a \vee q_1) \wedge b \in I$, we have $(a \wedge b) \vee (q_1 \wedge b) \in I$. Thus $q_1 \wedge b \in I$ and $a \wedge b \in I$, a contradiction.

Case 2: Suppose that $b \wedge I_3 \subseteq \sqrt{I}$, but $a \wedge I_3 \not\subseteq \sqrt{I}$.

Since $a \land q_2 \land I_3 \subseteq I$ and $a \land I_3 \not\subseteq \sqrt{I}$ and $q_2 \land I_3 \not\subseteq \sqrt{I}$, we conclude that $a \land q_2 \in I$ by Theorem 4.5. Since $a \land (b \lor q_2) \land I_3 \subseteq I$ and $b \land I_3 \subseteq \sqrt{I}$, but $q_2 \land I_3 \not\subseteq \sqrt{I}$, we conclude that $(b \lor q_2) \land I_3 \not\subseteq \sqrt{I}$. Since $a \land I_3 \not\subseteq \sqrt{I}$ and $(b \lor q_2) \land I_3 \not\subseteq \sqrt{I}$, we conclude that $a \land (b \lor q_2) \in I$ by Theorem 4.5. Since $(a \land b) \lor (a \land q_2) \leq a \land (b \lor q_2) \in I$, we have $(a \land b) \lor (a \land q_2) \in I$. Thus $a \land q_2 \in I$ and $a \land b \in I$, a contradiction.

Case 3: $a \wedge I_3 \subseteq \sqrt{I}$ and $b \wedge I_3 \subseteq \sqrt{I}$.

Since $b \wedge I_3 \subseteq \sqrt{I}$ and $q_2 \wedge I_3 \nsubseteq \sqrt{I}$, we conclude that $(b \vee q_2) \wedge I_3 \nsubseteq \sqrt{I}$. Since $q_1 \wedge (b \vee q_2) \wedge I_3 \subseteq I$ and $q_1 \wedge I_3 \nsubseteq \sqrt{I}$ and $(b \vee q_2) \wedge I_3 \oiint \sqrt{I}$, we conclude that $q_1 \wedge (b \vee q_2) \in I$ by Theorem 4.5. As $(q_1 \wedge b) \vee (q_1 \wedge q_2) \leq q_1 \wedge (b \vee q_2) \in I$, we have $(q_1 \wedge b) \vee (q_1 \wedge q_2) \in I$. Hence $b \wedge q_1 \in I$. Since $a \wedge I_3 \subseteq \sqrt{I}$ and $q_1 \wedge I_3 \oiint \sqrt{I}$, we conclude that $(a \vee q_1) \wedge I_3 \oiint \sqrt{I}$. Since $(a \vee q_1) \wedge q_2 \wedge I_3 \subseteq I$ and $q_2 \wedge I_3 \oiint \sqrt{I}$ and $(a \vee q_1) \wedge I_3 \oiint \sqrt{I}$, we conclude that $(a \vee q_1) \wedge q_2 \in I$ by Theorem 4.5. As $(a \wedge q_2) \vee (q_1 \wedge q_2) \leq (a \vee q_1) \wedge q_2 \in I$, we have $(a \wedge q_2) \vee (q_1 \wedge q_2) \in I$. Hence $a \wedge q_2 \in I$. Now, since $(a \vee q_1) \wedge (b \vee q_2) \wedge I_3 \subseteq I$ and $(a \vee q_1) \wedge I_3 \oiint \sqrt{I}$ and $(b \vee q_2) \wedge I_3 \oiint \sqrt{I}$, we conclude that $(a \vee q_1) \wedge (b \vee q_2) \in I$ by Theorem 4.5. We conclude that $a \wedge b \in I$, a contradiction. Hence $I_1 \cap I_3 \subseteq \sqrt{I}$ or $I_2 \cap I_3 \subseteq \sqrt{I}$. \Box

Theorem 4.8. Let I be an ideal of L. If \sqrt{I} is a weakly prime ideal of L, then I is a weakly 2-absorbing primary ideal of L.

Proof. Suppose that $0 \neq a \land b \land c \in I$ and $a \land b \notin I$. Since $(a \land c) \land (b \land c) = a \land b \land c \in I \subseteq \sqrt{I}$ and \sqrt{I} is a weakly prime ideal of *L*, we have either $b \land c \in \sqrt{I}$ or $a \land c \in \sqrt{I}$. Hence *I* is a weakly 2-absorbing primary ideal of *L*. \Box

The following Theorem is an analogue of Theorem 2.1 from Mostafanasab and Darani [8], which is a characterization of 2-absorbing primary ideals.

Theorem 4.9. Let I be a proper ideal of L. Then the following conditions are equivalent:

- (i) I is a 2-absorbing primary ideal of L.
- (ii) For $x, y \in L$ such that $x \land y \notin \sqrt{I}$, either $(I :_L x \land y) \subseteq (I :_L x)$ or $(I :_L x \land y) \subseteq (\sqrt{I} :_L y)$.
- (iii) For any $x \in L$ and any ideal I_1 of L such that $x \wedge I_1 \nsubseteq \sqrt{I}$, either $(I :_L x \wedge I_1) \subseteq (I :_L I_1)$ or $(I :_L x \wedge I_1) \subseteq (\sqrt{I} :_L x)$.
- (iv) For ideals I_1, I_2 of L such that $I_1 \cap I_2 \nsubseteq I$, either $(I :_L I_1 \cap I_2) \subseteq (\sqrt{I} :_L I_1)$ or $(I :_L I_1 \cap I_2) \subseteq (\sqrt{I} :_L I_2)$.
- (v) For ideals I_1, I_2, I_3 of L with $I_1 \cap I_2 \cap I_3 \subseteq I$, either $I_1 \cap I_2 \subseteq I$ or $I_1 \cap I_3 \subseteq \sqrt{I}$ or $I_2 \cap I_3 \subseteq \sqrt{I}$.

Proof. (1) \Rightarrow (2). Suppose that $x, y \in L$ such that $x \wedge y \notin \sqrt{I}$. Let $a \in (I :_L x \wedge y)$. Then $a \wedge x \wedge y \in I$. As I is 2-absorbing primary, either $a \wedge x \in I$ or $a \wedge y \in \sqrt{I}$. That is either $a \in (I :_L x)$ or $a \in (\sqrt{I} :_L y)$. Hence $(I :_L x \wedge y) \subseteq (I :_L x) \cup (I :_L y)$. We know that if an ideal is a subset of the union of two ideals, then it is subset of one of them. Hence $(I :_L x \wedge y) \subseteq (I :_L x) \cup (I :_L x)$ or $(I :_L x \wedge y) \subseteq (\sqrt{I} :_L y)$.

(2) \Rightarrow (3). Suppose that $x \in L$ and I_1 is an ideal of L such that $x \wedge I_1 \nsubseteq \sqrt{I}$. Let $a \in (I : _L x \wedge I_1)$. Then $a \wedge x \wedge I_1 \subseteq I$. Thus $I_1 \subseteq (I : _L a \wedge x)$. If $a \wedge x \in \sqrt{I}$, then $a \in (\sqrt{I} : _L x)$. If $a \wedge x \notin \sqrt{I}$, then $(I : _L a \wedge x) \subseteq (I : _L a)$ or $(I : _L a \wedge x) \subseteq (\sqrt{I} : _L x)$, by (2). Therefore $I_1 \subseteq (I : _L a)$ or $I_1 \subseteq (\sqrt{I} : _L x)$. If $I_1 \subseteq (\sqrt{I} : _L x)$, then $x \wedge I_1 \subseteq \sqrt{I}$ which is a contradiction to our hypothesis. Therefore the only possibility is that $I_1 \subseteq (I : _L a)$. Then $a \in (I : _L I_1)$. Hence $(I : _L x \wedge I_1) \subseteq (I : _L I_1) \cup (\sqrt{I} : _L x)$. We conclude that $(I : _L x \wedge I_1) \subseteq (I : _L I_1)$ or $(I : _L x \wedge I_1) \subseteq (\sqrt{I} : _L x)$.

(3) \Rightarrow (4). Suppose that I_1, I_2 are ideals of L such that $I_1 \cap I_2 \nsubseteq I$. Let $a \in (I :_L I_1 \cap I_2)$. Then $a \wedge I_1 \wedge I_2 \subseteq I$. Thus $I_2 \subseteq (I :_L a \wedge I_1)$. If $a \wedge I_1 \subseteq \sqrt{I}$, then $a \in (\sqrt{I} :_L I_1)$. Hence we assume that $a \wedge I_1 \nsubseteq \sqrt{I}$. Which implies that $(I :_L a \wedge I_1) \subseteq (I :_L I_1)$ or $(I :_L a \wedge I_1) \subseteq (\sqrt{I} :_L a)$. If $(I :_L a \wedge I_1) \subseteq (I :_L I_1)$, then $I_1 \cap I_2 \subseteq I$, which is a contradiction. Thus $(I :_L a \wedge I_1) \subseteq (\sqrt{I} :_L a)$ which implies that $a \in (\sqrt{I} :_L I_2)$. Hence $(I :_L I_1 \cap I_2) \subseteq (\sqrt{I} :_L I_1) \cup (\sqrt{I} :_L I_2)$. Thus $(I :_L I_1 \cap I_2) \subseteq (\sqrt{I} :_L I_1)$ or $(I :_L I_1 \cap I_2) \subseteq (\sqrt{I} :_L I_2)$.

(4) \Rightarrow (5). Suppose that I_1, I_2, I_3 are ideals of L. Let $I_1 \cap I_2 \cap I_3 \subseteq I$ such that $I_1 \cap I_2 \nsubseteq I$. Then we show that either $I_1 \cap I_3 \subseteq \sqrt{I}$ or $I_2 \cap I_3 \subseteq \sqrt{I}$. As $I_1 \cap I_2 \nsubseteq I$, either $(I :_L I_1 \cap I_2) \subseteq (\sqrt{I} :_L I_1)$ or $(I :_L I_1 \cap I_2) \subseteq (\sqrt{I} :_L I_2)$. As $I_1 \cap I_2 \cap I_3 \subseteq I$, $I_3 \subseteq (I :_L I_1 \cap I_2)$. Which implies that either $I_3 \subseteq (\sqrt{I} :_L I_1)$ or $I_3 \subseteq (\sqrt{I} :_L I_2)$. That is either $I_1 \cap I_3 \subseteq \sqrt{I}$ or $I_2 \cap I_3 \subseteq \sqrt{I}$. (5) \Rightarrow (1). It is clear. \Box

The following Theorem is an analogue of Theorem 2.8 from Mostafanasab and Darani [8].

Theorem 4.10. Suppose that P_1 is a weakly primary ideal of L such that $\sqrt{P_1} = I_1$ is a weakly primary ideal of L, and suppose that P_2 is a weakly primary ideal of L such that $\sqrt{P_2} = I_2$ is a weakly prime ideal of L. Then $P_1 \cap P_2$ is a weakly 2-absorbing primary ideal of L.

Proof. Let $P = P_1 \cap P_2$. Thus $\sqrt{P} = \sqrt{P_1 \cap P_2} = \sqrt{P_1} \cap \sqrt{P_2}$. As $\sqrt{P_1} = I_1$ and $\sqrt{P_2} = I_2$, $\sqrt{P} = I_1 \cap I_2$. Suppose that $0 \neq = x \land y \land z \in P$ for some $x, y, z \in L$, $x \land z \notin \sqrt{P}$ and $y \land z \notin \sqrt{P}$. Then $x, y, z \notin \sqrt{P}$. We show that $x \land y \in P$.

As the intersection of two distinct weakly prime ideals is weakly 2-absorbing, we know that $\sqrt{P} = I_1 \cap I_2$ is a weakly 2-absorbing ideal of *L*. Since $0 \neq x \land y \land z \in \sqrt{P}$, $x \land z, y \land z \notin \sqrt{P}$ and as \sqrt{P} is weakly 2-absorbing, we have $x \land y \in \sqrt{P}$.

Now we claim that $x \land y \in P$. Since $0 \neq x \land y \in I_1$, we may assume that $x \in I_1$. Since $x \notin \sqrt{P} = I_1 \cap I_2$ and $0 \neq x \land y \in I_2$, we conclude that $x \notin I_2$ and so $y \in I_2$. If $x \in P_1$ and $y \in P_2$, then $x \land y \in P$ and we are done.

Therefore assume that $x \notin P_1$. Since P_1 is a weakly primary ideal of L and $x \notin P_1$, we have $y \wedge z \in \sqrt{P_1} = I_1$. Since $y \in I_2$ and $y \wedge z \in I_1$, we have $y \wedge z \in \sqrt{P}$, which is a contradiction. Thus $x \in P_1$.

Similarly, assume that $y \notin P_2$. Since P_2 is a weakly primary ideal of L and $y \notin P_2$, we have $x \wedge z \in \sqrt{P_2} = I_2$. Since $x \wedge z \in I_2$ and $x \in I_1$, we have $x \wedge z \in \sqrt{P}$, which is a contradiction. Thus $y \in P_1$. Hence $x \wedge y \in P_1 \cap P_2 = P$.

Thus $P_1 \cap P_2$ is a weakly 2-absorbing ideal of L. \Box

Acknowledgements The authors are thankful to the referee for helpful comments which improved the paper.

References

- [1] D. D. Anderson and E. Smith, Weakly prime ideals, Houston J. Math. 29 (4), 831-840 (2003).
- [2] A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc. 75, 417–429 (2007).
- [3] A. Badawi and A. Y. Darani, On weakly 2-absorbing ideals of commutative rings, *Houston J. Math.* 39 (2), 441–452 (2013).
- [4] A. Badawi, U. Tekir and E. Yetkin, On 2-absorbing primary ideals in commutative rings, Bull. Korean Math. Soc. 51 (4), 1163–1173 (2014).
- [5] A. Badawi, U. Tekir and E. Yetkin, On weakly 2-absorbing primary ideals of commutative rings, J. Korean Math. Soc. 52 (1), 97–111 (2014).
- [6] S. E. Atani and F. Farzalipour, On weakly primary ideals, Georgian Math. J. 12 (3), 423–429 (2005).
- [7] G. Grätzer, *Lattice Theory: First Concepts and Distributive Lattices*, W. H. Freeman and company San Francisco, (1971).
- [8] H. Mostafanasab and A. Y. Darani, Some properties of 2-absorbing and weakly 2-absorbing primary ideals, *Trans. Alg. Appl.* 1 (1), 10–18 (2015).
- [9] M. P. Wasadikar and K. T. Gaikwad, On 2-absorbing and weakly 2-absorbing ideals of lattices, *Math. Sci. Int. Res. J.* 4 (2), 82–85 (2015).
- [10] M. P. Wasadikar and K. T. Gaikwad, Some properties of 2-absorbing primary ideals in lattices, AKCE Int. J. Graphs Comb. 16 (1), 18–26 (2019).
- [11] M. P. Wasadikar and K. T. Gaikwad, Weakly 2-absorbing primary ideals in lattices, *Eurasian Bull. Math.* 2 (1), 21–31 (2019).

Author information

Meenakshi P. Wasadikar and Karuna T. Gaikwad, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, India.

E-mail: wasadikar@yahoo.com,karunagaikwad321@gmail.com