δ -PRIMARY IDEALS IN LATTICES

Shriram K. Nimbhorkar and Jaya Y. Nehete

Communicated by M. R. Pournaki

MSC 2010 Classifications: Primary 06B10.

Keywords and phrases: Ideal, prime ideal, ideal expansions, δ -primary ideal, δ -zero-divisor, δ -nilpotent element, δ -domainlike lattice, weakly δ -primary ideal, δ -twin-zero

Abstract In this paper we define an ideal expansion on a lattice. Also we define a δ -primary ideal and a weakly δ -primary ideal with the help of an ideal expansion and investigate some properties of these ideals. We show that for an expansion function δ , an ideal is δ -primary if and only if that ideal is strongly δ -primary ideal of lattice. Also we define a δ -twin-zero and prove some results based on δ -twin-zero.

1 Introduction

The study of expansions of ideals and δ -primary ideals for commutative rings is carried out by Zaho Dongsheng [4] where δ is a mapping with some additional properties. The aim of this paper is to generalize these results to lattices. In section 2, we introduce the concept of an ideal expansion δ where δ is a mapping that assigns to each ideal I an ideal $\delta(I)$ of the same lattice. We define a δ -primary ideal with respect to such an expansion. In section 3, we investigate ideal expansions satisfying some additional conditions and some properties of δ -primary ideals with respect to homomorphisms. The study of a δ -zero-divisor, a δ -nilpotent element is done by Atani [1]. In this paper we introduce these concepts in a lattice. In section 4, we define a weakly δ -primary ideal with respect to such an expansion. Also we define a δ -twin-zero and prove some results based on δ -twin-zero.

Throughout in this paper L denotes a lattice with a least element 0. It is known that Id(L) the set of all ideals of a lattice L is a lattice under set inclusion see Grätzer [2, p. 22]. The undefined concepts related to lattice theory are from Grätzer [2].

2 Expansions of ideals and δ -primary ideals

The notion of the radical of an ideal I in a lattice, denoted by \sqrt{I} , can be found in Wasadikar and Gaikwad [3], $\sqrt{I} = \bigcap \{P \in Id(L) | P \text{ is a prime ideal}, I \subseteq P \}$.

In this section, we introduce an ideal expansion δ and define a δ -primary ideals with respect to such an expansion.

Definition 2.1. An expansion of ideals, or an ideal expansion, is a function $\delta : Id(L) \to Id(L)$, satisfying $I \subseteq \delta(I)$, and $P \subseteq Q$ implies $\delta(P) \subseteq \delta(Q)$.

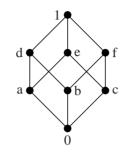
Example 2.2. (i) The identity function $\delta_0 : Id(L) \to Id(L)$, is an expansion of ideals.

- (ii) The function **B** that assigns the biggest ideal *L* to each ideal is an expansion of ideals.
- (iii) For a proper ideal P, the mapping $\mathbf{M}(P) : Id(L) \to Id(L)$, where $\mathbf{M}(P) = \bigcap \{I \in Id(L) | P \subseteq I, I \text{ is a maximal ideal other than } L\}$, and $\mathbf{M}(L) = L$. Then **M** is an expansion of ideals.
- (iv) For each ideal I define $\delta_1(I) = \sqrt{I}$. Then δ_1 is an expansion of ideals.

Definition 2.3. Given an expansion δ of ideals, an ideal I of L is called δ -primary if for all $a, b \in L$, $a \land b \in I$ and $a \notin I$ then $b \in \delta(I)$.

The definition of a δ -primary ideal can be stated as: if $a \wedge b \in I$ and $a \notin \delta(I)$, then $b \in I$ for all $a, b \in L$.

Example 2.4. Consider the lattice shown in Figure 1. From Example 2.2, for the ideal $P = \{0, a, c, e\}$, $\delta_0(P) = P$, $\delta_1(P) = P$, $\mathbf{M}(P) = P$ and $\mathbf{B}(P) = L$. Thus P is a δ_0 -primary, δ_1 -primary, M-primary, B-primary ideal. However the ideal $I = \{0, a\}$, satisfies $\delta_0(I) = I$, $\delta_1(I) = I$, $\mathbf{M}(I) = I$ and $\mathbf{B}(I) = L$, $f \wedge e = a \in I$ and $f \notin I$ but $e \notin \delta_0(I)$, $e \notin \delta_1(I)$, $e \notin \mathbf{M}(I)$. Thus I is not a δ_0 -primary, δ_1 -primary, M-primary ideal but it is a B-primary ideal. Also the ideal $\{0\}$ is not a δ_0 -primary, δ_1 -primary, M-primary ideal but it is a B-primary ideal.



Lattice showing primary ideals Figure 1

In general, the intersection of two δ -primary ideals is not δ -primary. The ideals $N = \{0, a, b, d\}, P = \{0, a, c, e\}$ in Figure 1 are δ -primary but $N \cap P = \{0, a\}$ is not δ -primary.

Lemma 2.5. An ideal I is δ_0 -primary if and only if it is if prime.

Proof. First assume that I is δ_0 -primary then $a \wedge b \in I$ and $a \notin I$ imply $b \in \delta_0(I) = I$. Hence we get $a \wedge b \in I$ implies $a \in I$ or $b \in I$, for all $a, b \in L$. Therefore I is a prime ideal.

Conversely, assume that I is a prime ideal. Let $a \wedge b \in I$ and $a \notin I$ as I is prime we get $b \in I = \delta_0(I)$ thus I is δ_0 - primary. \Box

Lemma 2.6. An ideal I of L is δ_1 -primary if and only if it is primary.

Proof. If I is δ_1 -primary, then $a \wedge b \in I$ and $a \notin I$ imply $b \in \delta_1(I) = \sqrt{I}$. Therefore I is a primary ideal.

Conversely, assume that I is a primary ideal. Let $a \wedge b \in I$ and $a \notin I$. Then as I is primary, we get $b \in \sqrt{I} = \delta_1(I)$. Thus I is δ_1 - primary. \Box

Example 2.7. Every ideal is **B**-primary.

Lemma 2.8. If δ and γ are two ideal expansions and $\delta(I) \subseteq \gamma(I)$ for each ideal I, then every δ -primary ideal is also γ -primary. Thus, in particular, a prime ideal is δ -primary for every ideal expansion δ .

Proof. Let *P* be a δ -primary ideal. Suppose that $a \wedge b \in P$ for some $a, b \in L$ and $a \notin P$. If *P* is δ -primary, then $b \in \delta(P) \subseteq \gamma(P)$. So *P* is γ -primary.

Next, suppose that *P* is a prime ideal then by Lemma 2.5, *P* is δ_0 -primary ideal.

For any ideal expansion δ , $P \subseteq \delta(P)$, so $\delta_0(P) = P \subseteq \delta(P)$. Thus we get $\delta_0(P) \subseteq \delta(P)$ and P is δ_0 -primary. Therefore P is δ -primary. \Box

In the following Lemma we prove that the intersection of two ideal expansions is an ideal expansion. Generally intersection of any collection of ideal expansions is an ideal expansion.

Lemma 2.9. Given two ideal expansions δ_1 and δ_2 , define $\delta(I) = \delta_1(I) \cap \delta_2(I)$. Then δ is also an ideal expansion.

Proof. Let $\delta : Id(L) \to Id(L)$ be a function, defined by $\delta(I) = \delta_1(I) \cap \delta_2(I)$. As δ_1 and δ_2 are expansions of ideals, we get $I \subseteq \delta_1(I) \cap \delta_2(I)$ and if $P \subseteq Q$ then $\delta_1(P) \cap \delta_2(P) \subseteq \delta_1(Q) \cap \delta_2(Q)$ which implies $\delta(P) \subseteq \delta(Q)$. Thus δ is an ideal expansion. \Box **Remark 2.10.** Let δ be an ideal expansion.

Define $E_{\delta}(P) = \bigcap \{J \in Id(L) | P \subseteq J, J \text{ is a } \delta - \text{primary ideal} \}$. Then E_{δ} is an ideal expansion. For example, $E_{\delta_0} = \delta_1$, $E_{\mathbf{M}} = \mathbf{M}$ and $E_{\delta_1} = \delta_1$.

Proposition 2.11. Let $\{J_i | i \in D\}$ be a directed collections of δ -primary ideals of L, then $J = \bigcup_{i \in D} J_i$ is δ -primary.

Proof. Let $a \wedge b \in J$ and $a \notin J$, then there exists an ideal J_i with $a \wedge b \in J_i$ and $a \notin J_i$, as $J_i \delta$ -primary, we get $b \in \delta(J_i)$, and also we have $\delta(J_i) \subseteq \delta(J)$ which implies $b \in \delta(J)$. Hence J is δ -primary. \Box

Definition 2.12. Let δ be an expansion of ideal. A proper ideal P of L is called strongly δ -primary if $I \wedge J \subseteq P$ and $I \not\subseteq P$ then $J \subseteq \delta(P)$. whenever $I, J \in Id(L)$.

The definition of strongly δ -primary ideals can be also stated as: if $I \wedge J \subseteq P$ and $I \nsubseteq \delta(P)$, then $J \subseteq P$.

In the following result, we show that an ideal P is δ -primary if and only if P is strongly δ -primary ideal of L.

Lemma 2.13. An ideal P is δ -primary if and only if P is a strongly δ -primary ideal of L.

Proof. Let *P* be a δ -primary ideal. Suppose that $I \wedge J \subseteq P$ and $I \nsubseteq P$, now suppose on contrary $J \nsubseteq \delta(P)$ then we can choose $a \in I - P$ and $b \in J - \delta(P)$, then we get $a \wedge b \in I \wedge J \subseteq P$ but $a \notin P$ and $b \notin \delta(P)$, which contradicts *P* is δ -primary. Thus $J \subseteq \delta(P)$. Hence *P* is a strongly δ -primary ideal of *L*.

Conversely, suppose that P is a strongly δ -primary ideal of L, for any two elements a and b. Suppose $a \wedge b \in P$ and $a \notin P$. Then $(a] \wedge (b] \subseteq P$ and $(a] \notin P$ which implies $(b] \subseteq \delta(P)$. Hence $b \in (b] \subseteq \delta(P)$ implies $b \in \delta(P)$. Thus P is a δ -primary ideal of L. \Box

Definition 2.14. Let *P* and *Q* be ideals of a lattice *L*, the residual division of *P* by *Q* is defined to be the ideal $P : Q = \{x \in L | x \land y \in P \text{ for all } y \in Q\}.$

Theorem 2.15. Let δ be an ideal expansion. Then

(1) if P is a δ -primary ideal and I is an ideal with $I \not\subseteq \delta(P)$, then (P : I) = P; (2) for any δ -primary ideal P and non-empty subset N of L, P : N is also a δ -primary ideal.

Proof. (1) Clearly $P \subseteq P : I$. By the definition of P : I, we have $I \land (P : I) \subseteq P$, since $I \nsubseteq \delta(P)$, we get $(P : I) \subseteq P$. Therefore (P : I) = P.

(2) Let $a \land b \in P$: N and $a \notin P$: N then there is $n \in N$ such that $a \land n \notin P$, but $a \land n \land b = a \land b \land n \in P$ implies $(a \land n) \land b = (a \land b) \land n \in P$ and $a \land n \notin P$ and P is δ -primary then we get $b \in \delta(P) \subseteq \delta(P : N)$ implies $b \in \delta(P : N)$. Thus P : N is a δ -primary ideal. \Box

3 Expansions with extra properties

In this section we investigate δ -primary ideals where δ satisfies additional conditions and prove more results with respect to such expansions.

Definition 3.1. An ideal expansion δ is intersection preserving if it satisfies $\delta(I \cap J) = \delta(I) \cap \delta(J)$ for any $I, J \in Id(L)$.

Definition 3.2. An expansion is said to be global if for any lattice homomorphism $f : L \to K$, $\delta(f^{-1}(I)) = f^{-1}(\delta(I))$ for all $I \in Id(K)$.

The expansions δ_0 and **B** are both intersection preserving and global. The following lemma shows that if L is a distributive lattice then, the expansion **M** has the intersection preserving property. **Lemma 3.3.** Let *L* be a distributive lattice. For each ideal *I*, let $\mathbf{M}(I) = \bigcap \{H \in Id(L) | I \subseteq H, H \text{ is a maximal ideal } \}$. Then $\mathbf{M}(I \cap J) = \mathbf{M}(I) \cap \mathbf{M}(J)$ holds for any two ideals *I* and *J*.

Proof. Let $\Re_1 = \{H | I \cap J \subseteq H, H \text{ is a maximal ideal }\}, \\ \Re_2 = \{H | I \subseteq H \text{ or } J \subseteq H, H \text{ is a maximal ideal }\}.$ Then $\cap \Re_1 = \mathbf{M}(I \cap J)$ and $\cap \Re_2 = \mathbf{M}(I) \cap \mathbf{M}(J)$. Let $H \in \Re_1$ then $I \cap J \subseteq H$, and H is a maximal ideal s

Let $H \in \Re_1$ then $I \cap J \subseteq H$, and H is a maximal ideal so it is prime. Hence $I \subseteq H$ or $J \subseteq H$ implies $H \in \Re_2$. Thus $\Re_1 \subseteq \Re_2$.

Let $H \in \Re_2$ then $I \subseteq H$ or $J \subseteq H$ and H is maximal ideal, so we have $I \cap J \subseteq I \subseteq H$ or $I \cap J \subseteq J \subseteq H$ which implies $I \cap J \subseteq H$ implies $H \in \Re_1$ thus we get $\Re_2 \subseteq \Re_1$. Therefore $\Re_1 = \Re_2$, so $\mathbf{M}(I \cap J) = \mathbf{M}(I) \cap \mathbf{M}(J)$. \Box

Lemma 3.4. Let δ be an intersection preserving ideal expansion. If Q_1, Q_2, \ldots, Q_n are δ -primary ideals of L, and $P = \delta(Q_i)$ for all i, then $Q = \bigcap_{i=1}^n Q_i$ is δ -primary.

Proof. Let $x \wedge y \in Q$ and $x \notin Q$. Then, for some $i = k, x \notin Q_k$. But $x \wedge y \in Q \subseteq Q_k$, so we get $y \in \delta(Q_k)$ but $\delta(Q) = \delta(\bigcap_{i=1}^n Q_i) = \bigcap_{i=1}^n (\delta(Q_i)) = P = \delta(Q_k)$. Thus $y \in \delta(Q)$, so Q is δ -primary. \Box

In the following lemma, we prove that the inverse image of a δ -primary ideal of L under a homomorphism is again a δ -primary ideal.

Lemma 3.5. If δ is global and $f : L \to K$ is a lattice homomorphism, then for any δ -primary ideal I of K, $f^{-1}(I)$ is a δ -primary ideal of L.

Proof. Let $a, b \in L$ with $a \wedge b \in f^{-1}(I)$ and $a \notin f^{-1}(I)$. Then $f(a) \wedge (b) \in I$ and $f(a) \notin I$ but I is δ -primary then we get $f(b) \in \delta(I)$, so $b \in f^{-1}(\delta(I)) = \delta(f^{-1}(I))$. Hence $f^{-1}(I)$ is δ -primary. \Box

Next result gives a characterization for a δ -primary ideal.

Lemma 3.6. Let $f : L \to K$ be a surjective lattice homomorphism. Let I be an ideal of L such that $ker(f) \subseteq I$. Then I is a δ -primary ideal if and only if f(I) is a δ -primary ideal of K.

Proof. First suppose that f(I) is a δ -primary and I contains ker(f) we have $f^{-1}(f(I)) = I$. Then by Lemma 3.5, I is δ -primary.

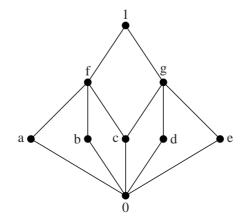
Conversely, suppose that I is δ -primary. If $a, b \in k$ and $a \wedge b \in f(I)$ and $a \notin f(I)$, then there exist $x, y \in L$ such that f(x) = a and f(y) = b, then $f(x \wedge y) = f(x) \wedge f(y) = a \wedge b \in f(I)$ implies $x \wedge y \in f^{-1}(f(I)) = I$ and $f(x) = a \notin f(I)$ implies $x \notin I$, so $y \in \delta(I)$ and hence $b = f(y) \in f(\delta(I))$. Now $\delta(I) = \delta(f^{-1}(f(I))) = f^{-1}(\delta(f(I)))$ which implies $f(\delta(I)) = \delta(f(I))$. Thus f(I) is δ -primary. \Box

Definition 3.7. An element of a lattice *L* is called δ -nilpotent if $a \in \delta(\{0\})$.

The set of all δ -nilpotent elements of L is denoted by $nil_{\delta}(L)$.

Definition 3.8. Let *L* be a lattice with an ideal expansion δ . An element $x \in L$ is called δ -zerodivisor if there exists $y \in L$ with $y \notin \delta(\{0\})$ such that $x \wedge y \in \delta(\{0\})$.

The set of all δ -zero-divisors elements of L is denoted by $Z_{\delta}(L)$.



Lattice showing showing sets of nilpotent elements Figure 2

Example 3.9. In the lattice *L* shown in Figure 2, for ideal expansion δ_0 in Example 2.2, $\delta_0(\{0\}) = \{0\}$, set of all nilpotent element of *L* with ideal expansion δ_0 is $nil_{\delta_0}(L) = \{0\}$, and set of all δ_0 -zero-divisors of *L* is $Z_{\delta_0}(L) = \{0, a, b, c, d, e, f, g\}$.

For ideal expansion M in Example 2.2, $\mathbf{M}(\{0\}) = \{0, c\}$, the set of all nilpotent element of L with ideal expansion M is $nil_{\mathbf{M}} = \{0, c\}$ and set of all M-zero-divisors of L is $Z_{\mathbf{M}}(L) = \{0, a, b, c, d, e, f, g\}$.

Next, for ideal expansion δ_1 in Example 2.2 see Figure 4, $\delta_1(\{0\}) = \{0\}$, $nil_{\delta_1}(L) = \{0\}$, and set of all δ_1 -zero-divisors of L is $Z_{\delta_1}(L) = \{0, a, b, c, d, e, f, g\}$.

Proposition 3.10. Let δ be an ideal expansion such that $\delta(\{0\}) \neq L$. Then the following hold: (i) $nil_{\delta}(L)$ is an ideal of L with $nil_{\delta}(L) \subseteq Z_{\delta}(L)$. (ii) If $Z_{\delta}(L)$ is an ideal of L, then $Z_{\delta}(L)$ is δ -primary.

Proof. (i) Let $x, y \in nil_{\delta}(L)$ and $r \in L$ then $x, y \in \delta(\{0\})$, so $x \lor y \in \delta(\{0\})$ and $x \land r \in \delta(\{0\})$, since $\delta(\{0\})$ is an ideal of L. Hence $x \lor y \in nil_{\delta}(L)$ and $x \land y \in nil_{\delta}(L)$. Thus $nil_{\delta}(L)$ is an ideal of L.

Let $x \in nil_{\delta}(L)$. Since $x = x \land 1 \in \delta(\{0\})$ and $1 \notin \delta(\{0\})$. Thus we have $x \in nil_{\delta}(L)$. Therefore $nil_{\delta}(L) \subseteq Z_{\delta}(L)$.

(ii) Let $x, y \in L$ be such that $x \wedge y \in Z_{\delta}(L)$. Then there exists $z \in L$ such that $z \notin \delta(\{0\})$ and $x \wedge y \wedge z \in \delta(\{0\})$. Therefore if $y \wedge z \in \delta(\{0\})$, then $y \in Z_{\delta}(L)$ and if $y \wedge z \notin \delta(\{0\})$ then $x \in Z_{\delta}(L)$. Thus $Z_{\delta}(L)$ is a δ -primary ideal of L. \Box

Definition 3.11. A lattice L with an ideal expansion δ is called a δ -domainlike lattice if $Z_{\delta}(L) \subseteq nil_{\delta}(L)$.

Example 3.12. In the lattice *L* shown in Figure 3, $\delta_0(\{0\}) = \{0\}$, the set of all nilpotent element of *L* with ideal expansion δ_0 is $nil_{\delta_0}(L) = \{0\}$, and set of all δ_0 -zero-divisors of *L* with ideal expansion δ_0 is $Z_{\delta_0}(L) = \{0, a\}$. $Z_{\delta_0}(L) \not\subseteq nil_{\delta_0}(L)$. Thus *L* is not δ_0 -domainlike lattice.

Lattice which is not δ_0 like domain Figure 3

Next, $\mathbf{M}(\{0\}) = \{0, a, b\}$. The set of all nilpotent element of L with ideal expansion \mathbf{M} is $nil_{\mathbf{M}} = \{0, a, b\}$ and set of all \mathbf{M} -zero-divisors of L with ideal expansion \mathbf{M} is $Z_{\mathbf{M}}(L) = \{0\}$. Thus $Z_{\mathbf{M}}(L) \subseteq nil_{\mathbf{M}}$. Also $\delta_1(\{0\}) = \{0, a\}$, the set of all nilpotent element of L with ideal expansion δ_1 is $nil_{\delta_1}(L) = \{0, a\}$, and set of all δ_1 -zero-divisors of L with ideal expansion δ_1 is $Z_{\delta_1}(L) = \{0, a\}$, and set of all δ_1 -zero-divisors of L with ideal expansion δ_1 is $Z_{\delta_1}(L) \subseteq nil_{\delta_1}(L)$. Hence L is a \mathbf{M} -domainlike lattice and δ_1 -domainlike lattice.

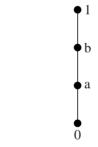
Theorem 3.13. A lattice *L* with an ideal expansion δ such that $\delta(\delta(I)) = \delta(I)$, for every ideal *I* of *L*. Then the following hold:

(1) $\delta(\{0\})$ is a δ -primary ideal of L if and only if $Z_{\delta}(L) = nil_{\delta}(L)$. In particular, if $\delta(\{0\})$ is a δ -primary then $Z_{\delta}(L)$ is a δ -primary ideal of L.

(2) $\delta(\{0\})$ is δ -primary if and only if *L* is δ -domainlike lattice.

(3) If L is δ -domainlike lattice then $Z_{\delta}(L)$ is the unique minimal δ -primary ideal of L.

Proof. (1) $\delta(\{0\})$ is a δ -primary ideal of L. Let $x \in Z_{\delta}(L)$ then there is some $y \notin \delta(\{0\})$ such that $x \land y \in \delta(\{0\})$. Since $\delta(\{0\})$ is δ -primary then



 $x \in \delta(\delta(\{0\})) = \delta(\{0\})$. Thus $Z_{\delta}(L) \subseteq nil_{\delta}(L)$. By Proposition 3.10, we have equality. Conversely, let $a, b \in L$ be such that $a \wedge b \in \delta(\{0\})$ but $b \notin \delta(\{0\})$ then $a \in Z_{\delta}(L) = nil_{\delta}(L)$, so $a \in \delta(\delta(\{0\})) = \delta(\{0\})$ and hence $\delta(\{0\})$ is a δ -primary. (2) Follows from (1). (3) To prove (3), as $Z_{\delta}(L) = nil_{\delta}(L)$ by (1). We have that $Z_{\delta}(L)$ is δ -primary ideal of L. Since

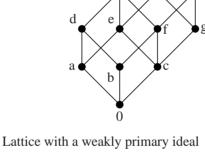
 $\delta(\{0\})$ is δ -primary. Now if J is δ -primary ideal, then $Z_{\delta}(L) = nil_{\delta}(L)$, as required. \Box

4 Weakly δ -primary ideals

Definition 4.1. Given an expansion δ of ideals, an ideal *I* of *L* is called weakly δ -primary if for all $a, b \in L$, $0 \neq a \land b \in I$ and $a \notin I$ then $b \in \delta(I)$.

The definition of weakly δ -primary ideals can be also stated as: if $0 \neq a \land b \in I$ and $a \notin \delta(I)$, then $b \in I$ for all $a, b \in L$.

Example 4.2. Consider the lattice shown in Figure 4. From Example 2.2, for the ideal $I = \{0, a, c, e, g, i\}, \delta_0(I) = I, \delta_1(I) = I, \mathbf{M}(I) = I$ and $\mathbf{B}(I) = L$. Thus I is a weakly δ_0 -primary, weakly δ_1 -primary, weakly \mathbf{M} -primary, weakly \mathbf{B} -primary ideal. However the ideal $J = \{0, c\}$, satisfies $\delta_0(J) = J, \delta_1(J) = J, \mathbf{M}(J) = J$ and $\mathbf{B}(J) = L, e \land g = c \in J$ and $g \notin J$ but $e \notin \delta_0(J), e \notin \delta_1(J), e \notin \mathbf{M}(J)$. Thus J is not a weakly δ_0 -primary, weakly δ_1 -primary, weakly \mathbf{M} -primary ideal but it is a weakly \mathbf{B} -primary ideal.



h

Figure 4

Lemma 4.3. Every δ -primary ideal of *L* is a weakly δ -primary ideal of *L*.

Proof. Suppose that *I* is δ -primary ideal of *L*. Let for $a, b \in L$, $0 \neq a \land b \in I$ and $a \notin I$. As *I* is δ -primary ideal of *L*, then we have $b \in \delta(I)$. Thus *I* is a weakly δ -primary ideal of *L*. \Box

The following example shows that the converse of Lemma 4.3 does not hold.

Example 4.4. Consider the lattice shown in Figure 4. Here for the ideal $\{0\}$, $\delta_0(\{0\}) = \{0\}$, $\delta_1(\{0\}) = \{0, c\}$. $\{0\}$ is a weakly δ_0 -primary, weakly δ_1 -primary, weakly M-primary ideal but it is not a δ_0 -primary, δ_1 -primary, M-primary ideal, as $a \wedge f = 0 \in \{0\}$ and $a \notin \{0\}$ but $f \notin \delta_0(\{0\}), f \notin \delta_1(\{0\}), f \notin M(\{0\})$.

Theorem 4.5. Let *L* be a lattice. If *I* is a weakly δ -primary ideal of *L* then either (I : x) = I or $(I : x) = (\{0\} : x)$ for every $x \notin \delta(I)$.

Proof. Let $y \in (I : x)$ for some $x \notin \delta(I)$. Then $x \land y \in I$. If $x \land y = 0$, then $y \in (\{0\} : x)$. If $x \land y \neq 0, x \notin \delta(I)$, then $y \in I$, as I is a weakly δ -primary ideal of L. Thus $(I : x) \subseteq I \cup (\{0\} : x)$. Now let $y \in I \cup (\{0\} : x)$. If $y \in I$, then $x \land y \in x \land I \subseteq I$, So we get $x \land y \in I$ implies that $y \in (I : x)$. If $y \in (\{0\} : x)$ then $x \land y = 0$, which is contradiction to I is a weakly δ -primary ideal of L. Thus $I \cup (\{0\} : x) \subseteq (I : x)$. So we get $(I : x) = I \cup (\{0\} : x)$ is an ideal of L, so we conclude that either (I : x) = I or $(I : x) = (\{0\} : x)$ for every $x \notin \delta(I)$. \Box

Definition 4.6. Let *I* be a weakly δ -primary ideal of *L*. We say that (a, b) is a δ -twin-zero of *I*, if $a \wedge b = 0$, $a \notin I$ and $b \notin \delta(I)$.

Remark 4.7. If *I* is a weakly δ -primary ideal of *L* that is not δ -primary ideal of *L*, then *I* has a δ -twin-zero of (a, b), for some $a, b \in L$.

Theorem 4.8. Let I be a weakly δ -primary ideal of a distributive lattice L. Suppose that (a, b) is a δ -twin-zero of I, for some $a, b \in L$. Then $a \wedge I = b \wedge I = 0$, where $x \wedge I = \{x \wedge y | y \in I\}$.

Proof. Suppose that $a \wedge I \neq 0$ then there exist an element $i \in I$ such that $a \wedge i \neq 0$. $(a \wedge b) \lor (a \wedge i) \neq 0$ implies that $a \land (b \lor i) \neq 0$ and $0 \neq a \land (b \lor i) \in I$ and $a \notin I$, as I is a weakly δ -primary ideal of L, we conclude that $b \lor i \in \delta(I)$ which implies that $b \in \delta(I)$, which is a contradiction to (a, b) is a δ -twin-zero of I. Thus $a \land I = 0$. Similarly, we show that $a \land I = 0$. \Box

Theorem 4.9. Let *L* be a distributive lattice. Let *I* be a weakly δ -primary ideal of *L*. If *I* is not δ -primary ideal of *L*, then $I^2 = 0$, where $I^2 = \{a \land b : a \neq b; a, b \in I\}$.

Proof. Let *I* be a weakly δ -primary ideal of *L* that is not δ -primary ideal of *L*. Then *I* has a δ -twin-zero (a, b), for some $a, b \in L$. Suppose that $i_1 \wedge i_2 \neq 0$, for some $i_1, i_2 \in I$. Consider $(a \lor i_1) \land (b \lor i_2) = (a \land b) \lor (a \land i_2) \lor (b \land i_1) \lor (i_1 \land i_2) = i_1 \land i_2 \neq 0$, since (a, b) is δ -twin-zero and by Theorem 4.8. Thus $(a \lor i_1) \land (b \lor i_2) = i_1 \land i_2 \in I$ and *I* be a weakly δ -primary ideal of *L* and $a \lor i_1 \notin I$, as $a \notin I$ and $i_1 \in I$. Thus we get $b \lor i_2 \in \delta(I)$ implies that $b \in \delta(I)$, which is a contradiction to (a, b) is a δ -twin-zero of *I*. Thus $I^2 = 0$. \Box

Theorem 4.10. Let L be a distributive lattice. Let I be a weakly δ -primary ideal of L and suppose that (a,b) is a δ -twin-zero of I, for some $a, b \in L$. If $a \wedge r \in I$ for some $r \in L$ then $a \wedge r = 0$.

Proof. Suppose that $0 \neq a \land r \in I$ for some $r \in L$. If $(a \land b) \lor (a \land r) \neq 0$, then $0 \neq [a \land (b \lor r)] \in I$. As $a \notin I$ and I be a weakly δ -primary ideal of L, we get $b \lor r \in \delta(I)$. Hence $b \in \delta(I)$, which is a contradiction to (a, b) is a δ -twin-zero of I. Thus $a \land r = 0$. \Box

Acknowledgement The authors are thankful to the referee for helpful comments, which improved the presentation.

References

- [1] Atani S. Ebrahimi, Sarvandi Z. Ebrahimi and Kohan M. Shajari, On δ -primary ideals of commutative semirings, *Romanian J. Math. and Comp. Sci.*, **3**(1), 71–81 (2013).
- [2] G. Grätzer, Lattice theory: first concepts and distributive lattices, W. H. Freeman and Co. San Francisco, (1971).
- [3] M. P. Wasadikar and K. T. Gaikwad, Some properties of 2- absorbing primary ideals in a lattice, AKCE Int. J. Graphs Comb. 16 (1), 18–26 (2019).
- [4] Zhao Dongsheng, δ -primary ideals of commutative rings, Kyungpook Math. J.,41, 17–22 (2001).

Author information

Shriram K. Nimbhorkar and Jaya Y. Nehete , Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, India. E-mail: sknimbhorkar@gmail.com and jaya.nehete88@gmail.com