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Abstract In this paper, we introduce a simple graph on a finite poset P with the least element
0. Two elements a, b,∈ P are adjacent if and only if the set of nonzero lower bounds of a, b in
P is nonempty and contains atoms only. We call this graph as the atom based graph of P and
denote it by Γa(P ). We obtain some properties of Γa(P ). We give a necessary and sufficient
condition for Γa(P ) to be connected, We also give a characterization for a complete bipartite
graph to be a Γa(P ). We prove characterization for Γa(P ) to be triangle free.

1 Introduction

In 1988, Beck [1] developed the notion of the zero-divisor graph of a commutative ring with
identity. Since then, a number of researchers have studied zero-divisor graphs associated to
rings and other algebraic structures. In 2007 Nimbhorkar et. al. [8] have studied graphs derived
from a meet-semilattice with 0. This was generalized in 2009 by Halaš and Jukl [3] for a poset
with 0.

We begin with the some concepts and terminology. Let P be a nonempty set. A binary
relation ≤ on P is called a partial order if ≤ is reflexive, antisymmetric and transitive. Then
(P,≤) is called a partially ordered set or a poset. Let (P,≤) be a poset and a, b ∈ P . If neither
a ≤ b nor b ≤ a hold. Then we say that a and b are incomparable. We write this as a ‖ b. Let
(P,≤) be a poset and let S ⊆ P . The set Sl = {x ∈ P | x ≤ s for every s ∈ S} is called the
lower cone of S. If S = {a, b}, then we write (a, b)l for Sl and if S = {a}, then we denote Sl by
al. Similarly Su = {x ∈ P | x ≥ s for every s ∈ S} is called the upper cone of S. If S = {a, b},
then we write (a, b)u for Su and if S = {a}, then we denote Su by au. A nonempty subset I of
a poset P is called an ideal if a, b ∈ I implies (a, b)ul ⊆ I .

The study of the zero-divisor graph of a poset can be found in the work of many researchers,
e.g., Nimbhorkar and Wasdikar [7], Lu and Wu [6] and Xue and Liu [9]. In [7] Nimbhorkar and
Wasdikar, have associated a graph with a poset P not necessarily with 0 (the smallest element),
whose vertex set consists of those elements x ∈ P , for which, there is some y ∈ P with the
property (x, y)lu = P and two vertices are adjacent if and only if (x, y)lu = P . Halaš and Julk
[3] defined the zero divisor graph of a poset with 0, denoted by G(P ), with vertex set P and
x, y ∈ P are adjacent if and only if (x, y)l = {0}.

Joshi [5] defined the zero divisor graph of a poset P with respect to an ideal I , denoted by
GI(P ), as follows: The set of vertices of GI(P ) is V (GI(P )) = {x ∈ P\I|(x, y)l ⊆ I for some
y ∈ P\I} and two distinct vertices x, y are adjacent if and only if (x, y)l ⊆ I . If I = {0},
then the zero divisor graph is denoted by G{0}(P ). Thus the Ideal based zero divisor graph with
respect to the ideal (0] is the zero divisor graph of the poset.

In this paper we introduce a simple graph on a finite poset P with 0, called as the atom based
graph of P and denote it by Γa(P ).

The undefined terms related to graph theory are from West [10]. All the graphs are assumed
to be simple and finite. Throughout in this paper P denotes a finite poset with 0 as a consequence
P contains an atom. For two elements a, b ∈ P , a < b, we write a ≺ b if there is no x ∈ P such
that a < x < b.
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2 Some results of Γa(P )

We denote the set of all atoms in P by Ω(P ). We define the atom based graph of P , denoted by
Γa(P ) as follows.

Definition 2.1. Let P be a finite poset with 0. We associate a simple graph with P , where the
vertex set is P \ {0} and two distinct elements x, y ∈ P are adjacent if and only if the set of
nonzero lower bounds of x, y in P is nonempty and contains atoms only. i.e. xl ∩ yl \ {0} 6= ∅
and xl∩yl \{0} ⊆ Ω(P ). We denote this graph by Γa(P ) and call it the atom based graph on P .

If a, b ∈ P are adjacent, then we write a↔ b and if a, b ∈ P are nonadjacent, then we denote
it by a= b.

The following example shows that Γa(P ) is different from the zero divisor graph G(P ), de-
fined by Halǎs [3] and from the zero divisor graph G{0}(P ) defined by Joshi [5].

Example 2.2.

Poset P whose Γa(P ) is different from G(P ) and G{0}(P ).
Figure 1

We note the following:

(i) If a, b ∈ Ω(P ), then a= b in Γa(P ).

(ii) If a ∈ Ω(P ), then for any x ∈ au = {x | x ∈ P and a ≤ x},
a↔ x and a= y for y /∈ au.

(iii) For every a ∈ Ω(P ), deg(a) = |au| − 1 in Γa(P ).

(iv) Two vertices a, b are adjacent in G(P ) (Zero divisor graph considered by Halaš et. al.) or
G{0}(P ) implies a, b are nonadjacent in Γa(P ).

(v) Let P , P1 be posets with 0. If P ∼= P1, then Γa(P ) ∼= Γa(P1). The following example
shows that the converse need not hold.

Example 2.3.

Nonisomorphic posets may have the same atom based graph.
Figure 2

Now we discuss the connectedness of Γa(P ).

Lemma 2.4. Suppose that |Ω(P )| = 1. Then Γa(P ) is connected and diam(Γa(P )) ≤ 2.
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Proof. Let x be the only atom in P . If y ∈ P , y 6= x, then y ∈ xu. Hence x↔ y in Γa(P ). Thus
d(x, y) = 1.

Let y, z ∈ P , (y 6= x, z 6= x). If y = z, then y ↔ x ↔ z which implies that d(y, z) = 2.
Hence diam(Γa(P )) ≤ 2. 2
The following corollary follows from Lemma 2.4.

Corollary 2.5. If a disconnected graph is realizable as Γa(P ) for some P , then |Ω(P )| 6= 1.

Remark 2.6. The Example 2.3 shows that the condition a ≺ x is necessary. The poset Q shown
in Example 2.3 contains only one atom. As a= d, also a= c. Γa(Q) is not a complete graph.

Remark 2.7. In Lemma 2.4 we have noted that if |Ω(P )| = 1, then Γa(P ) is connected and its
diameter is at most 2. However, there exist posets with |Ω(P )| > 1 whose atom based graph
may be connected or may be disconnected.

A poset, whose Γa(P ) is disconnected.
Figure 3

A poset, whose Γa(P ) is connected.
Figure 4

In the following theorem we give a characterization for the connectedness of Γa(P ).

Theorem 2.8. Γa(P ) is connected if and only if either (i) (a, b)u 6= ∅ for all a, b ∈ Ω(P ) or (ii)
if (a, b)u = ∅ for some a, b ∈ Ω(P ), then there exist p1, p2, · · · , pn ∈ Ω(P ) such that, (without
loss of generality) (a, p1)u 6= ∅, (pi, pj)u 6= ∅ (for i 6= j) and (b, pn)u 6= ∅.
Proof. Suppose that Γa(P ) is connected. If (a, b)u 6= ∅ for all a, b ∈ Ω(P ), then nothing to
prove.

Suppose that (a, b)u = ∅ for some a, b ∈ Ω(P ). Since Γa(P ) is connected, there exists a
path from a to b. Since a, b ∈ Ω(P ), a ↔ b is not possible. Let a ↔ x1 ↔ x2 ↔ x3 ↔ · · · ↔
xn−1 ↔ xn ↔ b be a path from a to b. Therefore xi ∧ xi+1 = ci, for some ci ∈ Ω(P ). Clearly,
x1 ∈ (a, c1)u, x2 ∈ (c1, c2)u, x3 ∈ (c2, c3)u, · · · , xn ∈ (cn, b)u. Thus the claim.

Conversely, assume that either (i) (a, b)u = ∅ for all a, b ∈ Ω(P ) or (ii) if (a, b)u = ∅ for
some a, b ∈ Ω(P ), then there exist p1, p2, · · · , pn ∈ Ω(P ) such that (a, p1)u 6= ∅, (pi, pj)u 6= ∅
(for i 6= j)and (b, pn)u 6= ∅.

To prove Γa(P ) is connected. Let x, y ∈ Γa(P ). Since P is finite, there exist p, q ∈ Ω(P )
such that p ≤ x, q ≤ y. Then p↔ x, q ↔ y.

To show there is a path from x to y, it is enough to show that there is a path between p and q.
Suppose that (a, b)u 6= ∅ for all a, b ∈ Ω(P ). Then there exists t ∈ (p, q)u. In this case

x↔ p↔ t↔ q ↔ y and we are through.
Now assume that (p, q)u = ∅. By assumption there exist p1, p2, · · · , pn ∈ Ω(P ) such that

(p2, pj)u 6= ∅, (p, p1)u 6= ∅ and (q, pn)u 6= ∅.
Let t1 ∈ (p, p1)u, t2 ∈ (p1, p2)u, · · · , tn ∈ (pn−1, pn)u and tn+1 ∈ (q, pn)u. Thus we have a path
x ↔ p ↔ t1 ↔ p1 ↔ t2 ↔ p2 ↔ · · · ↔ pn−1 ↔ tn ↔ pn ↔ tn+1 ↔ q ↔ y. Thus Γa(P ) is
connected. 2
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Definition 2.9. For x ∈ P , the atom based annihilator of x, denoted by AnnΩ(x), is defined as
AnnΩ(x) = {y |xl ∩ yl \ {0}(6= ∅) ⊆ Ω(P )}.

In the following lemma, we identify a situation where in diam(Γa(P )) ≤ 4.

Lemma 2.10. If for some z ∈ P , Ω(P ) ⊆ AnnΩ(z). Then Γa(P ) is a connected graph and
diam(Γa(P )) ≤ 4.

Proof. Suppose that for some z ∈ P , Ω(P ) ⊆ AnnΩ(z). Let d(x, y) > 4 for some x, y ∈ P .
Assume that x↔ a↔ b↔ c↔ d↔ y in Γa(P ).
Now x ↔ a implies that either (1) x or a is an atom or (2) x, a /∈ Ω(P ). Also d ↔ y implies
that either (1) d or y is an atom or (2) d, y /∈ Ω(P ). Without loss of generality, we assume that
there exist two atoms say p1, p2 ∈ P with x ∈ pu1 and y ∈ pu2 . As Ω(P ) ⊆ AnnΩ(z) implies that
z ∈ pu1 ∩ pu2 . This implies that x ↔ p1 ↔ z ↔ p2 ↔ y, a contradiction. Therefore, d(x, y) = 4.
Thus Γa(P ) is always connected and diam(Γa(P )) ≤ 4. 2

Lemma 2.11. If P contains a unique atom, then Γa(P ) is a complete graph. The converse holds
if each x ∈ P x 6= a satisfies a ≺ x.

Proof. Let P , be a poset with a unique atom, say a. Let x, y ∈ P ,x 6= a, y 6= a. By assumption,
a ≺ x and a ≺ y. Hence the set of nonzero lower bounds of x and y in P contains a. This
implies x↔ y in Γa(P ). By uniqueness of a, a↔ x for every x ∈ P , x 6= a. Hence Γa(P ) is a
complete graph.

Conversely, assume that Γa(P ) is a complete graph. We have already noted that if x, y ∈
Ω(P ) then x = y in Γa(P ) hence |Ω(P )| = 1. Moreover, if a ∈ Ω(P ), then for all x ∈ P ,
x ∈ au. If for some y ∈ au, a ⊀ y then there exists z ∈ P such that a < z < y, this implies that
a ↔ z, a ↔ y but y = z in Γa(P ), a contradiction to the completeness of Γa(P ). Hence a ≺ x
for every x ∈ P , x /∈ Ω(P ). 2

Now we define the linear sum of two posets as follows,

Definition 2.12. Let P1 and P2 be finite posets with 0. The linear sum of P1 and P2, denoted by
P1 ⊕ P2, is obtained by placing the diagram of P1 directly below the diagram of P2 and adding
line segments from all the maximal elements of P1 to the zero element of P2.

We note that: (1) P1 ⊕ P2 is a poset with 0. (2) Ω(P ) = Ω(P1).

Example 2.13.

Linear sum of two Posets
Figure 5
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Atom based graphs of P1, P2 and P1 ⊕ P2 and P2 ⊕ P1.
Figure 6

From the above examples, we note that Γa(P1 ⊕ P2) is a complete bipartite graph whereas
Γa(P2 ⊕ P1) is a bipartite graph.

Moreover, Γa(P1 ⊕ P2) is a complete bipartite graph with six 4-cycles namely,
(1) a′ ↔ 0↔ b′ ↔ c↔ a′ (2) a′ ↔ 0↔ b′ ↔ b↔ a′

(3) a′ ↔ 0↔ b′ ↔ a↔ a′ (4) a′ ↔ a↔ b′ ↔ c↔ a′

(5) a′ ↔ b↔ b′ ↔ c↔ a′ (6) a′ ↔ a↔ b′ ↔ b↔ a′

which are formed by 2 atoms a′, b′ and 4 nonatoms a, b, c, 0 of P1 ⊕ P2 in (4
2)(

2
2) ways as shown

in above cycles. We use this in the following characterization for a complete bipartite graph.

Theorem 2.14. The complete bipartite graph Km,n is a Γa(P ) for some finite poset P with 0 if
and only if P = Q1 ⊕Q2, where |Q1| = m+ 1 and Q1 is a finite poset with m atoms and Q2 is
a finite poset with 0 and |Q2| = n. Moreover, Γa(P ) contains (m2 )(

n
2) number of 4 cycles.

Proof. Assume that Km,n = Γa(P ), m,n ≥ 2 for some finite poset P with 0. Let P1 and P2
be the two partite sets of Km,n. Since no two atoms are adjacent in Γa(P ) we may assume that
P1 = Ω(P ). Hence the other partite set P2 ⊆ {x|x /∈ Ω(P )}. Since every x /∈ Ω(P ) is adjacent
to some a ∈ Ω(P ) implies x ∈ P2. Therefore {x|x /∈ Ω(P )} ⊆ P2 and so {x|x /∈ Ω(P )} = P2.
Since P2 is a partite set, no two x, y ∈ P2 are adjacent to each other. Now we have for each
x ∈ P2 and for each a ∈ P1, x ↔ a, which implies that x ∈ aui , for every ai ∈ P1, therefore,
x ∈ ∩aui . Let Q1 = 0 ∪Ω(P ), and Q2 = P2.

We claim that P2 is a finite poset containing 0. For instance, if Q2 does not contain 0, then for
x, y ∈ P2, x, y ∈ aui , ai ∈ P1, implies that xl∩yl\{0}(6= ∅) ⊆ Ω(P ). Therefore x↔ y ∈ Γa(P ),
a contradiction, as P2 is partite set. Hence we write P = Q1 ⊕Q2.

Conversely, assume that P is a finite poset and P = Q1 ⊕ Q2, where Q1 and Q2 are finite
posets with 0, |Q2| = n, |Q1| = m+ 1 and |Ω(Q1)| = m.

We note that x ∈ Q2 implies x ∈ aui for every ai ∈ Ω(P ) as x↔ ai. Since no two atoms are
adjacent in Γa(P ), we take Ω(P ) = Ω(Q1) as one partite set say P1 and considering other the
partite set P2 = {x | x /∈ Ω(P )} = Q2.

We claim that x = y if x, y ∈ P1 or x, y ∈ P2. If x ↔ y for some x, y ∈ P then clearly
x, y /∈ P1 as no two atoms can be adjacent. For x, y ∈ P2, xl ∩ yl \ {0} * Ω(P ) hence x = y
therefore P2 = Q2 will be the other partite set.

Hence Γa(P ) is a complete bipartite graph Km,n where m = |Ω(P )| and |Q| = n.
As Γa(P ) is a complete bipartite graph with |P1| = m, |P2| = n, a cycle of length 4 that is

K2,2 can be formed from Km,n in (m2 )(
n
2) many ways. Hence Γa(P ) contains (m2 )(

n
2) number of

4 cycles. 2
Since a star graph is a particular case of a complete bipartite graph, we have the following
theorem.

Definition 2.15. The lattice Mn is defined as a set {a1, ...., an, 0, 1}, with 0 < ai < 1 and ai ‖ aj
for i 6= j.

Theorem 2.16. Γa(P ) is a star graph if and only if either (1) poset P is Mn or (2) P is a poset
of the type C2 ⊕ P1, where C2 is the two element chain and P1 is a poset.

Example 2.17.

Poset whose Γa(P ) is disconnected.
Figure 7
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What happens if each atom is covered by unique and distinct element? See the following
Example 2.17. Hence we have following lemma.

Lemma 2.18. If P is a poset consisting of the chains Ci, 1 ≤ i ≤ n, such that Ci ∩ Cj = {0}.
Then Γa(P ) is a disconnected graph with n number of star components.

Proof. If P is a poset consisting of the chains Ci, 1 ≤ i ≤ n, such that Ci ∩ Cj = {0}. Clearly
for each a ∈ Ω(P ), there is only one chain Ci of P such that a ∈ Ci. Clearly Γa(Ci) is a star
graphs with a as the centre.
There does not exist any path between xi, xj ∈ P if x ∈ Ci and y ∈ Cj , i 6= j. As Ci∩Cj = {0}
and a= b, if a, b ∈ Ω(P ), also no element x ∈ Ci can be adjacent to any y ∈ Cj , i 6= j. Hence
Γa(P ), 1 ≤ i ≤ n is a disconnected graph containing n number of star components. 2

Beck[1] conjectured that for a commutative ring χ(R) = clique(R). For the graph in Figure
2.19, we note that χ(G) = 4 and clique(G) = 3. In the following theorem we show that this
graph is not realizable as Γa(P ) for a finite poset P with 0.

We know that a subset C of a graphG is a clique if any two distinct vertices of C are adjacent.
If G contains a clique with n elements and every clique has at most n elements then the clique
number of G is ω(G) = n. If the size of the clique are not bounded, then ω(G) = ∞. The
minimum number of colors needed to color the vertices of a graph such that no two adjacent
vertices have the same color is called the chromatic number of G. It is denoted by χ(G).

Example 2.19. In the following example χ(G) = 4 and clique(G) = 3, i.e. χ(G) 6= clique(G).

Graph with χ(G) 6= clique(G).
Figure 8

Theorem 2.20. The graph shown in Example 2.19 cannot be a component of the atom based
graph of any finite poset with 0.

Proof. Suppose that the graph shown in Example 2.19 is a component of the atom based graph
of a finite poset P with 0.

As no two atoms are adjacent in Γa(P ). Hence |Ω(P )| < 3. Therefore, either (i) |Ω(P )| = 1
or (ii) |Ω(P )| = 2
(i) Let |Ω(P )| = 1. Let x ∈ Ω(P ). Clearly if y ∈ P, y 6= x, then y ∈ xu and so x ↔ y. From
the graph G in Example 2.19, we note that f is adjacent to all other elements, hence f ∈ Ω(P ).

As a ↔ b, b ↔ c, c ↔ d, d ↔ e, a ↔ e in the graph G shown in Example 2.19, so by the
definition of the atom based graph each of al ∩ bl \ {0}, bl ∩ cl \ {0}, cl ∩ dl \ {0}, dl ∩ el \ {0},
al∩el \{0} contains f only. Since a= c ,a= d, b= d, b= e, c= e in G. So by the definition
of the atom based graph each of al ∩ cl \ {0}, al ∩ dl \ {0}, bl ∩ dl \ {0} bl ∩ el \ {0}, cl ∩ el \ {0}
contain f and some other nonzero element.
As a= d hence there exists some x ∈ P with x 6= f, x 6= 0 such that x ∈ al ∩ dl \ {0}. We have
the following possibilities:-
(1) x = a or (2) x = b or (3) x = c or (4) x = d or (5) x = e
(1) If x = a, then al ⊆ dl. Hence al ∩ cl ⊆ cl ∩ dl = {0, f}, a contradiction to a= c.
(2) If x = b, then b ∈ al ∩ dl. Hence bl ⊆ al ⇒ b ∈ al ∩ bl = {0, f}, a contradiction.
(3) If x = c, then c ∈ al ∩ dl. Hence cl ⊆ dl ⇒ c ∈ cl ∩ dl = {0, f}, a contradiction.
(4) If x = d, then dl ⊆ al. Hence dl ∩ bl ⊆ al ∩ bl = {0, f}, a contradiction to b= d.
(5) If x = e, then e ∈ al ∩ dl. Hence el ⊆ al. As a ↔ e, therefore el ∩ al = {0, f}. Together
imply that e = 0 or e = f .

Thus, no such x exists. Hence the graph shown in Example 2.19 cannot be realizable as
Γa(P ) for some finite poset P with |Ω(P )| = 1.
(ii) Suppose that |Ω(P )| = 2 since no two atoms can be adjacent then either (1) a, d ∈ Ω(P )
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or (2) b, e ∈ Ω(P ) or (3) a, c ∈ Ω(P ) or (4) e, c ∈ Ω(P ) or (5) b, d ∈ Ω(P ).
(1) If a, d ∈ Ω(P ), then using a ↔ b ↔ c ↔ d we conclude that b ∈ au, c ∈ du and b /∈ du, c /∈
au. But b↔ c implies bl ∩ cl \ {0} is nonempty and contains atoms only. From b↔ f ↔ c↔ b
we conclude that f ∈ Ω(P ), a contradiction.
Similarly, we get a contradiction in the other cases also Thus the graph shown in Example 2.19
cannot be realizable as Γa(P ) for some finite poset P with |Ω(P )| = 2. 2
Thus we state the following conjecture.
Conjecture: If P is a finite poset with 0, is χ(Γa(P )) = clique(Γa(P ))?(i.e. wether Becks
conjecture holds for the atom based graph of a poset.)

Now, we give a necessary and sufficient condition for Γa(P ) to be triangle free.

Theorem 2.21. For a poset P , the following statements are equivalent
(1) If x ∈ P −Ω(P ) there does not exist y ∈ P −Ω(P ) such a that x↔ y.
(2) Γa(P ) is a triangle free graph.
(3) Γa(P ) is a bipartite graph with Ω(P ) as one partite set and and the set of non atoms of P
as the other partite set.

Proof. (1) ⇒ (2): Suppose that Γa(P ) contains a triangle. We note that if a, b ∈ Ω(P ), then
a = b in Γa(P ). Therefore, a triangle contains only one atom. Hence the remaining two
elements are non atoms which are adjacent, a contradiction to assumption.
(2) ⇒ (3) We know that a graph G is bipartite if and only if it does not contain a cycle of odd
length. ( West [10] Theorem 1.2.18 Page.25 ). If Γa(P ) is not a bipartite graph, then Γa(P )
contains an odd cycle. Let x0 ↔ x1 ↔ ... ↔ x2n ↔ x0 be a cycle of length 2n + 1 for some
n ≥ 1. Since no two atoms are adjacent in Γa(P ), hence any cycle of length 2n + 1 contains
at most n atoms. Thus there exists an edge between vertices which are non atoms say x0 ↔ x1.
Then x0, x1 ∈ au for some a ∈ Ω(P ). Then x0 ↔ a ↔ x1 ↔ x0 form a cycle of length 3, a
contradiction. Thus Γa(P ) is a bipartite graph, with Ω(P ) as one partite set and the set of non
atoms of P as the other partite set.
(3)⇒ (1) If Γa(P ) is a bipartite graph with Ω(P ) as one partite set and the set non atoms of P
as the other partite set, then for x ∈ P − Ω(P ) there does not exist y ∈ P − Ω(P ) such a that
x↔ y.
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the proofs of some results. The authors are grateful to the referee for helpful suggestions, which
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