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Abstract Let R be a commutative ring with unity. Ashrafi et al. [3] introduced the unit graph
G(R) of a ring R whose vertices are the elements of R and two distinct vertices x and y are
adjacent if and only if x + y is a unit of R. In this article, we investigate some graph-theoretic
properties of the line graph L(G(R)) associated to G(R). We give some characterization results
regarding completeness, bipartiteness, traversability, diameter, girth, and chromatic number of
L(G(R)).

1 Introduction

Recently, Grimaldi [9] introduced the unit graph G(Zn) of ring Zn, where he took the vertices of
G(Zn) are the elements of Zn and two distinct vertices x and y are adjacent if and only if x+ y
is a unit of Zn. After that introduction, Ashrafi et al. [3] generalized the unit graph G(Zn) to
G(R) for an arbitrary ring R and obtained various characterization results for finite commutative
rings regarding connectedness, chromatic index, diameter, girth, and planarity of G(R). Some
more discussions of unit graphs of rings can be found in [3], [9], [13], [17], [18] and etc.

Let G be a graph, then one can associate its line graph, denoted by L(G), such that each
vertex of L(G) represents an edge of G, and any two distinct vertices in L(G) are adjacent if
and only if their corresponding edges in G share a common vertex. Due to Whitney (1932)
[19] and Krausz (1934) [12], the line graph became an active area. Whitney proved that the
structure of any connected graph can be recovered from its line graph i.e., there is a one-to-one
correspondence between the class of connected graphs and the class of connected line graphs.
Later, the term line graph comes from a paper from Harary and Norman (1960) [11]. Some more
discussions on line graphs associated with some rings and modules can be found in [5], [7], [8],
[16], [20] and etc. In this article, we would like to keep an eye on the properties of unit line
graph L(G(R)) and seek any relation between G(R) and L(G(R)).

Now, we recall some needed notions in graph theory. Let G = (V (G), E(G)) be a graph
with the set of vertices and the set of edges. The degree of the vertex v ∈ V , denoted by deg(v)
is the number of vertices adjacent to the vertex v. A path in a graph G is an alternating sequence
of vertices and edges of G. A graph G is said to be connected if there is a path between any
two distinct vertices of G (for any distinct x, y ∈ V (G), we write x ∼ y if x and y are adjacent;
otherwise x � y). For a graph G, the distance between two vertices x and y, denoted by d(x, y)
is defined as the length of the shortest path from x to y, and d(x, y) = ∞ if no such path exists.
The diameter of G is defined as diam(G) = sup{d(x, y) | x, y are vertices of G}. G is called a
complete graph if each pair of vertices is connected by an edge. A complete graph on n vertices
is denoted by Kn. A cycle graph is a graph that consist of a single cycle. We denote the cycle
graph with n vertices by Cn. The length of the shortest cycle in a graph G is called the girth of
G and is denoted by gr(G). If G has no cycle, then gr(G) = ∞. A connected acyclic graph is
called a tree. A circuit in a graph G is a closed trail of length three or more. A circuit C in a
graph G is called an Eulerian circuit if C contains every edge of G. A connected graph G is said
to be Eulerian if it contains an Eulerian circuit. A graph G is said to be Hamiltonian if it has a
circuit which contains all the vertices of G. The chromatic number χ(G) of a graph G is defined
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as the minimum number of colors which can be assigned to the vertices of G in such a way that
every two adjacent vertices have different colors. The chromatic index χ/(G) is defined as the
minimum number of colors which can be assigned to the edges of graph G in such a way that
every two adjacent edges have a different colors. Other undefined terminology related to graph
theory can be obtained in [6] and [10].

Throughout this article,R is a ring with unity. We denote cardinality, characteristic, Jacobson
radical, and set of units of R by |R|, char(R), J(R), and U(R) respectively. A field is denoted
by F, and the ring of integer modulo n is denoted by Zn. For any undefined terminology of ring
theory we refer to [4].

The organisation of this article is as follows. In Sec. 2, we study some basic properties of unit
line graph L(G(R)) associated with R, and finally we give traversability condition of L(G(R))
under certain conditions. In Sec. 3, we determine diameter and girth of L(G(R)). We prove
that diam(L(G(R))) ∈ {0, 2, 3,∞} if char(R) = 2, and diam(L(G(R))) ∈ {0, 1, 2, 3,∞}
for a finite ring R. Finally, we prove that gr(L(G(R))) ∈ {3, 4, 6,∞}, for finite ring R,
gr(L(G(Mn(R)))) = 3, for all n ≥ 2, and we compute the chromatic number of L(G(R)).

2 Some Basic Properties of L(G(R))

For simplicity of notation, we use G(R) for the unit graph and L(G(R)) for its line graph of
the ring R with unity. For x, y ∈ R one has x + y ∈ U(R), then we have a vertex in the graph
L(G(R)) and we denote that vertex by [x, y]. L(G(R)) is connected if and only if G(R) is
connected. In this section, we discuss some basic properties of L(G(R)).

Theorem 2.1. Let R be a commutative ring with unity. Then L(G(R)) is a complete graph if and
only if either R ∼= Z2 or Z3.

Proof. Let L(G(R)) is a complete graph. Then G(R) is either a complete graph K3 or a tree.
Since there does not exists K3 in G(R). Therefore, G(R) is a tree. Since, all the units of R is
adjacent to zero in G(R). So, R ∼= Z2 or Z3.
Conversely, let R ∼= Z2 or Z3. Then R have one or two units and it is easy to see that L(G(R))
is K1 or K2. Which completes the proof of the Theorem.

Ashrafi et al. [[3], Theorem 3.2] characterized the unit graphs of rings that have a cycle of length
4 or 6. We know that a line graph L(G) is a cycle graph if and only if G is a cycle graph.
Therefore, following theorem is the consequence of [[3], Theorem 3.2].

Theorem 2.2. Let R be a commutative ring with unity. Then L(G(R)) is a cycle graph if and
only if R is isomorphic to one of the following rings:

(i) Z4;

(ii) Z6;

(iii)

{[
a b

0 a

]
| a, b ∈ Z2

}
.

Remark 2.3. G is a bipartite graph if and only if G has no odd cycle [König (1936)], and in the
case of line graph also it is satisfied. Therefore, L(G(R)) is a bipartite graph if and only if R is
isomorphic to any one of the rings mentioned in the above Theorem 2.2 and Z3.

Remark 2.4. From the Theorems 2.1 and 2.2, it is clear that L(G(R)) is complete bipartite graph

if and only if R ∼= Z3, Z4 or

{[
a b

0 a

]
| a, b ∈ Z2

}
.

Theorem 2.5 ([3], Proposition 2.4). Let R be a finite ring. Then the following statements hold
for the unit graph of R:

(i) If 2 /∈ U(R), then the unit graph G(R) is a |U(R)|-regular graph;

(ii) If 2 ∈ U(R), then for every x ∈ U(R) we have deg(x) = |U(R)| − 1 and for every
x ∈ R \ U(R) we have deg(x) = |U(R)|.
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In the following, we compute the degree of L(G(R)) using the above Theorem 2.5, and the
equality deg([x, y]) = deg(x) + deg(y)− 2 for any [x, y] ∈ V (L(G)).

Theorem 2.6. Let R be a finite ring. Then the following statements hold for L(G(R)):

(i) If 2 /∈ U(R), then L(G(R)) is a 2|U(R)| − 2-regular graph;

(ii) If 2 ∈ U(R), and x ∼ y in G(R) then we have:

deg([x, y]) =


2|U(R)| − 4 if x, y ∈ U(R)
2|U(R)| − 2 if x, y ∈ R \ U(R)
2|U(R)| − 3 ifx ∈ U(R) and y ∈ R \ U(R)

Proof. (i) Let 2 /∈ U(R) and x, y ∈ R. Then we have deg(x) = deg(y) = |U(R)| in G(R) by
Theorem 2.5. Now let us assume that x ∼ y in G(R), then [x, y] is a vertex of L(G(R)).
Then, for [x, y] ∈ V (L(G(R))), we have deg[x, y] = deg(x)−1+deg(y)−1⇒ deg[x, y] =
|U(R)| − 1 + |U(R)| − 1 = 2|U(R)| − 2.

(ii) Let 2 ∈ U(R) and x ∼ y in G(R). Then [x, y] is a vertex in L(G(R)). If x, y ∈ U(R),
then by Theorem 2.5, we have deg(x) = deg(y) = |U(R)| − 1 in G(R). Now, for the unit
line graph L(G(R)), deg[x, y] = deg(x) − 1 + deg(y) − 1 ⇒ deg[x, y] = 2|U(R)| − 4.
If x, y ∈ R \ U(R), then by Theorem 2.5, we have deg(x) = deg(y) = |U(R)| in G(R).
Now, for the unit line graph L(G(R)), deg[x, y] = deg(x)− 1 + deg(y)− 1⇒ deg[x, y] =
2|U(R)| − 2. If x ∈ U(R) and y ∈ R \ U(R), then for the unit line graph L(G(R)),
deg[x, y] = deg(x)− 1 + deg(y)− 1⇒ deg[x, y] = 2|U(R)| − 3.

The following Theorem gives a criterion for the line graph L(G(R)) to be Eulerian and it shows
that L(G(R)) is Eulerian does not necessarily imply that G(R) is Eulerian.

Theorem 2.7. Let R be a finite ring with unity and |R| ≥ 4. If 2 /∈ U(R), then L(G(R)) is
Eulerian.

Proof. Let R be a finite ring with unity and 2 /∈ U(R). Then by part (i) of Theorem 2.6, unit
line graph L(G(R)) is 2|U(R)| − 2-regular graph, and so L(G(R)) is Eulerian.

Example 2.8. (i) Unit line graph of the rings Z2n (n > 1 ∈ N) is Eulerian.

(ii) Let F be a field with char(F) = 2 and |F| ≥ 4. Then G(R) is a complete graph by [Ashrafi
et al. [3], Theorem 3.4]. It is clear that, degree of every vertex is odd in G(R). So for
[x, y] ∈ V (L(G(R))), we have deg([x, y]) = deg(x) + deg(y) − 2. Which shows that
L(G(F)) is Eulerian.

(iii) Let R = Z2 × F1 × ...× Fn, where Fi (1 ≤ i ≤ n) are fields with |Fi| ≥ 3. Then L(G(R))
is Eulerian.

In the following, we prove the Hamiltonian properties of L(G(R)).

Theorem 2.9. Let R be a finite commutative ring with unity such that |R| ≥ 4. If G(R) is
connected, then L(G(R)) is Hamiltonian.

Proof. Let R be a finite commutative ring with unity such that |R| ≥ 4, and let G(R) is con-
nected. Now, in view of Theorem 2.1 of [13] it is clear that G(R) is Hamiltonian. Therefore, in
view of Theorem 8.8 of [10] L(G(R)) is Hamiltonian.

3 Diameter, Girth & Chromatic Number of L(G(R))

In this section, we determine diameter, girth and chromatic number of L(G(R)). Ashrafi et
al. [3] proved that diam(G(R)) ∈ {1, 2, 3,∞}. Note that for any ring R, diam(G(R)) − 1 ≤
diam(L(G(R))) ≤ diam(G(R)) + 1, and in the following two Theorems 3.1, 3.2 Ramane et al.
[14], [15] proved that diam(G) = diam(L(G)).
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Theorem 3.1. [15] If diam(G) ≤ 2 and if none of the three graphs F1, F2, and F3 depicted in
Fig. 1 are induced subgraphs of G, then diam(L(G)) ≤ 2.

Figure 1. The graphs mentioned in Theorem 3.1

Theorem 3.2. [14] Let k ≥ 2. For a connected graph G, diam(L(G)) ≤ k if and only if none of
the three graphs F k

1 , F k
2 , and F k

3 depicted in Fig. 2 are an induced subgraph of G.

Figure 2. The graphs mentioned in Theorem 3.1 and 3.2

Theorem 3.3. Let R be a ring with char(R) = 2. Then diam(L(G(R))) ∈ {0, 2, 3,∞}.

Proof. Let R be a ring with char(R) = 2. Now the following three cases complete the proof.
Case 1. Suppose that R is a division ring, then G(R) is a complete graph. If L(G(R)) is a com-
plete graph, then by Theorem 2.1 diam(L(G(R))) = 0. Now, let L(G(R)) is not a complete
graph and x, y, u, v ∈ R such that [x, y], [u, v] ∈ V (L(G(R))). We may assume that [x, y] and
[u, v] are not adjacent in L(G(R)), then [x, y] —[y, u] —[u, v] is a path of length 2.
Case 2. Suppose thatR is not a division ring, thenG(R) is not a complete graph, and diam(G(R)) =
2 or 3 by Ashrafi et al. [[3], Lemma 5.5]. Thus diam(L(G(R))) also 2 or 3 by Theorems 3.1
and 3.2, since G(R) have no induced subgraph of Fig. 1 or Fig. 2. Let x, y, u, v ∈ R such that
[x, y], [u, v] ∈ V (L(G(R))). If y + u ∈ U(R), then [x, y] —[y, u] —[u, v] is a path of length 2;
otherwise [x, y] —[y, s] —[s, u] —[u, v] is a path of length 3.
Case 3. Suppose that R ∼= Z2 × Z2, then L(G(R)) is totally disconnected, since G(R) is a
disconnected union of K2. Therefore, diam(L(G(R))) =∞.

Theorem 3.4. LetR be a finite commutative ring. Then we have diam(L(G(R))) ∈ {0, 1, 2, 3,∞}.

Proof. IfR ∼= Z2 or Z3, then by Theorem 2.1, L(G(R)) isK1 orK2 and so diam(L(G(R))) = 0
or 1. If R is any finite ring, then G(R) contains any one induced subgraph of Fig. 1 or 2.
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Thus, diam(G(R)) = diam(L(G(R))). Assume that x, y, u, v ∈ R such that [x, y], [u, v] ∈
V (L(G(R))). If y + u ∈ U(R), then there exists a path [x, y] —[y, u] —[u, v] of length 2 in
L(G(R)). On the other hand, if y + u /∈ U(R), then for some t ∈ R, we have y + t, t + u ∈
U(R), so [x, y] —[y, t] —[t, u] —[u, v] is a path of length 3. If G(R) is disconnected, then
diam(L(G(R))) =∞. Thus, we conclude that diam(L(G(R))) = {0, 1, 2, 3,∞}.

Remark 3.5. Note that diam(L(G(Z2))) = 0, diam(L(G(Z3))) = 1, diam(L(G(Z4))) = 2,
diam(L(G(Z6))) = 3, and diam(L(G(Z2 × Z2))) =∞.

Ashrafi et al. [3] proved that gr(G(R)) ∈ {3, 4, 6,∞}. In the following, we have also found that
gr(L(G(R))) ∈ {3, 4, 6,∞}.

Theorem 3.6. LetR be a ring. Then the following statements hold for unit line graphs L(G(R)):

(i) If |U(R)| = 1, then gr(L(G(R))) =∞;

(ii) If |U(R)| = 2, then gr(L(G(R))) ∈ {4, 6,∞};

(iii) If |U(R)| ≥ 3, then gr(L(G(R))) = 3.

Proof. (i) If |U(R)| = 1, then L(G(R)) does not contain a cycle, so gr(L(G(R))) =∞.

(ii) Suppose that U(R) = {1, x} and L(G(R)) contains a cycle. Since 1 + x /∈ U(R), then
there exists y ∈ U(R) such that 1 + y, x + y ∈ U(R). Therefore, there exists a cycle
[0, 1] −→ [1, y] −→ [y, x] −→ [x, 0] −→ [0, 1] of length 4 in L(G(R)). If 1 + y, x + y /∈
U(R), then there exist s, t ∈ R such that 1 + s, x + t, s + y, t + y ∈ U(R). Therefore,
there exists a cycle [0, 1] −→ [1, s] −→ [s, y] −→ [y, t] −→ [t, x] −→ [x, 0] −→ [0, 1] of
length 4 in L(G(R)). If L(G(R)) does not contain a cycle, then gr(L(G(R))) = ∞. Thus
gr(L(G(R))) ∈ {4, 6,∞}.

(iii) Suppose that |U(R)| ≥ 3, then there exists 3 or 4 cycles in G(R). If G(R) contain length
of 3 cycle, then obviously in L(G(R)) also have a cycle of length 3. Now, we assume
that gr(G(R)) = 4. Since |U(R)| = 3, G(R) is a complete bipartite graph or bipartite
graph having deg(x) ≥ 3, for all x ∈ R. Therefore, for x, y, z ∈ U(R) we have a cycle
[0, x] −→ [0, y] −→ [0, z] −→ [0, x] of length 3 in L(G(R)). Thus gr(L(G(R))) = 3.

Remark 3.7. (i) Let R = Z2. Then |U(R)| = 1 and so gr(L(G(R))) =∞.

(ii) Let R = Z3. Then |U(R)| = 2 and so gr(L(G(R))) = ∞. Let R = Z4. Then |U(R)| = 2
and so gr(L(G(R))) = 4. Let R = Z6. Then |U(R)| = 2 and so gr(L(G(R))) = 6.

(iii) Let R = Z5. Then |U(R)| = 4 and so gr(L(G(R))) = 3.

Theorem 3.8. Let R be a ring with unity. Then the following statements hold:

(i) If J(R) 6= 0 or R contains nonzero nilpotent elements, then gr(L(G(R))) ∈ {3, 4};

(ii) If there exist x, y ∈ U(R) such that x 6= y and x+ y ∈ U(R), then gr(L(G(R))) = 3.

Proof. (i) Let J(R) 6= 0 and j 6= 0 ∈ J(R). Then [0, 1] −→ [1, j] −→ [j, j + 1] −→
[j + 1, 0] −→ [0, 1] form a length of 4-cycle in L(G(R)). Thus gr(L(G(R))) ≤ 4. Again,
let x 6= 0 ∈ R such that x2 = 0. Then [0, 1] −→ [1, x] −→ [x, 1−x] −→ [1−x, 0] −→ [0, 1]
form a length of 4-cycle in L(G(R)), and so gr(L(G(R))) ≤ 4.

(ii) Let x, y ∈ U(R) such that x 6= y and x+ y ∈ U(R). Then [0, x] −→ [x, y] −→ [y, 0] −→
[0, x] form a triangle in L(G(R)). Thus gr(L(G(R))) = 3.

Theorem 3.9. Let R be a division ring with |R| ≥ 4. Then gr(L(G(R))) = 3.

Proof. Let R be a division ring with |R| ≥ 4. Then there exist two distinct nonzero elements x, y
in R such that x + y 6= 0. Therefore, by Theorem 3.8 we have [0, x] −→ [x, y] −→ [y, 0] −→
[0, x] in L(G(R)), which yields gr(L(G(R))) = 3.
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Theorem 3.10. Let R be a ring. Then gr(L(G(Mn(R)))) = 3, for all n ≥ 2.

Proof. Su and Zhou [[18], Lemma 2.4] proved the existence of units inMn(R). Say u and v are
units such that u + v ∈ U(Mn(R)). Then by Theorem 3.8, [0, u], [u, v], and [v, 0] form a cycle
in L(G(Mn(R))). Hence, the result hold.

We end up this article by discussing the chromatic number of unit line graph L(G(R)) of a finite
ring R. Since, the chromatic index of a graph leads to the chromatic number of its line graph.
Therefore, by [[3], Theorem 5.2] we have the following result for the unit line graph of a finite
ring R.

Theorem 3.11. Let R be a finite ring. Then χ(L(G(R))) = |U(R)|.
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