Characterizations of Artinian and Noetherian Gamma Rings in Terms of Homogeneous Complex Fuzzy Ideals

Shadi Shaqaqha

Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 08A72, 03E72, 16P99 Secondary 16Y99.

Keywords and phrases: Noetherian Gamma ring; Artinian Gamma ring; homogeneous complex fuzzy set; complex fuzzy sub-Gamma ring; complex fuzzy ideal.

The author like to thank the referee for his careful reading and valuable suggestions, which improved the paper's presentation

Abstract The aim of this paper is to characterise Noetherian and Artinian Gamma rings by complex fuzzy ideals.

1 Introduction

The Γ -rings which are generalizations of classical rings was constructed by Barnes [6] in 1966. Since then many mathematicians have been trying to extend known results in the setting of rings to the setting of Γ -ring (see e.g. [5, 8, 10, 11, 12, 16, 20, 24]).

The notion of complex fuzzy sets which is a generalization of the notion of the traditional fuzzy sets (due to Zadeh [25] in 1965) was introduced by Ramot and Milo [18] in 2002. Further for the work concerning complex fuzzy sets and their applications we refer to [18, 17, 23]. Fuzzy and complex fuzzy set theories have been applied in various algebra structures by many authors (see e.g. [1, 2, 3, 4, 7, 19, 22] and references therein).

We introduced the concept of complex fuzzy sets to Gamma rings in [22]. In this paper we examine some properties of complex fuzzy ideals of Gamma Rings. We use these to characterize Gamma rings with chain conditions in terms of complex fuzzy Gamma rings.

2 PRELIMINARIES

Suppose that Γ and R are additive abelian groups. Then R is a Γ -ring (due to Barnes) if there is a map

$$R \times \Gamma \times R \to R : (x, \alpha, y) \mapsto x \alpha y$$

such that

(i)
$$(x+y)\alpha z = x\alpha z + y\alpha z, x(\alpha+\beta)z = x\alpha z + x\beta z, x\alpha(y+z) = x\alpha y + x\alpha z,$$

(ii)
$$(x\alpha y)\beta z = x\alpha(y\beta z)$$
,

for every $x, y, z \in R$ and $\alpha, \beta \in \Gamma$.

It is clear that the notion above generalizes the notion of a ring. Let R be a Γ -ring. An element $e \in R$ (unique) is called a unity of R corresponding to $\alpha_0 \in \Gamma$ if $a\alpha_0 e = e\alpha_0 a = a$ for all $a \in R$. In this case, we say R is a Γ -ring with unity.

A nonempty subset S of a Γ -ring R is a sub- Γ -ring of R if $a-b \in S$ and $a\alpha b \in S$ for any $a, b \in S$ and $\alpha \in \Gamma$. A subset I of the Γ -ring R is a left (right) ideal of R if I is an additive subgroup of R and $R\Gamma I = \{r\alpha a \mid a \in R, \alpha \in \Gamma, a \in I\}$ ($I\Gamma R$) is contained in I. If I is both a left and a right ideal of I, then we say that I is an ideal (or two-sided ideal) of R. For more details on Gamma Rings we refer the reader to [5, 6, 8, 10, 11, 12, 16, 20, 24].

Let \mathbb{E}^2 denotes the set $\{(a, b) \mid a^2 + b^2 \leq 1\} (\subseteq \mathbb{R}^2)$. A complex fuzzy set on a nonempty set X is a function

$$\mu_A: X \to \mathbb{E}^2; x \mapsto r_A(x)e^{iw_A(x)},$$

where $i = \sqrt{-1}$, $r_A(x) \in [0, 1]$, and $w_A(x) \in [0, 2\pi]$. If $w_A(x) = 0$ for all $x \in X$, then we return back to the traditional fuzzy set (due to Zadeh [25]).

For $t_1 = r_1 e^{iw_1}$, $t_2 = r_2 e^{iw_2} \in \mathbb{E}^2$ $(0 \le r_1, r_2 \le 1 \text{ and } 0 \le w_1, w_2 \le 2\pi)$, we say that $t_1 \le t_2$ if and only if $r_1 \le r_2$ and $w_1 \le w_2$.

A complex fuzzy set μ_A on X is homogeneous if for all $x_1, x_2 \in X$ we have $r(x_1) \leq r(x_2)$ if and only if $w(x_1) \leq w(x_2)$. Throughout this paper all complex fuzzy sets are homogeneous. Thus if μ_A is a complex fuzzy set on X, then for each $x_1, x_2 \in X$ we either have $\mu_A(x_1) \preceq \mu_A(x_2)$ or $\mu_A(x_2) \preceq \mu_A(x_1)$.

A complex fuzzy set μ_A on a Γ -ring R is a complex fuzzy sub- Γ -ring if $\mu_A(x_1 - x_2) \succeq \mu_A(x_1) \land \mu_A(x_2)$ (=min{ $\mu_A(x_1), \mu_A(x_2)$ }) and $\mu_A(x_1 \alpha x_2) \succeq \mu_A(x_1) \land \mu_A(x_2)$, for all $x_1, x_2 \in R$ and $\alpha \in \Gamma$. If the second identity is replaced by $\mu_A(x_1 \alpha x_2) \succeq \mu_A(x_1) \lor \mu_A(x_2)$ (= max{ $\mu_A(x_1), \mu_A(x_2)$ }), then μ_A is called a complex fuzzy ideal of R ([22]).

3 Characterizations of Artinian Gamma Rings in Terms of Complex Fuzzy Ideals

Lemma 3.1. ([22]) Let μ_A be a complex fuzzy subset of a Γ -ring R. Then μ_A is a complex fuzzy ideal of R if and only if for each $s + ti \in \text{Im}(\mu_A)$ the upper level $U(\mu_A, s + ti) = \{x \in R \mid \mu_A(x) \succeq s + ti\}$ is an ideal of R.

In 2002, Özturk, Uckun, and Jun proved that If every fuzzy ideal of a Γ -ring has finite number of values, then it is Artinian ([14]) Next, in 2003, they proved the converse ([15]). The following theorem extends their results to complex fuzzy sets. There is analogous result for rings and Lie algebras in terms of fuzzy ideals.

Theorem 3.2. Every homogeneous complex fuzzy sub- Γ -ring (ideal) μ_A defined on Γ -ring R has a finite number of values if and only if every descending chain of sub- Γ -rings (ideals) of R terminates at finite step.

Proof. Suppose that every complex fuzzy ideal of a Γ -ring R has a finite number of values, then, in particular, every fuzzy ideal of R has a finite number of values. Hence R is Artinian; that is every descending chain of ideals of R terminates at finite step.

Conversely suppose that every descending chain of ideals of a Γ -ring R terminates at finite step. Let μ_A be a complex fuzzy ideal of R. Suppose to the contrary that $\text{Im}(\mu_A)$ is infinite. Because μ_A is homogeneous, we have every infinite subset of $\text{Im}(\mu_A) \subset \mathbb{E}^2$ contains either a strictly increasing or strictly decreasing infinite sequence. Let

$$s_1 + t_1 i \prec s_2 + t_2 i \prec \cdots$$

be a strictly increasing sequence in $\text{Im}(\mu_A)$. According to Lemma 3.1 we have the following descending chain of ideals of R:

$$U(\mu_A, s_1 + t_1 i) \supseteq U(\mu_A, s_2 + t_2 i) \supseteq \cdots$$

Since *R* is Artinian, there is $n_0 \in \mathbb{N}$ such that $U(\mu_A, s_{n_0} + t_{n_0}i) = U(\mu_A, s_{n_0+j} + t_{n_0+j})$ for each $j \geq 1$. Note that since $s_{n_0} + t_{n_0}i \in \operatorname{Im}(\mu_A)$, there is $x \in R$ with $\mu_A(x) = s_{n_0} + t_{n_0}i$. Then for each $j \geq 1$ we have $x \in U(\mu_A, s_{n_0+j} + y_{n_0+j}i)$. Hence $s_{n_0} + t_{n_0}i = \mu_A(x) \succeq s_{n_0+j} + t_{n_0+j}i$. Similarly we can find $s_{n_0+j} + t_{n_0+j}i \succeq s_{n_0} + t_{n_0}i$ for each $j \geq 1$. Therefore for each $j \geq 1$ we have $s_{n_0+j} + t_{n_0+j}i \succeq s_{n_0} + t_{n_0}i$ for each $j \geq 1$. Therefore for each $j \geq 1$ we have $s_{n_0+j} + t_{n_0+j}i = s_{n_0} + t_{n_0}i$. Contradiction (since all $(s_j + t_ji)$'s are distinct). If

$$s_1 + t_1 i_2 + t_2 i \succ \cdots$$

is a strictly decreasing sequence in $Im(\mu_A)$, then

$$U(\mu_A, s_1 + t_1 i) \subseteq U(\mu_A, s_2 + t_2 i) \subseteq \cdots$$

is an ascending chain of ideals of R. It is known that every Arinian Γ -ring is also Noetherian, so there is $n_0 \in \mathbb{N}$ such that $U(\mu_A, s_{n_0}+t_{n_0}i) = U(\mu_A, s_{n_0+j}+t_{n_0+j})$ for each $j \ge 1$. Hence $s_{n_0+j}+t_{n_0+j}i = s_{n_0} + t_{n_0}i$ for each $j \ge 1$ (since $s_k + t_ki \in \text{Im}(\mu_A)$ for each $k \in \mathbb{N}$). Contradiction. \Box

Let μ be a complex fuzzy ideal of a Γ -ring R. We denote by Ω_{μ} the family of all upper levels of R with respect to μ . Also, for a set X, we denote by |X| the cardinality of X. The following two corollaries was obtained in [13] and [15] in the setting of fuzzy rings and fuzzy Γ -rings. The theorem above helps us to extend them to the case of complex fuzzy Γ -rings. The proofs are very similar to the proofs of analogous results for fuzzy (Γ -)rings, so we omit them.

Corollary 3.3. Let R be an Artinian Γ -ring, and let μ be a homogeneous complex fuzzy ideal of R. Then $|\Omega_{\mu}| = |\text{Im}(\mu)|$.

Corollary 3.4. Let R be an Artinian Γ -ring, and let μ_A and μ_B be homogeneous complex fuzzy ideals of R. Then

$$\Omega_{\mu_A} = \Omega_{\mu_B}$$
 and $\operatorname{Im}(\mu_A) = \operatorname{Im}(\mu_B)$ if and only if $\mu_A = \mu_B$.

4 Characterizations of Noetherian Gamma Rings in Terms of Complex Fuzzy ideals

Let *R* be an Artinian Γ -ring. Then *R* is Noetherian ([9]). Hence, and according to Theorem 3.2, if every complex fuzzy ideal of a Γ -ring *R* is finite valued, then *R* is Noetherian. There is an example shows that there is a Noehterian Γ -ring with an infinite valued of complex fuzzy ideal ([13, Example 3.4]).

Lemma 4.1. Let μ_A be a homogeneous complex fuzzy subset defined on Γ -ring R and let $\text{Im}(\mu_A) = \{0, s_0 + t_0 i, s_1 + t_1 i, \ldots\}$, where

$$e^{2\pi i} \succeq s_0 + t_0 i \succ s_1 + t_1 i \succ s_2 + t_2 i \succ \dots \succeq 0.$$

If $X_0 \subset X_1 \subset X_2 \subset \cdots$ are sub- Γ -rings (ideals) of R such that $\mu_A(X_k \setminus X_{k-1}) = \{s_k + t_k i\}$ for $k = 0, 1, 2, \ldots$ where $X_{-1} = \Phi$ and $\mu_A(R \setminus \bigcup_k X_k) = \{0\}$, then μ_A is a complex fuzzy sub- Γ -ring (ideal) of R.

Proof. We consider the case when all X_i are subalgebras. Let $x_1, x_2 \in R$ and $\alpha \in \Gamma$. If $x_1 \alpha x_2 \in R \setminus \bigcup_k X_k$, then also at least one of x_1 or x_2 is in $R \setminus \bigcup_k X_k$ (otherwise x_1, x_2 and $x_1 \alpha x_2$ will be in some X_k). So, in this case

$$\mu_A(x_1 \alpha x_2) = 0 = \mu_A(x_1) \wedge \mu_A(x_2).$$

If $x_1 \alpha x_2 \in \bigcup_k X_k$, then there exists m_0 such that $x_1 \alpha x_2 \in X_{m_0} \setminus X_{m_0-1}$. Hence we have either $x_1 \notin X_{m_0-1}$ or $x_2 \notin X_{m_0-1}$. Without loss of generality we may assume $x_1 \notin X_{m_0-1}$. Now if $x_1 \notin \bigcup X_k$, then

$$\mu_A(x_1) \wedge \mu_A(x_2) = 0 \preceq s_{m_0} + t_{m_0}i = \mu_A(x_1 \alpha x_2).$$

Otherwise there is $n_0 (\geq m_0)$ such that $x_1 \in X_{n_0} \setminus X_{n_0-1}$. In this case we find

$$\mu_A(x_1 \alpha x_2) = s_{m_0} + t_{m_0} i \succeq s_{n_0} + t_{n_0} i \succeq \mu_A(x_1) \land \mu_A(x_2).$$

Almost in the same way we can prove that $\mu_A(x_1 - x_2) \succeq \mu_A(x_1) \land \mu_A(x_2)$ for every $x_1, x_2 \in R$. Next let all X_i be ideals and let $x_1 \alpha x_2 \in X_{m_0} \setminus X_{m_0-1}$ ($\alpha \in \Gamma$). Then x_1 and x_2 are not in X_{m_0-1} . Indeed if x_1 or x_2 is in X_{m_0-1} , then $x_1 \alpha x_2 \in X_{m_0-1}$ because X_{m_0-1} is ideal. Thus

$$\mu_A(x_1) \lor \mu_A(x_2) \preceq s_{m_0} + t_{m_0}i = \mu_A(x_1 \alpha x_2).$$

If $x_1 \alpha x_2 \in R \setminus \bigcup_k X_k$, then also $x_1, x_2 \notin \bigcup_k X_k$, and so

$$\mu_A(x_1 \alpha x_2) = \mu_A(x_1) \lor \mu_A(x_2)$$

The set of ideals of a given Γ -ring is a poset with the usual inclusion \subseteq as the partial order. Let (S, \leq) be a poset. A subset X of S is called a chain if for all $x, y \in X$, we have either $x \leq y$ or $y \leq x$. If (S, \leq) is a poset, and $A \subseteq S$, we say $x \in A$ is a smallest element of A if $x \leq y$ for all $y \in A$. A poset (S, \leq) is said to be well ordered if every nonempty subset of S has a smallest element. It is well known (S, \leq) is well-ordered if and only if it does not contain infinite descending chains, that is there does not exist a sequence $a_0, a_1, a_2 \ldots$ in S such that $a_0 > a_1 > a_2 > \cdots$.

Öztürk, M. Uckun and Y. B. Jun ([14]) proved that A Γ -ring R is (left) Noetherian if and only if the set of values of any fuzzy (left) ideal of R is a well ordered subset of [0, 1]. Here we extend the result to the case of complex fuzzy Γ -rings

Theorem 4.2. Every ascending chain of sub- Γ -rings (ideals) of a Γ -ring R terminates at finite step if and only if the set of values of any homogeneous complex fuzzy sub- Γ -ring (ideal) of R is a well-ordered subset of \mathbb{E}^2 .

Proof. Suppose that the set $\text{Im}(\mu_A)$ of values of a complex fuzzy sub- Γ -ring (ideal) μ_A for a Γ -ring R is not well ordered. Then there is a strictly decreasing sequence $\{s_j + t_j i\}$ such that $s_j + t_j i = \mu_A(r_j)$ for some $r_j \in R$. But in this case $U(\mu_A, s_j + t_j i)$ form a strictly ascending chain of sub- Γ -rings (ideals) of R, which is a contradiction because R is Noetherian.

Conversely suppose that every ascending chain of sub- Γ -rings (ideals) of a Γ -ring R terminates at finite step. Suppose that there exists a strictly ascending chain

$$S_1 \subset S_2 \subset S_3 \subset \cdots$$

of sub- Γ -rings (ideals) of R. Then one can easily see that $S = \bigcup_k S_k$ is a sub- Γ -ring (ideal) of R. Define a complex fuzzy subset on R such that $\mu_A(S_k \setminus S_{k-1}) = \{\frac{1}{k} + \frac{1}{k}i\}$ for k = 1, 2, ... and with $X_0 = \Phi$ and $\mu_A(R \setminus S) = \{0\}$. According to the lemma above we have μ_A is a complex fuzzy sub- Γ -ring (ideal) of R. Also since the chain $S_1 \subset S_2 \subset \cdots$ is not terminating, μ_A has a strictly descending sequence of values. This contradicts with the assumption that the set of images any complex fuzzy sub- Γ -ring (ideal) of R is well-ordered. \Box

Corollary 4.3. Let

$$e^{2\pi i} \succeq s_0 + t_0 i \succ s_1 + t_1 i \succ s_2 + t_2 i \succ \dots \succeq 0$$

be a strictly decreasing in \mathbb{E}^2 . Then a Γ -ring R is Noetherian if and only if for each homogeneous complex fuzzy ideal μ of R with $\operatorname{Im}(\mu) \subseteq \{s_0 + t_0i, s_1 + t_1i, s_2 + t_2i, \cdots, 0\}$ there is $m_0 \in \mathbb{N}$ such that $\operatorname{Im}(\mu) \subseteq \{s_0 + t_0i, s_1 + t_1i, \ldots, s_{m_0} + t_{m_0}i\} \cup \{0\}$.

Proof. If R is Noetherian, then according to the theorem above for each complex fuzzy ideal of R the set $Im(\mu)$ is a well ordered subset, and a set is well ordered if and only if it does not contain any infinite descending sequence.

Conversely suppose to the contrary that R is not Noetherian Γ -ring. Let

$$X_0 \subset X_1 \subset X_2 \subset \cdots$$

be a strictly ascending chain of ideals of R. Then, using Lemma 4.1 the complex fuzzy subset μ_A defined by $\mu_A(X_k \setminus X_{k-1}) = \{s_k + t_k i\}$ for k = 0, 1, 2, ... where $X_{-1} = \Phi$ and $\mu_A(R \setminus \bigcup_k X_k) = \{0\}$ is a complex fuzzy ideal and does not satisfy our assumption.

References

- K.S. Abdukhalikov, M.S. Tulenbaev, U.U. Umirbaev, On fuzzy subalgebras, *Fuzzy Sets and Systems* 93, 257–262 (998).
- [2] M. Alsarahead and A., Ahmad, Complex Fuzzy Subgroups, *Applied Mathematical Sciences*, 11, 2011–2021 (2017).
- [3] M. Alsarahead and A. Ahmad, Complex Fuzzy Subrings, International Journal of Pure and Applied Mathematics 117 (4), 563–573 (2017).
- [4] M. Alsarahead and A. Ahmad, Complex Fuzzy Soft Rings, *Palestine Journal of Mathematics* 9 (1), 289–298 (2020).

- [5] D. D. Anderson, Some remarks on multiplication ideals, Math Japon 25 (1), 463–469 (1980).
- [6] W. E. Barnes, On the gamma rings of Nobusawa, Pacific J. Math 18, 411-422 (1966).
- [7] V.N. Dixit, R. Kumar and N. Ajmal, On fuzzy rings, Fuzzy Sets and systems 49, 205-213 (1992).
- [8] M. Dumitru, Gamma-ring: some interpretations used in the study of their radicals, U.P.B. Sci. Bull., Series A 71 (3), 9–22 (2009).
- [9] S. Kyuno, A gamma ring with the right and left unities, Math. Japonica 24 (2), 191-193 (1979).
- [10] S. Kyuno, On the radicals of Γ-rings, Osaka J. Math. 12, 639–645 (1975).
- [11] S. Kyuno, On prime gamma rings, Pacific J. Math. 75 (1), 185–190 (1978).
- [12] S. Kyuno, Prime ideals in gamma rings, Pacific J. Math. 98 (2), 375-379 (1982).
- [13] D.S. Malik, Fuzzy Ideals of Artinian Rings, Fuzzy Sets and Systems 37, 111-115 (1990).
- [14] M. A. Öztürk, M. Uckun and Y. B. Jun, Characterizations of Artinian and Noetherian Gamma-Rings in Terms of Fuzzy Ideals, *Turk. J. of Mathematics* 26, 199–205 (2002).
- [15] M. A. Öztürk, M. Uckun and Y. B. Jun, Fuzzy Ideals in Gamma-Rings, Turk. J. of Mathematics 27, 369– 374 (2003).
- [16] A.C. Paul and Md. Sabur, Decomposition in neotherian gamma rings, *International Archive of Applied Sciences and Technology* 2 (2), 38–42 (2011).
- [17] D. Ramot, M. Friedman, G. Langholz, and A. Kandel, Complex Fuzzy Logic, *IEEE Transaction on Fuzzy Systems* 11 (4), 450-461 (2003).
- [18] D. Ramot, M. Friedman, G. Langholz, and A. Kandel, Complex fuzzy sets, *IEEE Transaction on Fuzzy Systems* 10 (2), 171–186 (2002).
- [19] A. Rozenfeld, Fuzzy groups, J. Math. Anal. Appl. 35, 512--517 (1971).
- [20] S. Shaqaqha and A. Dagher, Grading and Filtration of Gamma Rings, *Italian Journal of Pure and Applied Mathematics* 47, 958–970 (2022).
- [21] S. Shaqaqha, Complex fuzzy Lie algebras, Jordan Journal of Mathematics and Statistics (JJMS) 13(2), 231–247 (2020).
- [22] S. Shaqaqha "ISOMORPHISM THEOREMS OF COMPLEX FUZZY -RINGS." Missouri J. Math. Sci. 34 (2) 196–207, November 2022. https://doi.org/10.35834/2022/3402196
- [23] P. Thirunavukarasu, R. Suresh and P. Thamilmani, *Applications of Complex Fuzzy Sets*, JP Journal of Applied Mathematics **6** (1 & 2), 5–22 (2013).
- [24] M. S. Uddin, M. S. Islam, Gamma rings of gamma endomorphisms, *Pure and Applied Mathematics* 3 (1), 94–99 (2013).
- [25] Zadeh, L, Fuzzy sets, Inform. Control 8, 338-358 (1965).

Author information

Shadi Shaqaqha, Yarmouk University, Irbid, Jordan. E-mail: shadi.s@yu.edu.jo

Received: September 27, 2021. Accepted: May 15, 2022