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Abstract. We prove that if p is a prime number, then up to isomorphism, Fp is the only field
of characteristic p all of whose minimal ring extensions are commutative.

1 Introduction

All rings considered in this note are associative and unital, but not necessarily commutative;
all inclusions of rings, ring extensions and ring homomorphisms are unital. For distinct rings
A ⊂ B, one says, extending the context of a definition from [5], that A ⊂ B is a minimal ring
extension if there is no ring C such that A ⊂ C ⊂ B. Some of the results in [5] were anticipated
by arguments in [6] that studied a concept that is now regarded as a special kind of minimal ring
extension. While all the rings considered in [6] and [5] were commutative (and most of those
in [6] were integral domains), there has been some work on minimal ring extensions involving
nontrivial zero-divisors and noncommutative rings, perhaps most notably in [4] and [1]. Some
significant work in that direction began with our results in [2] that used idealizations to prove
that every nonzero commutative ring has a commutative minimal ring extension. Indeed, that
work was adapted and generalized by Dorsey and Mesyan [4, Lemma 2.4 and Remark 2.5] who
used Dorroh extensions (where we had used idealizations) to prove that every (not necessarily
commutative) ring has a minimal ring extension.

Our interest here is in the first question that Dorsey and Mesyan raised in [4, Question 6.5]
in regard to minimal ring extensions and prime fields. (Recall that a field K is called a prime
field if K does not have any proper subfields or, equivalently, if K coincides with its subfield
that is generated by {1}. A field K is a prime field if and only if K is isomorphic to either Q
or Fp for some prime number p.) The specific question of Dorsey and Mesyan that we address
here was formulated by them as follows: “If k is a field with no noncommutative . . . minimal
[ring] extensions, must k be a prime field?" Some evidence for an affirmative answer to this
question can be found in [4]. For instance, it was observed in [4, page 3482], as a consequence
of a familiar fact about centralizers, that no prime field can have a noncommutative minimal ring
extension.

It turns out that one can make significant headway on the question of Dorsey and Mesyan
by using familiar facts. Indeed, the purpose of this note is to answer the first question raised
in [4, Question 6.5] in the affirmative for fields of positive characteristic. The proof is given
in Theorem 2.1. Corollary 2.2 merely states a reformulation of Theorem 2.1, while Remark
2.3 completes the note by commenting about the (incomplete) state of our knowledge about the
possible validity of an analogue of Theorem 2.1 for fields of characteristic 0.

We will be using the following standard notation: ⊂ denotes proper inclusion; and X denotes
an indeterminate over any ambient coefficient ring(s).

2 Results

We move at once to Theorem 2.1, which answers the first question raised in [4, Question 6.5] in
the affirmative for fields of positive characteristic.

Theorem 2.1. Let p be a prime number and let F be a field of characteristic p. Then the following
conditions are equivalent:
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(1) F is isomorphic (as a field) to Fp;
(2) F does not have a noncommutative minimal ring extension;
(3) Every minimal ring extension of F is commutative.

Proof. As recalled in the Introduction, if F is a prime field and F ⊂ E is a minimal ring
extension, then E is commutative. Since any ring that is isomorphic to Fp is a prime field, it
follows that (1)⇒ (2). As it is clear that (2)⇔ (3), it remains only to prove that (3)⇒ (1). We
will, in fact, prove the contrapositive of (3) ⇒ (1). Suppose, then, that F is not isomorphic to
Fp. It will suffice to construct a minimal ring extension F ⊂ B such that B is not commutative.

View Fp as a subfield of F in the usual way. Since F is not isomorphic to Fp, the vector space
dimension of F as a vector space over Fp is greater than 1 (with “greater than" being taken in the
sense of cardinal numbers). So, there exists a basis B of F as a vector space over Fp such that
{1} is a proper subset of B (cf. [7, Theorem 2.4, page 183]). Pick b ∈ B \ {1}. Since 1 and b are
linearly independent over Fp, we get b 6∈ Fp. Next, consider the polynomial f ∈ Fp[X] defined
by f(X) := Xp −X . Recall that each of the p elements in Fp is a root of f (essentially by the
little Fermat theorem; cf. also [7, Proposition 5.6, page 280]). As deg(f) = p, it follows that Fp

is the set of all the roots of f in any given field extension of Fp (cf. [7, Theorem 6.7, page 160]).
Applying this to the field extension F of Fp, we get that b is not a root of f ; that is, bp 6= b.

Consider the Frobenius map σ : F → F (given by σ(a) := ap for all a ∈ F ). It is clear that
σ preserves multiplication and the multiplicative identity element; it is also well known (cf. [7,
Exercise 11, page 121]) that σ preserves addition. Thus, since σ|Fp

is the identity map on Fp, we
get that σ is an Fp-algebra homomorphism. Also by the above comments, σ(b) 6= b.

Next, consider a two-dimensional vector space B = F + Fx over F (so that {1, x} is a basis
of B as a vector space over F ). Induce a multiplication on B by requiring that xa = σ(a)x for
all a ∈ F and x2 = 0. More precisely, define the binary operation of multiplication on B as
follows: if {α, β, γ, δ} ⊆ F , then

(α+ βx)(γ + δx) := αγ + (αδ + βσ(γ))x.

As σ preserves addition and multiplication in F , it is straightforward to verify that the above
multiplication on B is both left-and right distributive over addition; and that this multiplication
is associative. As the multplicative identity element of the ring Fp (which is the same as the
multplicative identity element of the ring F ) also serves as a/the multplicative identity element
for B, it follows that B is a ring. Thus, Fp ⊂ F ⊂ B is a chain of (unital) ring extensions.
However, while B is thereby an Fp-algebra, B is not an F -algebra, the point being that xb :=
σ(b)x = bpx 6= bx because bp 6= b and the singleton set {x} is linearly independent over F .
Moreover, since xb 6= bx, B is a noncommutative ring. Finally, since B is a two-dimensional
vector space over F , [3, Lemma 2.4 (a)] ensures that F ⊂ B is a minimal ring extension.

By some results in [2] (resp., [4]) that were mentioned in the Introduction, it follows that
every nonzero commutative ring has a commutative minimal ring extension and that every
nonzero noncommutative ring has a (necessarily noncommutative) minimal ring extension. On
the other hand, examples of noncommutative minimal ring extensions of commutative rings are
also known: cf. C ⊂ H in [4, page 3482]; [4, Lemma 6.6]; and [3, Example 2.7]. Thus, for
reference purposes, it may be useful to have the following variant of the statement of Theorem
2.1.

Corollary 2.2. Let p be a prime number and let F be a field of characteristic p. Then the
following conditions are equivalent:

(1) F is not isomorphic (as a field) to Fp;
(2) F has a noncommutative minimal ring extension;
(3) Not every minimal ring extension of F is commutative.

Remark 2.3. The first question raised in [4, Question 6.5] remains open for fields of character-
istic 0. We were able to reduce to the situation where such a field k has a proper subfield F such
that the field extension F ⊂ k is algebraic. In trying to go further for such F ⊂ k by adapting the
“twisting multiplication via the Frobenius map" method of proof of Theorem 2.1 (by “twisting"
via different kinds of field homomorphisms), we were able to get an affirmative answer to the
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first question raised in [4, Question 6.5] in that situation if k = F (α) and the minimum polyno-
mial of α over F has another root β 6= α in k. As [4, Lemma 6.6] is stronger than the preceding
assertion, we consider it likely that rather different ideas will be needed to settle [4, Question
6.5] in the case of characteristic 0. By the way, the idea of using a “twisted" multiplication in
the proof of Theorem 2.1 was suggested by the proof of [3, Example 2.7]. In closing, we take
advantage of this opportunity to mention the following correction to a typographical error in the
last line of the statement of [3, Example 2.7]: the correct definition of R2 there should have been
R2 := F2 + I .
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