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Abstract The main purpose of this paper is to present a new characterization of cyclic groups
using only undergraduate-level group theory.

1 Introduction

Recall that a group G is said to be cyclic, if there exists some g ∈ G such that G = 〈g〉 =
{gm|m ∈ Z}. It is well-known that G is a (nontrivial) cyclic group if and only if G is ei-
ther isomorphic to Zn (the additive group of integers modulo n), for some integer n ≥ 2,
or to the additive group Z (cf. [4, 6]). Cyclic groups are very important in group theory.
This is why we find several characterizations of such groups in the literature (see for instance,
[1, 2, 3, 5, 7]). Recall also that if G is a group and H is a subgroup of G, then the index [G : H]
of H in G is simply the cardinality of the set G/H of left cosets of H in G; more compactly,
[G : H] = |G/H| = |{gH|g ∈ G}|. In 1951, Fedorov [2] has proved the following theorem:

Fedorov’s Theorem. An infinite group G is isomorphic to the group of integers Z if and only if
every nontrivial subgroup of G has finite index.

An elementary proof of the above theorem was provided in [5] by Lanski. Our purpose here
is to improve Fedorov’s Theorem, by presenting new characterizations of cyclic groups via sub-
group indices. We emphasize that our proofs are elementary and simple.

We let |X| denote the cardinality of a set X . For any element x in a group G, we let o(x)
(resp., 〈x〉) denote the order of x (resp., the subgroup of G generated by x). Any undefined
terminology is standard as in [4].

2 Main results

We start our investigations with the following result.

Lemma 2.1. Let G be a group and let H be a subgroup of G. Then the following conditions hold
true.

(i) |G| = [G : H]× |H|.

(ii) If G is uncountable and H is countable, then |G| = [G : H].

Proof. (i) Lagrange’s Theorem is most often stated for finite groups, but it has a natural for-
mation for infinite groups too. Pick a representative of each left coset of H in G, and then
consider the following mapping θ : (G/H) × H → G defined by θ(gH, h) = gh, for any
(gH, h) ∈ (G/H) ×H . One can easily check that θ is bijective. Thus |(G/H) ×H| = |G|; or
equivalently, [G : H]× |H| = |G|.
(ii) As G is uncountable and H is countable, it follows from basic cardinal arithmetics (cf. [8,
App. 2, Corollary 3.8]) that [G : H] = |G|, as desired. This completes the proof.

Theorem 2.2. Let G be an infinite group. Then the following statements are equivalent:
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(i) G is isomorphic to the group of integers Z.

(ii) Every nontrivial subgroup of G has finite index.

(iii) Every nontrivial subgroup of G has index less that |G|.

(iv) Distinct subgroups of G have distinct indices.

Proof. (i)⇔(ii) See [2] or [6].
(ii)⇒(iii) Trivial.
(iii)⇒(ii) It follows from Lemma 2.1 that G is countably infinite. If H is a nontrivial subgroup
of G, then, by assumption, [G : H] < |G| = ℵ0. Therefore, [G : H] is finite.
(i)⇒(iv) Trivial.
(iv)⇒(ii) G is countable by virtue of Lemma 2.1. Now, let H be a nontrivial subgroup of G. As
[G : H] ≤ |G| = [G : {e}] and [G : H] 6= [G : {e}], then it follows that [G : H] < |G| = ℵ0.
Hence, [G : H] is finite. This completes the proof.

The next theorem gives an analog of Theorem 2.2, but for finite groups.

Theorem 2.3. Let G be a nontrivial finite group. Then the following statements are equivalent:

(i) G is isomorphic to the group of integers modulo n for some integer n ≥ 2.

(ii) Distinct subgroups of G have distinct indices.

Proof. (i)⇒(ii) Trivial.
(ii)⇒(i) Let n = |G|. Two cases may occur:
Case 1. n = pk for some prime number p and some positive integer k.
In this case, let x ∈ G with maximal order, say ps, where s ≤ k. We claim that G = 〈x〉. To
this end, let y ∈ G and write o(y) = pl. As o(y) ≤ o(x), then l ≤ s. Now, let a ∈ 〈x〉 with
order pl (such element exists since 〈x〉 is cyclic and pl divides ps). Notice that 〈y〉 and 〈a〉 are
two subgroups of G with the same order. Thus, by assumption, 〈y〉 = 〈a〉. Hence, y ∈ 〈x〉. This
shows that G = 〈x〉 is cyclic, as claimed.
Case 2. n = pk1

1 p
k2
2 · · · pks

s , where s ≥ 2 and p1, · · · , ps are distinct prime numbers.
As the Sylow pi-subgroups of G have the same indices, it follows that for any i, there exists
a unique Sylow pi-subgroup of G, say Hi. Moreover, G is isomorphic to the direct product
H1 × · · · ×Hs. It is not difficult to check that any subgroup of G inherits the property described
in assertion (ii). Thus, it follows from case 1 that Hi

∼= Z
p
ki
i

for any i. Therefore, G ∼= Z
p
k1
1
×

· · · × Zpks
s

∼= Zn. This completes the proof.
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