A NOTE ON FEDOROV'S THEOREM

Naseam Al-Kuleab and Noômen Jarboui

Communicated by Ayman Badawi

MSC 2010 Classifications: 20E34.

Keywords and phrases: Coset; Index; Cyclic group.

Abstract The main purpose of this paper is to present a new characterization of cyclic groups using only undergraduate-level group theory.

1 Introduction

Recall that a group G is said to be *cyclic*, if there exists some $g \in G$ such that $G = \langle g \rangle = \{g^m | m \in \mathbb{Z}\}$. It is well-known that G is a (nontrivial) cyclic group if and only if G is either isomorphic to \mathbb{Z}_n (the additive group of integers modulo n), for some integer $n \geq 2$, or to the additive group \mathbb{Z} (cf. [4, 6]). Cyclic groups are very important in group theory. This is why we find several characterizations of such groups in the literature (see for instance, [1, 2, 3, 5, 7]). Recall also that if G is a group and H is a subgroup of G, then the *index* [G : H] of H in G is simply the cardinality of the set G/H of left cosets of H in G; more compactly, $[G:H] = |G/H| = |\{gH|g \in G\}|$. In 1951, Fedorov [2] has proved the following theorem:

Fedorov's Theorem. An infinite group G is isomorphic to the group of integers \mathbb{Z} if and only if every nontrivial subgroup of G has finite index.

An elementary proof of the above theorem was provided in [5] by Lanski. Our purpose here is to improve Fedorov's Theorem, by presenting new characterizations of cyclic groups via subgroup indices. We emphasize that our proofs are elementary and simple.

We let |X| denote the cardinality of a set X. For any element x in a group G, we let o(x) (resp., $\langle x \rangle$) denote the order of x (resp., the subgroup of G generated by x). Any undefined terminology is standard as in [4].

2 Main results

We start our investigations with the following result.

Lemma 2.1. Let G be a group and let H be a subgroup of G. Then the following conditions hold true.

(*i*) $|G| = [G:H] \times |H|$.

(ii) If G is uncountable and H is countable, then |G| = [G : H].

Proof. (i) Lagrange's Theorem is most often stated for finite groups, but it has a natural formation for infinite groups too. Pick a representative of each left coset of H in G, and then consider the following mapping $\theta : (G/H) \times H \to G$ defined by $\theta(gH,h) = gh$, for any $(gH,h) \in (G/H) \times H$. One can easily check that θ is bijective. Thus $|(G/H) \times H| = |G|$; or equivalently, $[G:H] \times |H| = |G|$.

(ii) As G is uncountable and H is countable, it follows from basic cardinal arithmetics (cf. [8, App. 2, Corollary 3.8]) that [G:H] = |G|, as desired. This completes the proof.

Theorem 2.2. Let G be an infinite group. Then the following statements are equivalent:

- (i) G is isomorphic to the group of integers \mathbb{Z} .
- (ii) Every nontrivial subgroup of G has finite index.
- (iii) Every nontrivial subgroup of G has index less that |G|.
- (iv) Distinct subgroups of G have distinct indices.

Proof. (i) \Leftrightarrow (ii) See [2] or [6].

(ii) \Rightarrow (iii) Trivial.

(iii) \Rightarrow (ii) It follows from Lemma 2.1 that G is countably infinite. If H is a nontrivial subgroup of G, then, by assumption, $[G:H] < |G| = \aleph_0$. Therefore, [G:H] is finite. (i) \Rightarrow (iv) Trivial.

(iv) \Rightarrow (ii) *G* is countable by virtue of Lemma 2.1. Now, let *H* be a nontrivial subgroup of *G*. As $[G:H] \leq |G| = [G:\{e\}]$ and $[G:H] \neq [G:\{e\}]$, then it follows that $[G:H] < |G| = \aleph_0$. Hence, [G:H] is finite. This completes the proof.

The next theorem gives an analog of Theorem 2.2, but for finite groups.

Theorem 2.3. Let G be a nontrivial finite group. Then the following statements are equivalent:

- (i) G is isomorphic to the group of integers modulo n for some integer $n \ge 2$.
- (ii) Distinct subgroups of G have distinct indices.

Proof. (i) \Rightarrow (ii) Trivial.

(ii) \Rightarrow (i) Let n = |G|. Two cases may occur:

Case 1. $n = p^k$ for some prime number p and some positive integer k.

In this case, let $x \in G$ with maximal order, say p^s , where $s \leq k$. We claim that $G = \langle x \rangle$. To this end, let $y \in G$ and write $o(y) = p^l$. As $o(y) \leq o(x)$, then $l \leq s$. Now, let $a \in \langle x \rangle$ with order p^l (such element exists since $\langle x \rangle$ is cyclic and p^l divides p^s). Notice that $\langle y \rangle$ and $\langle a \rangle$ are two subgroups of G with the same order. Thus, by assumption, $\langle y \rangle = \langle a \rangle$. Hence, $y \in \langle x \rangle$. This shows that $G = \langle x \rangle$ is cyclic, as claimed.

Case 2. $n = p_1^{k_1} p_2^{k_2} \cdots p_s^{k_s}$, where $s \ge 2$ and p_1, \cdots, p_s are distinct prime numbers.

As the Sylow p_i -subgroups of G have the same indices, it follows that for any i, there exists a unique Sylow p_i -subgroup of G, say H_i . Moreover, G is isomorphic to the direct product $H_1 \times \cdots \times H_s$. It is not difficult to check that any subgroup of G inherits the property described in assertion (ii). Thus, it follows from case 1 that $H_i \cong \mathbb{Z}_{p_i^{k_i}}$ for any i. Therefore, $G \cong \mathbb{Z}_{p_i^{k_1}} \times \cdots \times \mathbb{Z}_{p_i^{k_s}} \cong \mathbb{Z}_n$. This completes the proof.

References

- M. Deaconescu, R. Khazal, A characterization of the finite cyclic groups, An. Univ. Vest Timis. Ser. Mat.-Inform. 32 (1994), 37-40.
- [2] Y. Fedorov, *On infinite groups of which all nontrivial subgroups have a finite index*, Uspekhi Mat. Nauk. 6 (1951), 187-189.
- [3] K. Kovács, On a characterization of cyclic groups by sums and differences, Studia Sci. Math. Hungar. 36 (2000), 307-311.
- [4] S. Lang, Algebra, Third edition. Springer, New York, 2002.
- [5] C. Lanski, A characterization of infinite cyclic groups, Math. Mag. 74 (2001), 61-65.
- [6] W. R. Scott, Group Theory, Dover, New York, 1987.
- [7] G. Walls, A characterization of finite cyclic groups, An. Univ. Vest Timis. Ser. Mat.-Inform. 42 (2004), 141-149.

Author information

Naseam Al-Kuleab, Department of Mathematics and Statistics, College of Science, King Faisal University, P. O. Box 400, Al-Ahsa 31982, Saudi Arabia.

E-mail: naalkleab@kfu.edu.sa

Noômen Jarboui, Department of Mathematics, Faculty of Sciences, University of Sfax, P. O. Box 1171, Sfax 3038, Tunisia. E-mail: noomenjarboui@yahoo.fr

Received: October 10, 2022. Accepted: October 29, 2022.