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Abstract We generalize the notion of the (weakly) firm commutative rings to k-firm and
(weakly) firm commutative semirings. A [ring, semiring] is said to be (weakly) firm if it contains
an (weakly) essential prime ideal and the zero-component of each (weakly) essential prime ideal
is (weakly) essential. An (weakly) essential ideal is one with nonzero intersection with every
nonzero (prime) ideal. For a prime ideal P of a commutative [ring, semiring] with identity, we
denote (as usual) by OP its zero-component; that is, the set of members of P that are annihilated
by non-members of P . We study semirings in which OP is an (weakly) essential ideal whenever
P is an (weakly) essential prime [resp. k-prime] ideal [resp. for the k-firmness case]. We will
study some algebraic properties of k-firm and (weakly) firm semirings. We will prove that a
semiring is not weakly firm (consequently, not firm) if its zero divisor set is an ideal and by an
example show that the class of firm semirings is properly contained in the class of weakly firm
semirings. Finally, we also observe some connections between these type of semirings and their
total graphs via the set of their zero divisors.

1 Introduction

The main goal of this paper is to extend the work of the (authors [10]) and Dube [4] on (weakly)
firm commutative rings to (weakly) firm and k-firm Commutative semirings (Definitions 4.3 and
5.2). We introduce the notion of a (weakly) firm and a k-firm semiring, which are the gen-
eralization of a (weakly) firm ring, and easily show (Theorem 5.8) that any semiring R is not
weakly firm (consequently, not firm) provided that Z(R), its set of zero divisors, is an ideal of
R. Furthermore, since the definition of the total graph of a semiring R is mainly based on Z(R),
Thus, it is a natural approach to relate the total graph of a commutative semiring to (weakly)
firm semirings via Theorem 5.8 and we will apply, in the last section (Section 6), some of the
results (related to the total graph of a semiring) from [5] in this context.

• In [10], besides the investigation related to some algebraic properties of weakly firm rings,
we study the firmness and weakly firmness of a (finite) commutative ring by applying some
known results related to the zero-divisor [resp. total] graphs of commutative rings that are taken
from [2] and [9] [resp. [1]], respectively.

• Notice that, besides using many results from semiring theory (which are stated in Section
2 of this paper as background), the general pattern of the proofs in this paper

(∗) are (almost) parallel to the ring case without any extra (major) assumptions on the semir-
ing R;

(∗) are (somewhat) parallel to the ring case by assuming that (maximal, prime) ideals are
subtractive and R is a [Gelfand (in particular, simple), multiplicatively cancellative] semiring.
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Throughout the paper all [rings, semirings] are commutative with identity 1 6= 0, unless the
contrary is explicitly stated, with 0a = 0 for all a ∈ R. Also, Z(R)∗ = Z(R) \ {0} denotes the
set of all nonzero zero divisors of R.

Recall that an essential ideal of a ring is one with nonzero intersection with every nonzero
ideal. One of the interesting things about these ideals is that the socle of a ring, which is “built
from below" by taking the union of all minimal prime ideals and then generating an ideal, can
also be “built from above" by intersecting all essential ideals. In [6], the authors study the ideal
obtained by intersecting all essential maximal ideals of a semi-primitive ring. They then charac-
terize those Tychonoff spaces X for which the socle of C(X) is the intersection of the essential
maximal ideals.

• The work of Dube [4] was in part motivated by reading [6] which part of it is a characteriza-
tion of those Tychonoff spaces X for which the socle of C(X) is the intersection of the essential
maximal ideals. In his work [4], besides many interesting examples, he defines (strongly) firm
rings and characterizes them in terms of the lattices of their radical ideals provided that the rings
have no nonzero nilpotent elements. It is shown that any proper ideal of a firm reduced ring,
when viewed as a ring in its own right, is firm [resp. the classical ring of quotients of any ring
(not necessarily reduced) of this kind is itself of this kind, direct products of (finitely many)
rings of this kind are themselves of this kind, the ring of real-valued continuous functions on a
Tychonoff space is of this kind precisely when the underlying set of the space is infinite]. It is
also shown that for some (different) classes of rings, firm and strongly firm coincide.

• The organization of this paper is as follows: In Section 2, we collect some facts about
commutative semirings and (undirected) graphs that are relevant to our discussion in this paper.
Section 3 is devoted on some properties of the zero-component and the pure part of an ideal of
a semiring analogous to the ring case. We will show, in contrast to the ring case, that the pure
part of a maximal ideal of a semiring need not be equal to its zero-component in general and
could be properly contained in its zero-component (see Examples 3.2 and 3.3). In the fourth
section, we focus only on firm and k-firm semirings (Definition 4.3) and compare some of their
properties with the firm rings. In Section 5, we introduce the notion of the weakly firm semirings
(Definition 5.2) and study some of their algebraic properties. The key result in this section
(paper) is Theorem 5.8 that excludes a class of semirings R of being (weakly) firm when Z(R)
is an ideal of R. Finally, the last section (Section 6) is devoted to (non)(weakly) firmness of a
semiring R that are related (mainly via Theorem 5.8) to some graph-theoretic properties of the
total graph of R.

2 Preliminaries: Semirings and Graphs

This section consists of two parts that will be relevant for our discussion, where the first and sec-
ond part, respectively, provide some facts about commutative semirings and (undirected) graphs.

2.1 Semirings

Here we collect a few facts about (commutative) semirings that will be relevant for our discus-
sion and mainly follow Golan in [7]. Notice that results in Remark 2.3 are basic in our discussion
(especially when we assume ideals are subtractive) and will be used frequently in the sequel (im-
plicitly).

By a semiring (R,+, ·), we will mean a nonempty set R with two binary operations of addi-
tion and multiplication defined on R such that (R,+) and (R, ·) are commutative monoids with
identity elements 0 and 1, respectively, where Multiplication distributes over addition (from ei-
ther side) and 0a = 0 for all a ∈ R and 1 6= 0.

• A nonempty subset I of a semiring R will be called an ideal if a, b ∈ I and r in R implies
a+ b in I and ra in I .
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• A prime ideal of a commutative semiring R is a proper ideal P of R in which x ∈ P or
y ∈ P whenever xy ∈ P for all x, y ∈ R (see also [7, Corollary, 6.5]).

We adhere to the convention that prime ideals are assumed to be proper ideals. In general, by
“ideal" (in contrast to Golan, see [7, Chapter 5] on ideals) we do not necessarily mean a proper
ideal. We shall thus always say “proper ideal" when we mean a proper ideal.

Recall that a semiring R is called reduced if it has no nilpotent elements apart from 0. The
symbols U(R) and Spec(R) have their usual meanings; namely, the sets of units and prime,
ideals of R, respectively. We shall frequently write the zero ideal simply as 0, unless it becomes
necessary to write it as {0}. The annihilator of a set I will be written as Ann(I), and Ann(a)
abbreviates Ann({a}).

Definition 2.1. A subtractive ideal (= k-ideal) I of a semiring S is an ideal such that if a, a+b ∈
I , then b ∈ I . An ideal I of S is said to be a strong ideal (= a strongly k-ideal) if and only if
a+ b ∈ I implies that a ∈ I and b ∈ I .

Remark 2.2. From the above definition, it is clear that (0) is a k-ideal of S. Also, every strongly
k-ideal of a semiring S is a k-ideal of S. But the converse need not be true in general. For
example, the set 2N of all nonnegative even integers is a subtractive ideal of the semiring of
all nonnegative integers. But it is not a strongly k-ideal since 3 + 5 ∈ 2N while neither 3 nor
5 belong to 2N . Note that in [7], Golan uses the term “subtractive ideal", [resp. strong] for a
k-ideal [resp. strongly k-ideal] but in the literature of semirings, authors use equivalently the
term “k-ideal" [resp. strongly k-ideal] as well. Throughout this work, we mainly follow Golan
in [7]. Also, for some examples of nonsubtractive ideals in a semiring, see Chapter 5 of [7].

We now, for the sake of convenience, state some key facts about semirings which will use
them frequently in the sequel (especially when we assume ideals are subtractive) and use them
implicitly or refer to the following remark directly.

Remark 2.3. The following results in a commutative semiring hold:

(a) Any ideal in a semiring is contained in a maximal ideal ([7, Proposition 5.47].

(b) Any maximal ideal in a semiring is prime ([7, Corollary 6.11]).

(c) Any subtractive ideal in a semiring is contained in a maximal subtractive ideal ([11, Corol-
lary 2.2]).

(d) A maximal subtractive ideal is prime ([11, Proposition 3.1]).

We now recall some definitions from [7] and write them here for the sake of completeness as
follows.

• A semiring R is zerosumfree if and only if r + r′ = 0 implies that r = r′ = 0. A semiring
with no nonzero zero divisors is called an entire (= semidomain), i.e., for any a, b ∈ R with
ab = 0, then either a = 0 or b = 0. A semifield is a semiring in which every nonzero element
has a multiplicative inverse. A semiring R is said to be simple if 1+ r = 1 for each r ∈ R. Let R
be a semiring and G(R) = {r ∈ R | 1 + r ∈ U(R)}. A semiring R is called a Gelfand semiring
when G(R) = R. Clearly, every simple semiring is Gelfand. Of course, bounded distributive
lattices are among Gelfand semirings. But the class of the Gelfand semirings is quite wider as
[7, Example 3.38] shows.

2.2 Graphs

Let G be a simple graph. We say that G is connected if there is a path between any two dis-
tinct vertices of G. For vertices x and y of G, we define d(x, y) to be the length of a shortest
path from x to y (d(x, x) = 0 and d(x, y) = ∞ if there is no such path). The diameter of G
is diam(G) = sup{d(x, y) | x and y are vertices of G}. The diameter is 0 if the graph consists
of a single vertex and a connected graph with more than one vertex has diameter 1 if and only
if it is complete; i.e., each pair of distinct vertices forms an edge. The girth of G, denoted by
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gr(G), is the length of a shortest cycle in G (gr(G) = ∞ if G contains no cycles). We denote
the complete graph on n vertices by Kn and the complete bipartite graph on m and n vertices
byKm,n (we allowm and n to be infinite cardinals). We will sometimes call aK1,n a star graph.

A general reference for graph theory is [3] or any standard text in graph theory. Also, the
reader can refer to [2, 1, 5] for all necessary definitions that are related to graphs in this paper.

3 The Zero-component and Pure Part of an Ideal

In this section we study some properties of the zero-component and the pure part of an ideal of a
semiring analogous to the ring case. We will show, in contrast to the ring case, that the pure part
of a maximal ideal of a semiring need not be equal to its zero-component in general and could
be properly contained in its zero-component (see Examples 3.2 and 3.3). Note that the notion of
the pure part of an ideal in a ring was defined in [4] in order to study strongly firm rings, but we
won’t discuss strong firmness of a semiring in this paper.

• Let P be a prime ideal of a semiring R. The zero-component of P , denoted OP , is defined
by

OP = {a ∈ P | ab = 0for some b ∈ R \ P}.

Observe that OP is an ideal consisting entirely of zero-divisors. Let a, b ∈ OP . Thus ax = 0
and by = 0 for some x, y ∈ R \ P . Clearly, OP is an ideal of R since (a + b)xy = 0 and
(ra)x = r(ax) = 0 for any r ∈ R (note that xy /∈ P since P is prime). Actually, OP is a sub-
tractive ideal of R since a+ b and b in OP implies (a+ b)x = 0 and by = 0 for some x, y /∈ P ,
and hence (a+ b)(xy) = 0 = a(xy) which implies a ∈ OP .

• The pure part of an ideal I of a semiring R, denoted mI , is the ideal

mI = {a ∈ I | a+ ab = 0 for someb ∈ I} ⊆
⋃
{Ann(1 + x) | x ∈ I},

and equality holds for subtractive ideals.

Remark 3.1. From the above definition, it is clear that the pure part of any ideal in a zerosumfree
[resp. Gelfand (in particular, simple)] semiring is zero.

It is not difficult to show that mI is an ideal of R. Let a, b ∈ mI , thus a + ax = 0 and
b+ by = 0 for some x, y ∈ I . Now (a+ b) + (a+ b)(x+ y+ xy) = 0 and (ra) + (ra)x = 0 for
any r ∈ R.

Observe that the containment mP ⊆ OP holds for every subtractive prime ideal P since for
any a, b ∈ P , a+ ab = a(1 + b) = 0, we have 1 + b /∈ P by subtractiveness of P . On the other
hand, for any maximal ideal M of a ring we have mM = OM , but this is not true for semirings
in general (see Examples 3.2 and 3.3). Indeed (as shown in Section 2.1 of [4]) for the case of a
ring R, let a ∈ OM , and take b /∈ M such that ab = 0. Since M is a maximal ideal, there exist
c ∈M and d ∈ R such that 1 = c+ db. Then a = a(c+ db) = ac, which shows that a ∈ mM .

We now, in contrast to the ring case, define a semiring R to show that mM is properly
contained in OM for a maximal (subtractive) ideal M of R. Note that by Remark 2.3, every
maximal (subtractive) ideal in a commutative semiring with identity is prime.

Example 3.2. (cf. [7, Example 5.31]) A semiring S is said to be idempotent if it is both additively
and multiplicatively idempotent. Consider the idempotent semiring S = {0, 1, a} in which
1 + a = a + 1 = a. Let R = S × S be the direct product of the semirings. Clearly, M =
{0, a} × S = {(0, 0), (0, 1), (a, 1), (a, 0), (0, a), (a, a)} is a non-subtractive ideal of R since
(1, 0) + (a, 0) = (a, 0) ∈ M but (1, 0) /∈ M . Also M is a maximal ideal in R since for any
ideal N ⊇ M , either (1, 0) ∈ N or (1, a) ∈ N , which either N = R or n is not an ideal when
1, 0) /∈ N and (1, a) ∈ N . Clearly, a proper nonzero ideal I of R is not subtractive if it contains
(a, a) since (1, 1)+ (a, a) = (a, a) but (1, 1) /∈ I . On the other hand, a nonzero subtractive ideal
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I of R must contain either (1, 0) or (0, 1), otherwise, I = (0, 0). In this case, I contains (a, 0)
or (0, a). Now, it is vacuously true that B = {0} × S and C = S × {0} are the only maximal
subtractive ideals of R. Clearly, mB = (0, 0) is properly contained in OB = B. Also for the
maximal ideal M , we have mM = {(0, 0)} and OM = {(0, 0), (0, 1), (0, a)}.

We end this section by constructing a semiring with a unique nonsubtractive maximal ideal
[resp. maximal subtractive ideal] whose both the zero-component and pure part equal to zero.

Example 3.3. Let R be the collection of elements of the form a+ bα+ cβ, where a, b, c ∈ B =
{0, 1} (the Boolean semiring, i.e. 1 + 1 = 1, which is different from Z2) and αβ = βα = α2 =
β2 = 0. ClearlyR contains eight elements and is a local semiring with the unique nonsubtractive
maximal ideal M = R \ {1} and J = {0, α, β, α + β}, which is the only maximal subtractive
ideal of R. Now it is easy to see that mJ = OJ = 0 and mM = 0 = OM .

4 Firm and k-Firm Semirings

In this section, we extend some of the results in [4] (which is the study of firm Commutative
rings) to Commutative semirings in which zero-components of essential (subtractive) primes are
essential, which is the study of firm and k-firm Commutative semirings [Definition 4.3].

Recall that an ideal of a ring R is said to be essential if it has nonzero intersection with every
nonzero ideal of R. If I is an ideal of R and Ann(I) = 0, then I is essential. For reduced rings,
an ideal is essential if and only if its annihilator is 0. We will show that the similar result is also
true for reduced commutative semirings as well (Proposition 4.2).

Definition 4.1. An ideal I of a commutative semiring R is essential if it has nonzero intersection
with every nonzero ideal of R.

We now write the condition for the essentialness of an ideal in a reduced semiring.

Proposition 4.2. Let R be a commutative semiring, then The following conditions hold:

(a) If I is an ideal of R and Ann(I) = 0, then I is essential.

(b) For reduced semirings, an ideal is essential if and only if its annihilator is 0.

Proof. (a) Suppose that I is not essential. Then there exists a nonzero ideal J such that I∩J = 0.
Thus IJ = 0 since IJ ⊆ I ∩ J and hence I has a nonzero annihilator, yielding a contradiction.

(b) Suppose that I is essential and Ann(I) 6= 0. In this case, 0 6= a ∈ I ∩Ann(I) implies
a2 = 0 and hence by assumption a = 0, yielding a contradiction.

Definition 4.3. A commutative semiring R is firm [resp. k-firm] if it has an essential [resp.
subtractive] prime ideal, and OP is essential whenever P is an essential [resp. subtractive] prime
ideal in R. On the other hand, we say R is anti-firm [resp. anti k-firm] if it has an essential
[resp. subtractive] prime ideal P for which OP is not essential. A semiring can of course fail to
have an essential prime ideal (for instance any semifield), so whenever we assert that a particular
semiring is firm [resp. k-firm] we will need to demonstrate that it actually does have an essential
[resp. subtractive] prime ideal.

We now write an example of an anti-firm semiring (see Examples 3.2 and 3.3).

Example 4.4. In Example 3.2, M is an essential maximal ideal of R (and hence prime (by
Remark 2.3 since it is maximal) but OM = B, which is not essential since B ∩ C = (0, 0).

Remark 4.5. If R is a firm semiring which contains an essential subtractive prime ideal, then R
is also k-firm since an essential subtractive prime ideal is also an essential prime ideal. On the
other hand, R is anti-firm if it is anti k-firm. Note that firm and k-firm coincide for the case of a
ring since each ideal in a ring is subtractive.
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If we assume the Axiom of Choice (as we shall do whenever we need it), then a semiring has
an essential [resp. subtractive] prime ideal if and only if it has an essential [resp. subtractive]
maximal ideal (see Remark 2.3). A semiring with no essential [resp. subtractive] prime ideal is
neither firm nor anti-firm [resp. neither k-firm nor anti k-firm].

Our next result (Proposition 4.8) shows that every (subtractive) ideal in a reduced (k-) firm
semiring is (k-) firm when viewed as a semiring in its own right. Incidentally, this will be the
only instance where the presence of the identity is not assumed. Note that in [7], Golan uses the
term “hemiring" for a semiring with no multiplicative identity.

We provide the following two lemmas for the proof of the next result (Proposition 4.8).

Lemma 4.6. (cf. [8, Theorem 5.1]) Let I be any proper ideal of a semiring R, then Spec(I) =
{Q ∩ I | Q ∈ Spec(R)andI * Q}.

Moreover, if I is a proper subtractive ideal ofR, then Speck(I) = {Q∩I | Q ∈ Speck(R) and I *
Q}, where Speck(I) and Speck(R) are the sets of the subtractive prime ideals of I and R, re-
spectively.

Proof. It suffices to show Spec(I) ⊆ {Q ∩ I | Q ∈ Spec(R) and I * Q} [resp. Speck(I) ⊆
{Q∩I | Q ∈ Speck(R) and I * Q}] since the reverse inclusion is clear (note that the intersection
of subtractive ideals is subtractive). Let P ∈ Spec(I) and Q = {a ∈ R | Ia ⊆ P}. We
show that Q is a prime ideal in R (i.e. Q ∈ Spec(R)) and P = Q ∩ I . Let a, b ∈ Q. Then
I(a+ b) ⊆ Ia+ Ib ⊆ P , whence a+ b ∈ Q. For every x ∈ R, we have Ixa ⊆ Ia ⊆ P , which
implies xa ∈ Q. Therefore Q is an ideal of R. Now let c, d /∈ Q be arbitrary. Then there exist
i, j ∈ I such that ic, jd /∈ P . Since P ∈ Spec(I), and ic, jd ∈ I such that (ic)(jd) = (ij)cd /∈ P ,
thus Icd not subseteq P, so cd notin Q. Hence Q ∈ Spec(R). Finally, if p ∈ P , then Ip ⊆ P , so
p ∈ Q∩ I implies P ⊆ Q∩ I . Now if k ∈ Q∩ I and k ∈ I \ P , then Ik ⊆ P implies I ⊆ P since
P ∈ Spec(I), yielding a contradiction. Thus, P = Q ∩ I . For the proof of “moreover part", it
suffices to show thatQ is subtractive, which easily follows since P ∈ Speck(I) is subtractive.

Lemma 4.7. Let I be any proper (subtractive) ideal of a reduced semiringR. IfK is an essential
(subtractive) ideal in R, then I ∩K is an essential (subtractive) ideal in I .

Proof. Since I is a reduced semiring (hemiring), it suffices to show that the only element of I
that annihilates I ∩K is 0. The reason is that in a reduced semiring, an ideal is essential if and
only if it is annihilated by 0 only (Proposition 4.2). So suppose u is an element of I such that
ut = 0 for every t ∈ I ∩K. Let k ∈ K. Then uk ∈ I ∩K, and so u(uk) = 0, which implies
(uk)2 = 0 and hence uk = 0 since R is reduced. Thus, uK = {0}, which implies u = 0 since
K is an essential ideal in a reduced semiring (Proposition 4.2). The proof for “subtractive case"
follows directly from this result since the intersection of two subtractive ideals is subtractive.

Proposition 4.8. Let R be a reduced firm [resp. k-firm] semiring. If I is an [resp. subtractive]
ideal of R, then I is firm [resp. k-firm] when viewed as a semiring.

Proof. It is clear from 4.6 that

Spec[k](I) = {P ∩ I | P ∈ Spec[k](R) and I * P},

where Spec[k] stands for “Spec" or “Speck", respectively. Observe that, by Lemma 4.7, if K
is an essential (subtractive) ideal in R, then I ∩ K is an essential (subtractive) ideal in I since
R is reduced. So, I does have an essential (subtractive) ideal since R has (by hypothesis). Now
let Q be an essential (subtractive) prime ideal in I . Pick P ∈ Spec(R) [resp. P ∈ Speck(R)]
such that I * P and Q = P ∩ I . We claim that P is essential in R. Let J be an ideal of R
with J ∩ P = 0. Then Q ∩ (I ∩ J) = P ∩ I ∩ J = 0, which implies I ∩ J = 0 since it is an
ideal of I with zero intersection with the essential ideal Q of I . Since P is a prime ideal in R
and I ∩ J ⊆ P , it follows that J ⊆ P since I * P . Thus, J = 0, showing that P is essential.
So, by hypothesis, OP is an essential ideal in R, making OP ∩ I essential in I (Lemma 4.7). We
claim that OP ∩ I ⊆ OQ. Let x ∈ OP ∩ I . Take u ∈ R \ P with ux = 0. Since I * P , there
exists v ∈ I \ P . Since P is a prime ideal of R missing both u and v, we have uv ∈ I \Q. Since
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(uv)x = 0, it follows that x ∈ OQ. Thus, the essential ideal OP ∩ I of I is contained in OQ,
which makes OQ essential in I (note that A ⊆ B implies A ∩ C ⊆ B ⊆ C for all sets A, B, and
C). Therefore I is firm [resp. k-firm].

Corollary 4.9. If R is a reduced firm semiring containing an essential subtractive prime ideal,
then every subtractive ideal of R is k-firm when viewed as a semiring.

Proof. The proof follows directly from the above proposition and Remark 4.5 which states that
R is a k-firm semiring.

The following proposition excludes the firmness of a class of semirings, namely the multi-
plicatively cancellative semirings. A semiring R is called multiplicatively cancellative if when-
ever rs = rt for elements r, s, t ∈ R with r 6= 0, then s = t.

Proposition 4.10. A multiplicatively cancellative semiring is not firm.

Proof. Suppose to the contrary that R is a firm semiring with an essential prime ideal P . Thus,
by Remark 2.3, P is contained in a maximal ideal M . Clearly M is an essential ideal of R since
P is essential. Hence 0 6= a ∈ OM implies ab = 0 for some b ∈ R \M . Thus R = (M, b)
implies 1 = m+ rb for some m ∈M and r ∈ R, which implies a = am+ 0. Consequently, by
multiplicatively cancellative property of R, 1 = m ∈M , yielding a contradiction.

Remark 4.11. The above proposition can be proved directly since for any nonzero a ∈ M and
b /∈ M , ab = 0 = a0 implies b = 0, yielding a contradiction. On the other hand, OM = 0 is
not essential. Note that this result is immediate since a multiplicatively cancellative semiring is
entire (= semidomain).

We now write two examples of multiplicatively cancellative semirings that consequently, by
the above proposition, are not firm.

Example 4.12. The following two examples are taken from [7].

(a) (cf. [7, Example 3.28]) The semiring N of nonnegative integers is a multiplicatively can-
cellative semiring which is not a division semiring. Indeed, U(N) = {1}.

(b) (cf. [7, Example 3.29]) IfR is a Noetherian commutative integral domain then the additively-
idempotent semiring ideal(R) is multiplicatively cancellative if and only if R is a Prufer
domain. More generally, a commutative integral domain R is a Prufer domain if and only
if every finitely-generated nonzero ideal of R is multiplicatively cancelable.

In the following two propositions, an easy criterion shows that in order to check whether a
semiring is firm [resp. k-firm] we need only limit to maximal [resp. subtractive] ideals.

Proposition 4.13. Consider the following equivalent conditions on a semiring R which has an
essential ideal.

(a) R is firm.

(b) OM is essential for every essential maximal ideal M of R.

Proof. (a) ⇔ (b): The left-to-right implication is trivial because our blanket assumption is that
all semirings have the identity, so that maximal ideals are prime and every ideal is contained in
a maximal ideal (Remark 2.3). Conversely, suppose OM is essential for every essential maximal
ideal M . Let P be an essential prime ideal of R. Pick a maximal ideal M with M ⊇ P . Then
M is essential, and hence OM is essential by the present hypothesis. But OM ⊆ OP , so OP is
essential. Therefore R is firm.

We now discuss the above results for the essential (maximal) subtractive ideals.

Proposition 4.14. Consider the following equivalent conditions on a semiring R which has an
essential subtractive ideal.

(a) R is k-firm.
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(b) OM is essential for every essential maximal subtractive ideal M of R.

Proof. (a) ⇔ (b): The left-to-right implication is trivial because our blanket assumption is that
all semirings have the identity, so that maximal subtractive ideals are prime and every subtractive
ideal is contained in a maximal subtractive ideal (Remark 2.3). Conversely, suppose OM is
essential for every essential maximal subtractive ideal M . Let P be an essential subtractive
prime ideal of R. By Remark 2.3, pick a maximal subtractive ideal M with M ⊇ P . Then M
is essential, and hence OM is essential by the present hypothesis. But OM ⊆ OP , so OP is
essential. Therefore R is k-firm.

Let us now give some examples of k-firm and anti-firm semirings.

Example 4.15. (a) We define a commutative semiring R to be von Neumann regular if and
only if for any a ∈ R, there exists b ∈ R such that a + a2b = 0. Now, by this definition,
every von Neumann regular semiring with at least one essential subtractive ideal is k-firm
because every subtractive ideal of R is contained in a maximal subtractive ideal (Remark
2.3) and OP = P for any subtractive prime ideal P since (1+ab) /∈ P for any a ∈ P . Note
that a maximal [resp. subtractive] ideal in a semiring is also prime by Remark 2.3.

(b) A semidomain R is never firm [resp. k-firm] since OP = 0 for any prime ideal P of R.
It is anti-firm [resp. anti k-firm] if and only if it is not a semifield. Clearly, by Remark
2.3, R (not a field) has a nontrivial maximal [resp. subtractive] ideal M , which is essential
(by Proposition 4.2) since aM = 0 (i.e., Ann(M) = 0) and hence a = 0; and obviously
OM = 0.

(c) In [7, Proposition 5.49], it states that an element a of a semiring R is a unit if and only if a
belongs to no maximal ideal of R. Thus, the local [resp. k-local] semiring in Example 3.3
is anti-firm [resp. anti k-firm]. A semiring is local [resp. k-local] if it has a unique maximal
[resp. subtractive] ideal. Clearly, a local semiring is never firm (OM = 0 for the unique
maximal ideal M ); and it is anti-firm if and only if it has at least one nonzero nonunit.

•We now show that a McCoy semiring is not firm. Similar to the literature in commutative
rings, a semiringR is said to be McCoy [resp, countably McCoy] if each finitely [resp, countably]
generated ideal I ⊆ Z(R) has a nonzero annihilator.

Proposition 4.16. Let R be a reduced McCoy [resp, countably McCoy] semiring. If R contains
an essential prime ideal P such that OP is finitely [resp, countably] generated ideal, then R is
not firm (it is actually anti-firm).

Proof. The result follows since OP ⊆ Z(R) has a nonzero annihilator by the assumption and
hence is not essential, by Proposition 4.2, since R is reduced by hypothesis.

We end this section with the following remark which is related to the anti-firmness of the
product of two semirings.

Remark 4.17. See Proposition 4.2 for the assertion. If R is a reduced anti-firm [resp. anti k-
firm] semiring, then R × S is anti-firm [resp. anti k-firm] for any semiring S. To see this, let
M be an essential maximal [resp. subtractive] ideal of R for which OM is non-essential. Then
M ×S is an essential maximal [resp. subtractive] ideal of R×S, but for any nonzero a ∈ R that
annihilates OM , the nonzero element (a, 0) of R× S annihilates OM×S .

5 Weakly Firm Semirings

The main purpose in this section (Theorem 5.8), is to provide an example to exclude a class of
semirings R of being (weakly) firm when the set of zero divisors of R is an ideal of R. In the
next section, we will use this result to relate the (weakly) firm semirings to their total graphs.
We also show that the class of firm semirings is properly contained in the class of weakly firm
semirings (Examples 5.3 and 5.4).

Definition 5.1. An ideal I of a commutative semiring R is weakly essential if it has nonzero
intersection with every nonzero prime ideal of R.
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Definition 5.2. A semiring R is weakly firm if it has a weakly essential prime ideal and the zero-
component of every weakly essential prime is weakly essential. On the other hand, we say R is
weakly anti-firm if it has a weakly essential prime ideal P for which OP is not weakly essential.

Clearly, each firm semiring is weakly firm by definition. In the following two examples we
show that the class of firm semirings is properly contained in the class of weakly firm semirings.

Example 5.3. Let R = B × B × B, where each B is a Boolean semiring. Then R is a weakly
firm semiring which is not firm. LetM1 = B×B×{0}, M2 = B×{0}×B, M3 = {0}×B×B,
I1 = {0} × {0} × B, I2 = {0} × B × {0}, and I3 = B × {0} × {0}. Clearly, Mi’s are the only
maximal (weakly essential prime) ideals of R and neither of Ii’s is prime or essential. Note that
Z(R) is not an ideal of R.

Example 5.4. Suppose R = R1×R2×· · ·×Rn, where each Ri is a semifield (1 ≤ i ≤ n). Then

(a) R is not firm for any finite n ≥ 1.

(b) R is not (weakly) firm if n = 1 or 2.

(c) R is a nonfirm weakly firm semiring if n ≥ 3 (see also Example 5.12).

The following lemma will be used in the sequel implicitly whenever Z(R) is not an ideal of
R.

Lemma 5.5. Let R be a semiring such that Z(R) is not an ideal of R. Then there are distinct
r, r′ ∈ Z(R)∗ such that r + r′ ∈ Reg(R) and hence |Z(R)| ≥ 3.

Proof. It is enough to show that Z(R) is closed under scalar multiplication of its elements by
elements of R since Z(R) is not an ideal by hypothesis. Let a ∈ Z(R) and r ∈ R. There is
a non-zero element s ∈ R with sa = 0; hence s(ra) = r(sa) = 0. Thus ra is in Z(R). This
completes the proof.

For the proof of the next theorem, we need the following two lemmas, where the theorem
provides an example of a class of nonweakly firm semirings, which obviously is a class of non-
firm semirings. Namely, those semirings whose each set of zero divisors is an ideal. Note that
Z(R), the set of zero divisors of a semiring R, is an ideal of R when it is closed under addition).

Lemma 5.6. Let Z(R) be the set of zero divisors of a semiring R. Then xy ∈ Z(R) for x, y ∈ R
implies x ∈ Z(R) or y ∈ Z(R). So if Z(R) is an ideal of R, then Z(R) is actually a prime ideal
of R.

Proof. Suppose xy ∈ Z(R) and y 6= 0. Thus, by definition, there exists 0 6= z ∈ R such that
(xy)z = x(yz) = 0. Now the result follows when yz 6= 0 or yz = 0.

Lemma 5.7. Let R be a semiring whose set of zero divisors Z(R) 6= 0 is a nonzero ideal of R
and suppose that I is a nonzero ideal of R. Then I and Z(R) have a nonzero intersection and
hence Z(R) is essential.

Proof. Suppose that I is not contained in Z(R) and b ∈ I \ Z(R). Clearly, if I ∩ Z(R) = 0,
then ab = 0 for each nonzero a ∈ Z(R), which implies b is a zero divisor and hence yielding a
contradiction.

We are now in a position to prove our main result in this section, which has an epistemological
value and easily with a simple argument provides a sharp classification of commutative semirings
related to their nonweakly firmness.

Theorem 5.8. Let Z(R) be the set of zero divisors of a commutative semiring R such that P =
Z(R) is an ideal of R. Then R is not weakly firm and consequently, not firm. Further, if Z(R) 6=
0, then R is weakly anti-firm.

Proof. Obviously, if R is a semidomain, then the result is immediate since OP = 0 for any
prime ideal of R. Now, the proof follows directly from the above two lemmas since Z(R) is a
prime ideal by hypothesis and thus has a nonzero intersection with any nonzero prime ideal and
hence is weakly essential prime by definition. Clearly, OP = 0, which is obviously not (weakly)
essential and for the further part, see Definition 5.2.
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Remark 5.9. Note that the converse of the above theorem need not be true in general. That is,
there are some examples of (nonweakly firm) nonfirm semirings whose set of zero divisors is
not an ideal (see for example, Examples 5.3 and 5.4). Also, in order to check that Z(R) is not an
ideal of R, it suffices to show That x+ y /∈ Z(R) for some distinct elements x, y ∈ Z(R) (i.e.,
x + y is a regular element of R) since Z(R) is always closed under multiplication by elements
of R (see Lemma 5.5). For example, the set of the zero divisors of the direct product of unital
semirings with more than one factor is not an ideal.

It is possible for a semiring not to have an (weakly) essential prime ideal (see Examples 5.3
and 5.4). If we assume the Axiom of Choice (as we shall do whenever we need it), then a semir-
ing has an (weakly) essential prime ideal if and only if it has an (weakly) essential maximal ideal
(see Remark 2.3). A semiring with no (weakly) essential prime ideal is neither (weakly) firm nor
(weakly) anti-firm.

• In contrast to [4, Proposition 3.1] that states every ideal in a reduced firm ring is firm (when
viewed as a ring in its own right), we show in the following example that this is not true for
reduced weakly firm semirings in general.

Example 5.10. (cf. [4, Proposition 3.1]) Let R = R1 × R2 × R3 be a finite reduced semiring as
defined in Example 5.4, where each Ri is a semifield (1 ≤ i ≤ 3) and let I = R1 × R2 × {0}.
Clearly, by Example 5.4, R is weakly firm but I is not.

The following easy criterion shows that in order to check whether a semiring is (weakly) firm
we need only limit to maximal ideals.

Proposition 5.11. (cf. [4, Proposition 3.2]) The following two conditions are equivalent for a
semiring R which has an (weakly) essential ideal.

(a) A is (weakly) firm.

(b) OM is (weakly) essential for every (weakly) essential maximal ideal M of R.

Proof. The proof is similar to the proof of [4, Proposition 3.2]. (a) ⇔ (b): The left-to-right
implication is trivial because our blanket assumption is that all rings have the identity, so that
maximal ideals are prime. Conversely, suppose OM is (weakly) essential for every (weakly)
essential maximal ideal M . Let P be an (weakly) essential prime ideal of R (it exists by the
assumption and the fact that any ideal is contained in a maximal (prime) ideal) and clearly, if
I ⊆ J is (weakly) essential, then J is (weakly) essential by definition. Pick a maximal ideal M
with M ⊇ P . Then M is (weakly) essential, and hence OM is (weakly) essential by the present
hypothesis. But OM ⊆ OP , so OP is (weakly) essential. Therefore R is (weakly) firm.

We now end this section with three examples of nonweakly firm and anti-firm semirings.

Example 5.12. (cf. [4, Examples 3.1])

(a) A semidomain is never weakly firm.

(b) A local semiring R is never (weakly) firm since OM = 0 for its unique maximal ideal M ;
and it is weakly anti-firm if and only if it has at least one nonzero nonunit element.

(c) The local semiring N of nonnegative integers with the unique maximal ideal M = N \ {1}
is not weakly firm and it is weakly anti-firm sinceM is (weakly) essential. Indeed, U(N) =
{1} is the only unit of N .

6 Total Graphs and (Weakly) Firmness

In this section, we study some graph-theoretic properties of a (finite, weakly) firm semiring R
by applying some known results related to the total graphs of commutative semirings that are
taken (mainly) from Section 3 of [5]. That is, we relate (apply) some of the results of Section 3
of [5] to (weakly) firm semirings when Z(R) is not an ideal of R which is a consequence of the
(weakly) firmness of R by Theorem 5.8 above.



Weakly Firm Semirings with their Total Graphs 317

The total graph of a commutative ring R, denoted by T (Γ(R)), has been introduced and stud-
ied by D. F. Anderson and A. Badawi in [1]. It is the (undirected) graph with all elements ofR as
vertices, and for distinct x, y ∈ R, the vertices x and y are adjacent if and only if x+ y ∈ Z(R).
Their work is (mainly) divided into two cases depending on whether or not Z(R) is an ideal of R
([1, Sections 2 and 3]), respectively. They also study the three (induced) subgraphs Nil(Γ(R)),
Z(Γ(R)), and Reg(Γ(R)) of T (Γ(R)), with vertices Nil(R), Z(R), and Reg(R). Where Nil(R)
is the ideal of nilpotent elements, Z(R) is the set of zero-divisors, and Reg(R) is the set of reg-
ular elements of R, respectively.

•As a natural extension of the total graph of a commutative ring, S. Ebrahimi and F. Esmaeili
[5] study the notion of the total graph of a commutative semiring R. Hence, the total graph of R,
denoted by T (Γ(R)), is the (undirected) graph with all elements of R as vertices, and for distinct
x, y ∈ R, the vertices x and y are adjacent if and only if x + y ∈ Z(R), where Z(R) is the set
of zero-divisors of R. Consequently, similar to the work of D. F. Anderson and A. Badawi in
[1], the study of the total graph of a commutative semiring R breaks naturally into two cases
depending on whether or not Z(R) is an ideal of R.

We now begin with some examples of nonweakly firm semirings.

Example 6.1. Examples 4.4 and 4.5 in Section 4 of [5] are two examples of semirings R with
Z(R) an ideal of R and hence providing examples of nonweakly firm semirings by Theorem 5.8.

Example 6.2. Let R be a commutative semiring such that Z(Γ(R)) is complete. Then R is not
weakly firm.

Proof. The result follows from Theorem 5.8 since Z(R), as an implication of the hypothesis, is
an ideal of R.

• The rest of this section is devoted on the case when Z(R) is not an ideal of R which is
a consequence of weakly firmness of R. Since Z(R) is always closed under multiplication by
elements of R, this just means that there are distinct x, y ∈ Z(R)∗ such that x+ y ∈ Reg(R). In
this case, |Z(R)| ≥ 3 (see Lemma 5.5).

We next, for a (weakly) firm semiring R, determine the connectedness and diameter of
Z(Γ(R)).

Theorem 6.3. (cf. [5, Theorem 3.4]) Let R be a (weakly) firm commutative semiring. Then
Z(Γ(R)) is connected with diam(Z(Γ(R))) = 2.

Proof. The result follows from [5, Theorem 3.4] since Z(R) is not an ideal of R by Theorem
5.8.

We now conclude the paper with the following two results related to the girth of Z(Γ(R)) and
Reg(Γ(R)), respectively, when R is (weakly) firm and hence Z(R) is not an ideal of R. Recall
that |Z(R)| ≥ 3 if Z(R) is not an ideal of R.

Theorem 6.4. (cf. [5, Theorem 3.10]) Let R be a (weakly) firm commutative semiring. Then
either gr(Z(Γ(R))) = 3 or gr(Z(Γ(R))) =∞.

Proof. The result follows from [5, Theorem 3.10] since Z(R) is not an ideal of R by Theorem
5.8.

Theorem 6.5. (cf. [5, Theorem 3.12]) Let R be a (weakly) firm commutative semiring. Then
gr(Reg(Γ(R))) = 3 or∞.

Proof. The result follows from [5, Theorem 3.12] since Z(R) is not an ideal of R by Theorem
5.8.
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