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Abstract In this paper, we have studied conharmonic curvature inheritance (Conh CI) sym-
metry and its physical importance on the spacetime of general relativity. Also, we have obtained
some new results which are direct consequence of proper conformal symmetries. The necessary
conditions for a Conh CI vector to be a conformal Killing vector (CKV) have been obtained
and results for establishing its relationship between the other known symmetries of spacetimes
in general and Einstein spacetimes have been derived. Conh CI with conharmonic motion has
been discussed and it is found that a proper Conh CI can produce a new physically relevant so-
lution for perfect fluid spacetime. For Conh CI with conformal Killing vector in perfect fluid
spacetime, the equations of state have also been obtained.

1 Introduction

Under some transformations, the symmetry of a system is a physical or mathematical charac-
teristic that remains unchanged. In recent years, the study of symmetries of the spacetime has
gained more attention (cf., [1]). Some geometrical or physical quantities are preserved by these
transforms, including metric, curvature, Ricci, stress-energy and Einstein tensors of spacetime.
Existing solutions of Einstein and Einstein-Maxwell equations and their classification were ex-
plored earlier through spacetime symmetries. There are several applications of symmetries of
spacetime available in their relation with laws of conservation, such as the law of conservation of
momentum, energy etc. [2]. Most primary spacetime symmetries include conformal Killing, ho-
mothetic, Killing vector, matter, Ricci and curvature collineations. Different types of symmetries
have been studied by Stephani [3], Duggal [4], Hall [5] and Ahsan et. al. ([6] - [17]).

Let (V4, g) be a spacetime with V4 a four-dimensional connected smooth Hausdorff manifold
and a smooth Lorentzian metric g with signature (−,+,+,+). Symbols R and C are used
for (1, 3) type Riemannian curvature tensor and conformal curvature tensor respectively. The
components ( in local coordinates ) are written as Rhijk for Riemann curvature tensor, Chijk for
conformal curvature tensor, Rij for Ricci tensor, gij for metric tensor and R for scalar curvature
respectively, where Rij = Rhihj and R = Rijg

ij .
In 1992, the notion of curvature inheritance (CI) was introduced by K.L. Duggal in [18].

Curvature inheritance is the generalization of curvature collineation (CC) [19]. A spacetime
(V4, g) admits curvature inheritance if the relation

£ξR
h
ijk = 2αRhijk, (1.1)

is satisfied, where £ξ represents the Lie differentiation operator along a vector ξ in (1.1). The
vector ξ is called the curvature inheritance vector (CIV) and α = α(xi) is an inheriting factor.
In particular, if α = 0 then CI reduces to CC. If α 6= 0 then ξ defines a proper CI. Duggal
[18] showed that the proper CI has a direct connection with the physically applicable proper
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conformal Killing vector. Based on definition (1.1), CI does retain the physical importance of
Komar’s identity [20].

Generally, inheritance symmetry of spacetime is defined by a geometrical or physical object
mathematically as

£ξA = 2αA, (1.2)

where α is representing the scalar function on V4, and A is a geometrical/physical quantity like,
gij , Rhijk, and Rij etc. By fixing a quantity, we can define a specific inheritance symmetry. As
on substitution of gij in place of A, equation (1.2) defines conformal motion (Conf M) [21].
Similarly it defines for Rhijk, curvature inheritance (CI) [18], and for Rij , Ricci inheritance (RI)
[22]. Here it should be mentioned that for inheritance symmetry along CKV ( A=gij), the func-
tion α(xi) is called as conformal factor and for rest of the inheritance symmetries it is called as
inheriting factor. Further, if α = 0 in equation (1.2) then all the inheritance types will be reduced
to collineations. The most primary symmetry on (V4, g) is motion (M) or isometry, which is ob-
tained by setting A = gij and α = 0 in equation (1.2). Then equation (1.2) is called the Killing
equation and the vector ξ is called Killing vector.

In [23], Abdussattar and B. Dwivedi introduced conharmonic symmetries, and they have
established the relationship between the conharmonic Killing vector (Conh KV) and inherit-
ing symmetries. They have also studied anisotropic fluid spacetimes admitting Conh KV. A
spacetime (V4, g) admits a conharmonic curvature collineation (Conh CC) along a vector ξ it
£ξZ

h
ijk = 0, where Zhijk is represents the conharmonic curvature tensor of spacetime and the

vector ξ in this case is called Conh KV.
Inheritance symmetry vectors are beneficial in study the Einstein’s field equations (EFEs)

and their exact solutions. EFEs are given by

Rij −
1
2
Rgij = κTij , (1.3)

where gij , Rij , and Tij signify the components of metric, Ricci tensor, and energy momentum
tensor respectively and scalar curvature is denoted by R and κ is the gravitational constant. In
this paper, we consider equation (1.3) for κ = 1. Symmetry vector also determines conservation
law ([20], [24]).

However, a recent study [23] shows only the limited use of Conh KV in general relativity,
but the continuity of the work prevails. This is due to the restriction �ψ = gijψ;ij = 0 and
ψ;ij 6= 0, which gives the equation of state in the perfect fluid spacetime cases i.e., one can say
that, perfect fluid models are not included. On the other way, Conh KV is significant due to their
various applications in cosmology and astrophysics [23]. This suggests that there is a need to
modify the concept of Conh KV, compatible with a proper CKV and other symmetries.

In 2021, [1] M. Ali et. al., introduce a new type of symmetry called conharmonic curvature
inheritance (Conh CI ) along a vector field ξ such that:

£ξZ
h
ijk = 2αZhijk, (1.4)

where Zhijk represents the conharmonic curvature tensor and α = α(xi) is an inheriting factor on
V4. In particular, Conh CI implies to Conh CC when α = 0 and for α 6= 0, equation (1.4) defines
a proper Conh CI along a vector ξ. In the article [1], the authors studied conharmonic curvature
inheritance symmetry of spacetime of general relativity when inheriting factor (α) and conformal
factor (ψ) are same (α = ψ). In this paper, we have studied conharmonic curvature inheritance
symmetry when inheriting factor and conformal factor are different (α 6= ψ). Equation (1.4) can
also be explicitly written as the following :

Zhijk;lξ
l − Zlijkξh;l + Zhljkξ

l
;i + Zhilkξ

l
;j + Zhijlξ

l
;k = 2αZhijk. (1.5)

Here (;) stands for the covariant derivative with respect to (xi) co-ordinates in the spacetime.
The importance of the study of Conh CI is a very helpful tool in finding the invariance properties
of some geometrical objects like the Einstein tensor. Einstein’s tensor plays a significant role
in the theory of general relativity, as it connects with the matter contents of spacetime. Also,
Einstein field equations and their solutions depend on these tensors. Such studies also contribute
to explore the physical fields in a certain region of spacetime, and their reflections represent the
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symmetries of the metric. Now using the symmetry aspects of perfect fluid spacetime in the
general theory of relativity where the energy-momentum tensor is defined as

Tij = (µ+ p)uiuj + pgij , (1.6)

where p, µ and ui are isotropic pressure, energy density and four velocity vector respectively.
The layout of the paper is the following. In section 2, we give some basic information about

conharmonic curvature inheritance and related results, which is required for this paper. Section
3 is categorized into three subsections. In the first subsection, we study Conh CI with conformal
motion and investigate the necessary condition for a Conh CIV to be a CKV. In particular, some
results are obtained in the Einstein spacetime . In the next subsection, we derive the relationship
of Conh CI with conharmonic motion in general spacetime and Einstein spacetime. In the last
subsection of Section 3, we construct a block diagram that represents the relationship of Conh
CI with other well-known symmetries of spacetime. Finally, we give a physical application
in perfect fluid spacetime, which is discussed in Section 4. A concise summary and valuable
discussion regarding physical significance are presented in the last section.

2 Conharmonic Curvature Inheritance

Conharmonic curvature tensor on (V4, g) is denoted by Zhijk and defined as follows ([25]-[26]):

Zhijk = Rhijk +
1
2
(δhjRik − δhkRij + gikR

h
j − gijRhk), (2.1)

where δhj stands for Kronecker delta and Rhk = gihRik.

Definition 2.1. Let (V4, g) be a spacetime with Lorentzian metric g. A vector field ξ that pre-
serves a spacetime conharmonic curvature tensor constant up to some scalar function all along
the way is called a Conh CI vector field, while scalar function in this case is called inheriting
factor. Mathematically, a Conh CIV is defined as follows [1]:

£ξZ
h
ijk = 2αZhijk. (2.2)

If inheriting factor α = 0, Conh CI reduces to Conh CC. If α 6= 0, it is said that spacetime admits
a proper Conh CI.

Theorem 2.2. In a Ricci flat spacetime, Conh CI symmetry reduces to CI symmetry.

Proof. In Ricci flat spacetime (empty spacetime), Ricci tensor vanishes identically (Rij = 0)
then equation (2.1) implies that conharmonic curvature tensor reduces to Riemannian curvature
tensor. Then

£ξR
h
ijk = £ξZ

h
ijk = 2αZhijk = 2αRhijk.

This completes the proof.

Contracting equation (2.1), then

Zij = −
1
2
gijR, (2.3)

where Zij = Zhihj known as contracted conharmonic curvature tensor [27]. Now contracting
equation (2.2) over indices h and j, we obtain

£ξZij = 2αZij . (2.4)

Definition 2.3. A vector field ξi satisfying (2.4) is called contracted Conh CIV.

Thus, in general, every Conh CIV is a contracted Conh CIV, but converse may not be true.
Suppose that

~ij = £ξgij = ξi;j + ξj;i. (2.5)
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Mathematically the conformal curvature tensor of spacetime is defined as follows (cf., [26])

Chijk = Rhijk +
1
2
(δhjRik − δhkRij +Rhj gik −Rhkgij) +

R

6
(gijδ

h
k − gikδhj ) (2.6)

and also, it may be expressed in terms of Zhijk and Zij as follows

Chijk = Zhijk +
1
3
(Zikδ

h
j − Zijδhk ). (2.7)

Similarly Weyl projective tensor for spacetime defined as (cf., [26])

Wh
ijk = Rhijk +

1
3
[δhjRik − δhkRij ] (2.8)

and also, it may be expressed in terms of Zhijk and Zij as

Wh
ijk = Zhijk +

1
12

(Zikδ
h
j − Zijδhk ) +

1
4
(ghkZij − ghj Zik). (2.9)

In general, for a Conh CIV ξ, use of equations (2.2) and (2.5) leads to the following identities.

Theorem 2.4. If a spacetime admits a Conh CI then the following identities hold:

(a) £ξC
h
ijk = 2αChijk, (b) £ξW

h
ijk = 2αWh

ijk +Ehijk, (2.10)

where Ehijk =
1
4(~

h
kZij − ~hjZik).

Proof. Operating the Lie differentiation on equation (2.7) and then using (2.2) and (2.4), we
obtain

£ξC
h
ijk = 2αChijk, (2.11)

which completes the proof of (2.10)(a). Similarly, we can prove (2.10) (b) by taking the Lie
derivative of (2.9) and then using equations (2.2), (2.4), and (2.5).

Remark 2.5. Theorem 2.4 indicates the significance of using Conh CI over CI. It motivates the
Conh CI symmetry of spacetime since it implies the conformal curvature inheritance symmetry.
While the CI does not inherits symmetry for conformal curvature tensor.

It is known that the spacetime (V4, g) is conformally flat [28] iff

Chijk = 0, (2.12)

projectively flat [28] iff
Wh
ijk = 0, (2.13)

and conharmonically flat [27] iff
Zhijk = 0. (2.14)

The tensors Zhijk and Chijk become identical if the scalar curvature of spacetime is zero. Then,
conformal curvature tensor satisfies the symmetry inheritance property ((2.10)(a)) provided the
spacetime admits the Conh CI along a vector field ξ.

Theorem 2.6. A conformally flat spacetime admits Conh CI if and only if there exits a conformal
Killing vector ξ, provided the conformal factor and the inheriting factor are the same.

Proof. Let us assume that spacetime is conformally flat then equation (2.6) reduces to

Zhijk =
R

6
(gikδ

h
j − gijδhk ). (2.15)

We take Lie derivative of (2.15), then from (2.2), we get

£ξgij = 2αgij . (2.16)
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Thus, we can say that ξ is a conformal Killing vector field.
Conversely, operating Lie derivative on both sides of (2.15), we obtain

£ξZ
h
ijk =

R

6
(δhj£ξgik − δhk£ξgij). (2.17)

If ξ is a conformal Killing vector field then we have

£ξZ
h
ijk = 2αZhijk. (2.18)

This completes the proof.

Theorem 2.7. If a spacetime (V4, g) admits a Conh CIV ξi, then

(ξmRim);i = Rα. (2.19)

Proof. A Conh CIV satisfies the explicitly written equation (1.5). Contracting the equation
(1.4) then making use of Zij = −2Rij and the contracted Bianchi identity, we get the equation
(2.19).

Now we consider equation (2.5), which shows variation in metric tensor gij with respect to a
Conh CIV ξ. The following identity holds in general

~l(hZli)jk = 0. (2.20)

Generally, the solution of above identity (2.20) is expressed as

£ξgij = 2βgij +Mij , (2.21)

where β is scalar function on (V4, g) and Mij is a second order symmetric tensor. Equation
(2.21) can be classified into the following types:

Type- I. If Mij = 0, then (2.21) reduces to Conf M or conformal Killing equation.

Type-II. If Mij 6= 0 and Mij 6= gij , then ξ is a non-conformal vector.

It may be noted that the metric inheritance or non-inheritance, depends on whether (V4, g) be-
longs to type-I or type-II. In the context of inheritance symmetry, a pervasive study has been
done on the symmetries defined by metric with the help of type-I or type-II ([4] - [22]).

At this stage, we quote that as the components of Riemann curvature tensor arise on a space-
time (V4, g), admitting a connection that may not be a metric connection. Hence we have a
reason that why do we compare the curvature or conharmonic curvature symmetries to metric
symmetries. The answer can be given two ways for geometry and physics.

From the physics point of view, the answer can be made due to the study of congruence of
timelike geodesics and their deviation O2

tv
i = Rijklu

jukul. Here, ui and vi are the vectors,
tangential to timelike geodesic satisfying uivi = 0 and ‘t’ is the proper time (cf., [29], [5]).

And, from the geometry point of view, the answer will be obtained in forming a Lie algebra
of finite dimension, generated by the set of conformal Killing vectors even if these are at least
of C3. On contrary, it is not necessary that structure of Lie algebra with smooth C∞ curvature
inheritance symmetry vector of dimension is finite. If smooth differentiablity condition is not
considered, then we may lose the structure of Lie algebra for the curvature inheritance vector
(cf., [29], [5]).

For type-II, due to the presence of a different tensor Mij in (2.21) we find that the group
structure cannot be guaranteed, and many examples justify the comparison. The reader may
also find other physical/geometrical reasons for comparison. In this paper our focus is on study
related to only type-I, while type- II will be our subsequent work.
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3 Conharmonic Curvature Inheritance with Conformal Motion

In this section, we discuss conharmonic curvature inheritance symmetry with conformal motions,
which is defined in ([21]) as follows:

~ij = £ξgij = 2ψgij , (3.1)

where ψ = ψ(xi) is a conformal factor on (V4, g), ξi is called conformal Killing vector and (3.1)
is called conformal Killing equation. If ψ = 0, then, ξ is called a KV and (3.1) is called Killing
equation. If ψ;i = 0, then, ξ is called a HV and (3.1) is said to be homothetic motion (HM). If
ψ;ij = 0 and ψ;i 6= 0, then, ξ is said to be a special conformal Killing vector (SCKV) and (3.1) is
said to be special conformal motion (S Conf M). Further, it is found that the following equations
are satisfied by a CKV (cf., [18], [30]):

(a) £ξRij = −�ψgij − 2ψ;ij ,

(b) £ξR = −6�ψ − 2ψR,
(c) £ξC

h
ijk = 0,

(3.2)

where Laplacian-Beltrami operator � of ψ is the defined as, �ψ = ψ;ijg
ij .

Theorem 3.1. A Conh CIV ξi, which is a CKV and also satisfies Komar’s identity, then the vector
field ξi necessarily holds the following condition:

[[
√
g(ξi;j − ξj;i)];j ];i = 0. (3.3)

Proof. It is known that the conharmonic curvature tensor satisfies the identity [1],

Ziklmgij + Zijlmgik = 0. (3.4)

Operating the Lie derivative of (3.4) and using equations (2.2) and (3.1), we obtain

Ziklm~ij + Zijlm~ik = 0. (3.5)

Now using expression (2.1) for Zhijk and (3.1) in (3.5), we get

Riklm~ij +Rijlm~ik = 0. (3.6)

By virtue of the Ricci identity, (3.6) reduces to following form

~ij;kl − ~ij;lk = 0. (3.7)

Thus, a necessary condition for a vector ξi which is defined Conh CI as well as CKV are repre-
sented by equation (3.7). Multiplying by √ggilgjk in equation (3.7), we obtain (3.3). This leads
the proof.

In the general theory of relativity, Komar’s identity [20] directly exhibits a key role for es-
tablishing a conservation law. Along any vector field ξ, (3.3) holds, so the Conh CI’s are the
symmetries of (V4, g) that are admitted through the group of coordinate transformations for gen-
eral curvilinear system. Thus, we proceed to the following theorem:

Theorem 3.2. Let a set S = {Ω∧ : ∧ = 1, 2, 3, 4, 5, ...,m} of all those geometric objects which
satisfy the conharmonic inheritance symmetry on (V4, g), and the set S′ = {ξ1, ξ2, ..., ξn} of
vector fields, under which all Ω∧ inherit conharmonic symmetry, then the set S′ forms a Lie
algebra of finite dimension.

Proof of the Theorem 3.2 is obvious by virtue of the Theorem 3.1.

Theorem 3.3. Let a spacetime (V4, g) admits a conharmonic curvature inheritance vector ξ,
which is also a conformal Killing vector. Then

(a) �ψ = −α3R,
(b) ψ;ij =

α
6Zij ,

(c) α = 4ψ + ξi∂i(log
√
R).

(3.8)
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Proof. Taking the Lie derivative of (2.3) then using equations (3.1) and (3.2)(b), we obtain

£ξZij = 3�ψgij . (3.9)

Now comparing the equation (3.9) with (2.4), and then using (2.3), we get

�ψ = −α
3
R. (3.10)

This leads to the proof of the first part. Proof of the second part follows from (3.10), �ψ =
ψ;ijg

ij , on multiplication with gij , then we get

ψ;ij = −
αR

12
gij . (3.11)

From (2.3), equation (3.11) reduces to (3.8) (b). Now we prove the last part. For a CKV, ψ must
satisfy the condition, ψ = 1

4ξ
i
;i, with this condition equation (2.19) leads to

αR = (4ψR+ ξmRim;i). (3.12)

Now we apply contracted Bianchi identity (cf., [21]), Rim;i = 1
2∂mR, in (3.12), and we get

α = 4ψ + ξi∂i(log
√
R). (3.13)

The proof is completed.

Corollary 3.4. From Theorem 3.3, it can be deduced that if ξ is a Killing or homothetic or special
CKV, then there exists no Conh CIV other than Conh CCV.

The proof follows from (3.8) (b) with use of condition ψ;ij = 0 for Killing, homothetic or special
conformal Killing vector.

Corollary 3.5. If an Einstein spacetime admits inheriting symmetry (1.2) then inheriting factor
and conformal factor are scalar multiple each other.

Proof. As we know, scalar curvature of an Einstein spacetime is constant ∂iR = ∂R
∂xi = 0, then

equation (3.8)(c) reduces to α = 4ψ. Thus, inheriting factor and conformal factor are scalar
multiple to each other.

Corollary 3.6. From Theorem 3.3 and Corollary 3.5, it is found that operator� follows an eigen
function equation, �α = λ α, where λ = (−R3 ).

Theorem 3.7. If an Einstein spacetime admits conharmonic curvature inheritance symmetry,
then the Ricci tensor admits the symmetry inheritance property.

Proof. Let (V4, g) be an Einstein spacetime with (R6= 0) which is defined as follows:

Rij =
R

4
gij , (R= const). (3.14)

Now (3.14) can be expressed in terms of Zij as follows:

Rij = −
Zij
2
. (3.15)

Now taking Lie derivative of (3.15) and using (2.4), we get

£ξRij = −αZij , (3.16)

which on using (3.15), equation (3.16) reduces to

£ξRij = 2αRij . (3.17)

Thus, Ricci tensor admits the symmetry inheritance property.
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Since Duggal [18] has proved a result for CIV as “Every proper CIV in an Einstein spacetime is
a proper CKV with α = ψ.” From this statement and Theorem 3.7, we have the following.

Corollary 3.8. In a space of constant curvature, every Conh CIV is a proper CKV with ψ = α.

Theorem 3.9. A spacetime (V4, g) admits a proper Conh CI with a proper CKV is necessarily a
conformally flat space.

Proof. For a proper Conh CI, (V4, g) holds the equation (2.10) (a). Since (V4, g) also admits a
CKV, then it satisfies the equation (3.2) (c). Now combining both equations, we get

Chijk = 0, (α 6= 0). (3.18)

Thus, from (2.12), (V4, g) is a conformally flat space.

Conformally flat spacetime is the important one in the category of flat spaces for both fields
viz., differential geometry and general theory of relativity. Thus, the study of spacetime sym-
metries (curvature collineation ) in conformally flat spacetimes has a great importance that has
attracted many recent interests. G S Hall [31] and his collaborators have worked on curvature
collineation in conformally flat spacetime. Furthermore, [32] G. S. Hall, J. R. Pulham, and A.
D. Hossack have discussed the Lie algebra structures of CKV for conformally flat plane waves.
Enrique Alvarez and Raquel Santos-Garcia [33] present a new class of conformal field theory,
when the background gravitational field considered to be as conformally flat. Conformally flat
spacetimes enjoy conformal properties, quite similar to the that of flat spacetimes. Now here
we propose the problem of finding all conformally flat spaces which admit a Conh CI vector,
including those manifolds, which also admit conformal Killing vector.

Example 3.10. Let (V4, g) be an Einstein spacetime admits a Conh CI vector ξ. It follows from
Corollary 3.8, and use of equation (3.8)(b) leads to

α;ij = (−αR
12

)gij , (3.19)

where α and R are scalar function of spacetime (V4, g). We consider the single scalar function φ
instead of (−αR12 ) in (3.19), then we obtain

α;ij = φgij . (3.20)

Petrov [2] refers a finding of Sinyukov [34], which explains that, if a spacetime (V4, g) is admit-
ting a vector field φ;i satisfying (3.20) for φ 6= 0, then an existing co-ordinate system has metric
of the form:

ds2 = g11dx
1dx1 + (

1
g11

)Γab(x
2, x3, x4)dxadxb, (3.21)

where a, b 6= 1 and g11 = [2
∫
φ(x1)dx1 + C]−1 and arbitrary function φ = φ(x1).

This example of (V4, g) with metric (3.21) is well suited with Theorem 3.3 and Corollary 3.8.

Theorem 3.11. If a spacetime (V4, g) admits projective collineation and Ehijk = 0, then the
spacetime does not admit Conh CIV other than a Conh CCV.

Proof. Let (V4, g) admits a projective collineation (PC) vector ξ such that

£ξW
h
ijk = 0. (3.22)

If ξ is also a Conh CIV, it is evident from (2.10) (b) that, either α=0⇒ ξ is Conh CCV orWh
ijk=0.

Thus, (V4, g) has constant curvature and so V4 is Einstein spacetime, then use of corollary 3.8
leads to the statement that every PCV is also CKV. Yano [21] has proved a result as “If ξ is
both CKV and PCV, then it is homothetic vector.”Applying this, we obtain that α = 0 is only
possibility, hence it proves the Theorem.

Theorem 3.12. If ξ is a CKV and CIV in a (V4, g), then the symmetry of the conharmonic curva-
ture tensor is an inheriting symmetry.
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Proof. Taking the Lie differentiation of the equation (2.1) and use of the inheritance symmetry
properties of Riemannian curvature tensor (cf., [18]), i.e. £ξR

h
ijk = 2αRhijk, £ξRij = 2αRij

and £ξR
i
j = 2αRij −Rim~mj and equation (3.1), we obtain

£ξZ
h
ijk = 2αZhijk +Mh

ijk, (3.23)

where
Mh
ijk =

1
2
[gij~hmRmk − gik~hmRmj +Rhj ~ik −Rhk~ij ]. (3.24)

Again using equation of CKV and (3.1) in (3.24) we get Mh
ijk = 0, and equation (3.23) thus

reduces to

£ξZ
h
ijk = 2αZhijk.

Thus, conharmonic curvature tensor satisfies symmetry inheritance property.

Remark 3.13. Theorem 3.12 also holds good, if conformal factor is equal to inheriting factor in
spacetime (V4, g).

Theorem 3.14. If ξ is a CKV and RIV in a (V4, g) under consideration of conharmonic curvature
inheritance symmetry, then the symmetry of Riemannian curvature tensor is an inheriting one.

Proof. Taking Lie differentiation of the equation (2.1) and then using the inheritance symmetry
properties of conharmonic curvature tensor £ξZhijk = 2αZhijk, Ricci tensor £ξRij = 2αRij and
£ξR

i
j = 2αRij −Rim~mj in (3.1). Then, we obtain

£ξR
h
ijk = 2αRhijk +Mh

ijk,

where Mh
ijk is denoted in equation (3.24). Since Mh

ijk = 0, for a CKV, we obtain CI along a
vector field ξi. The proof is competed.

Remark 3.15. Every CIV is RIV, but the converse need not be true in general. However, when
spacetime admits RIV and CKV under consideration of conharmonic curvature inheritance sym-
metry then converse also holds good. This shows the utility of our Theorem (3.9).

3.1 Conharmonic Motion

Abdussatar and Babita Dwivedi [23] introduced a new type of conformal symmetries known as
conharmonic symmetries. The conharmonic motion (Conh M) is given by

�ψ = gijψ;ij = 0, α;ij 6= 0. (3.25)

Similarly a Conharmonic Collineation (Conh C) is admitted conformal Collineation ( Conf C)
when following equation holds together with condition (3.25)

£ξΓ
i
jk = δijψ;k + δikψ;j − gjkgilψ;l. (3.26)

If a vector field ξ satisfies
£ξZ

h
ijk = 0, (3.27)

then (V4, g) admits a conharmonic curvature collineation (Conh CC). Clearly every Conh M is a
Conh CC and Conh C but the converse need not be true. From equation (2.7) it is evident that
Conh CC is a Conf C. The conharmonic motion satisfies

£ξR
h
ijk = δhj ψ;ik − δhkψ;ij + ψh;jgik − ψh;kgij , (3.28)

£ξRij = −2ψ;ij , (3.29)

£ξR
j
k = −2ψj;k − 2ψRjk, (3.30)
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£ξR = −2ψR. (3.31)
Multiplying by gij in equation (3.29) and in view of (3.25), we get

gij£ξRij = 0. (3.32)

Thus, we can say that Conh M reduces to a contracted Ricci collineation, but converse need not
be true. We also have the following:

Theorem 3.16. If a spacetime (V4, g) admits a Conh CI and proper Conh M, then following
holds:

(a) scalar curvature vanishes,
(b) (α− 4ψ) = 0,
(c) Zij = 0,
(d) the conformal curvature tensor follows inheritance symmetry property.

Proof. As every proper Conh M is proper Conf M, and under the hypothesis of Theorem 3.3
and using (3.8) (a), its comparing with (3.25), we find that scalar curvature vanishes i.e., R = 0.
Proof of second part follows from (3.8) (c) and R = 0. For proof of next part, we use equation
(2.3) under consideration of first part, leads to Zij = 0. Finally, we use equation (2.7) with R = 0
and then take the Lie derivative, which implies that symmetry of the conformal curvature tensor
of the spacetime is inherited, i.e., £ξChijk = 2αChijk.

Theorem 3.17. If a spacetime (V4, g) admits proper Conh CI and Conh M. Then that spacetime
is conharmonically flat.

Proof directly follows from equation (3.27).

Example 3.18. Now, we are taking a cosmological model of plane-symmetric perfect fluid dis-
tribution [23] which illustrates the Theorem 3.17. This cosmological model was introduced by
Singh and Singh in [35]. This model is also plane-symmetric perfect fluid of class one and not
conformally flat. The metric of such a model is as follows,

ds2 = (at+ 1)2(−dt2 + dx2 + dy2) + (bt+ 1)dz2, (3.33)

here a, b≥ 0, ≤ 0 or =0. We find out a conharmonic Killing vector of metric (3.33) is, ξ = (Aa )δ
i
0,

which is also a Conh CIV ( Conf M + CI⇒ Conh CI) only when a=b with α = ψ = A
at+1 , here

A is constant. However, if a = b the cosmological model represented by metric (3.33), reduces to
a conformally flat, and also in case (k=0) it becomes FRW model of universe filled with uneven
radiation.

Remark 3.19. Siddiqui and Ahsan [36] have studied relativistic significance of conharmonically
flat spacetime. A conharmonically flat spacetime has a space of constant curvature (Einstein
spacetime). The importance of such spaces is due to the interest in study of the cosmology. For
further details, see [37].

Let the spacetime (V4, g) be an Einstein spacetime with nonzero scalar curvature (R 6= 0),
which is expressed as follows:

Rij =
R

4
gij , R = constant. (3.34)

On operating Lie derivative on (3.34), we get

£ξRij =
R

4
£ξgij . (3.35)

Let us consider the Einstein spacetime admitting a Conh M along a vector ξ, then using (3.29)
and (3.1) in equation (3.35), we obtain

−2ψ;ij =
R

2
(ψgij). (3.36)

Multiplying both sides of (3.36) by gij , we get�ψ+Rψ = 0. For Conh M,�ψ = 0, thusR = 0,
which is contradiction. Hence, we state the next theorem as follows

Theorem 3.20. An Einstein spacetime (V4, g) with nonzero scalar curvature does not admit Conh
M along any vector field ξ.
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3.2 Relation with other spacetime symmetries

In this subsection, we construct a block diagram (Fig.1), that summarizes the relationship of
Conh CI with some other well-defined symmetries of the spacetime, few are discussed in this
article earlier. The block diagram may be read in the following manner: If a spacetime (V4, g)
admits symmetry and it is denoted in any block of Fig.1., then a subcategory of the symmetries
described in adjacent blocks directed by the arrows is leaded from the given block. For example,
if an AC is admitted by (V4, g), then the transformation which defines the AC also fulfills the
requirement for being a SCC and SPC. Similarly we have given different symmetries through
the diagram.

We mention clearly, that if the Ricci tensor vanishes, then the dashed arrows should be
considered. Specially, dashed arrows in the cases of curvature collineation to Weyl conformal
collineation and Conh CC are directed to reverse also, i.e. if Rij = 0 then curvature collineation
is a Weyl curvature collineation, similarly for all CC is a conharmonic curvature collineation
and vice-versa also hold good in both cases. This block diagram corrects an error formed in the
previous block diagram constructed by Abdussatar and Babita Dwivedi 1998 (Fig.1, [23]), block
Conh M to block Conh CC by solid line and also block CC to Conh CC by dashed arrows in
both directions. Furthermore, Katzin and his collaborators 1969 and 1972 (Fig.1, [19] and Fig.1
[20]) and Ahsan in 1987 [8] also provided a block diagram for relationship between spacetime
symmetries. In addition, three new symmetry blocks(CI,RI and Conh CI) have been introduced
with several new connecting lines.

Abbreviation of spacetime symmetries in the block diagram (Fig.1.) is same as block diagram
of references the ([8] and [19] - [23]) except CRC, CI, RI and Conh CI and furthermore, details
in this context also refer with same references.

1. CI - Curvature Inheritance (£ξRhijk = 2αRhijk).
2. RI - Ricci Inheritance (£ξRij = 2αRij).
3. CRC - Contracted Ricci Collineation (gij£ξRij = 0).
4. Conh CI - Conharmonic Curvature Inheritance (£ξZhijk = 2αZhijk).

It may be noted that the block diagram can be improved further, by adding some new symme-
tries and way of defining the terms. In present diagram we give place to few blocks showing
symmetries, which are studied in this paper.
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4 Application in fluid spacetime

Let (V4, g) represents the perfect fluid spacetime for general theory of relativity and satisfying
the Einstein field equations without cosmological constant,

Rij −
R

2
gij = Tij , (4.1)

where R denotes for the scalar curvature and Tij represent the stress-energy tensor, which for
perfect fluid spacetime is given by

Tij = (p+ µ)uiuj + pgij , (4.2)

where ui, p, and µ are representing the fluid flow velocity, isotropic pressure, and energy density,
respectively. We are considering that equation (4.2) is self similar then it admits a HM which is
defined as follows,

£ξgij = 2ψgij , ψ,i = 0. (4.3)

Since homothetic motion generates self- similarity on the stress energy tensor. Therefore under
consideration of dimensional analysis [4], the physical quantities (µ, p, ui) admits symmetry
inheritance along a vector ξi, which is expressed as follows:

£ξµ = −2ψµ, (4.4)

£ξp = −2ψp, (4.5)

£ξu
i = ψui. (4.6)

If ξ is homothetic vector then necessarily it implies that £ξTij = 0, from this we conclude that
energy momentum tensor is invariant along the homothetic vector ξ. Invariant characteristic of
the HM for stress energy tensor has been very applicable in finding the exact solutions of the
EFEs (4.1). Due to the invariant characteristic of symmetry only, HV has been suitable for other
vectors corresponding to higher symmetries. Equation (4.3) is also referred to as conformal
Killing equation ([18],[4]).
Now here, we are considering the exceptional case for Einstein spacetime to be the perfect fluid
spacetime with µ+ p = 0 , then EFEs (4.1) reduces to

Rij −
R

2
gij = −µgij , (R = 4µ). (4.7)

Consider the de- Sitter spacetime metric as following

ds2 = (dx2
1 + dx2

2 + dx2
3)e

2nx4 − dx2
4, where (x1, x2, x3, x4) = (x, y, z, t). (4.8)

Metric (4.8) admits a proper conformal Killing vector ξi = (enx4 , 0, 0, 0, ), when ψ = ∂x4(e
nx4) =

nenx4 . Now we compute the components of Riemann curvature tensor and Ricci tensor. Use of
equation (2.1) ( taking Lie derivative ), yields that ξ is a Conh CI when α = ψ and µ = 3n2.

The field equation (4.7) for an Einstein spacetime (V4, g) and Corollary 3.8 indicate that if
(V4, g) admits a Conh CI vector ξ, then its energy momentum tensor, Tij = −µgij is a symmetry
inheritance along the vector ξ. Thus, Theorem 3.7 can be extended in fluid spacetime other than
perfect fluid, and also we get the following symmetry inheritance equation:

£ξTij = 2αTij . (4.9)

Equation (4.9) leads to the following result,

Theorem 4.1. Let a spacetime (V4, g), with Einstein field equation (4.1), admits a Conh CIV ξ.
Then, ξ is also satisfies a Conf M iff stress energy tensor Tij admits the inheritance symmetry.



Conharmonic curvature inheritance symmetry 391

Theorem 4.2. If (V4, g) be a perfect fluid spacetime admits a Conh CIV ξ as well as a CKV. Then
(V4, g) satisfying the following equations:

(a) £ξTij = 2αTij ,
(b) £ξui = ψui,

(c) £ξµ = 2(α− ψ)µ,
(d) £ξp = 2(α− ψ)p.

(4.10)

Proof. Firstly we operate £ξ over equations (4.1) and then use of equation (3.1) with (3.2) (a)
and (3.2) (b), leads to

£ξTij = 2�ψgij − 2ψ;ij . (4.11)

Now using equation (4.2) in left part of (4.11), and then contracting with uiuj , hij , hjku
i, and

hikh
j
l −

1
3h

ijhkl, we get following equations respectively

£ξµ = −2µψ − 2�ψ − 2uiujψ;ij , (4.12)

£ξp = −2pψ − 4
3
�ψ − 2

3
uiujψ;ij , (4.13)

(p+ µ)vi = 2[ujψ;ij + uiu
kulψ;kl], (4.14)

and ψ;ij =
1
3
uiuj [�ψ − 2ukulψ;kl] +

1
3
gij [�ψ + ukulψ;kl]− ψ;iku

kuj − ψ;jku
kui. (4.15)

For perfect fluid equations (4.1) and (4.2) together, we have

Rij −
R

2
gij = (µ+ p)uiuj + pgij . (4.16)

Contracting it with uj , using R = (µ− 3p) and ujuj = -1 ( uj supposed to be a time like vector
) indicates that ui is an eigen vector of Rij

Riju
j = −(3p+ µ

2
)ui. (4.17)

Now using equation (4.17) in the equation (3.11) and by multiplication with uiuj , we get

ψ;iju
iuj = −2

3
(3p+ 2µ). (4.18)

Using the above equation in (4.12) with consideration of equation (3.8)(a), energy density inher-
its a symmetry

£ξµ = 2(α− ψ)µ. (4.19)

Next, use of equation(4.18) in equation (4.13) with under consideration of equation (3.8)(a),
isotropic pressure inherits a symmetry

£ξp = 2(α− p)µ. (4.20)

As we know, for a CKV vector field ξ in fluid spacetime, the following result holds [38]:

£ξui = −αui + vi. (4.21)

Again use of equation(4.18) in equation (4.14) and due to virtue of ψ;iju
j = (ψ3 )[3p+ 2µ]ui, we

obtain
vi = 0, (µ+ p) 6= 0. (4.22)

From above equation with (4.21) implies to £ξui = −αui. Finally, we prove the first part of the
Theorem use of equations (4.15), (4.18) and ψ;iju

j = (ψ3 )[3p+2µ]ui. Further, use of (4.11) and
(3.8)(a), from this implies that energy momentum tensor inherits a symmetry

£ξTij = 2αTij . (4.23)

This completes the proof.
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If a conformal Killing vector ξ satisfies (3.1), then following dynamic result holds [38]:

(Rijξj);i = −3�ψ. (4.24)

Due to Einstein field equation, then equation (4.24) takes another form as following,

[(T ij +
1
2
Rgij)ξj ];i = −3�ψ, R = −T = (µ− 3p). (4.25)

Equation (4.25) is equivalent to newly formed dynamical equation (5.1) if (V4, g) also admits a
conharmonic curvature inheritance vector. From equation (3.8) (a) in Theorem 3.3 ( −3�ψ =
αR), thus equation (4.25) reduces to

[(T ij +
1
2
Rgij)ξj ];i = αR, R = −T. (4.26)

Hence, under consideration with Theorem 4.2, equation (4.26) describes the equations of state
for a various form of fluid distribution. Finally, applying the Theorem 4.2 to describe physical
meaning of equations of state for two cases. The energy momentum tensor T ij for perfect fluid
is defined as equation (4.2), we have

[(T ij +
1
2
Rgij)ξj ] = [(µ+ p)uiuj + pgij +

1
2
Rgij ]ξj . (4.27)

Now, for perfect fluid, we deal with two cases:
Case - I. In this case we assume that ui ‖ ξi, then right part of equation (4.27) reduces to
−( 3p+µ

2 )ξi. When this is substituted in equation (4.26), and making use of equations (4.10) (c),
(4.10) (d) and ξii = 4ψ, we get

ψ(3p+ µ) = −2αµ. (4.28)

(a) For α = 0 and ψ 6= 0, equation (4.28) leads to (3p+ µ) = 0.
(b) For α = ψ 6= 0, (4.28) reduces to equation of state, (p+ µ) = 0, then Tij = −µgij .
(c) For α 6= 0 ( proper Conh CI), equations (4.28) provides meaningful state equation for differ-
ent value of ψ and α. Consider the comparatively simpler case for which

α = −m2ψ, m =constant. (4.29)

Equation (4.29) provide the following equation of state for ψ 6= 0,

µ =
3p

2m2 − 1
. (4.30)

where m2 depends upon the energy conditions.
Case - II. In this case we assume that ui ⊥ ξi, then right part of equation (4.27) reduces to
(µ−p2 )ξi. When this is substituted in equations (4.26) with use of equations (4.10) (c), (4.10) (d)
and ξii = 4ψ, we obtain

ψ(µ− p) = −2αp. (4.31)

(a) For α = 0 and ψ 6= 0, then equation (4.31) implies to (p− µ) = 0.
(b) For α = ψ 6= 0, (4.31) reduces to (p+ µ) = 0, then Tij = −µgij .
(c) For α 6= 0 ( proper Conh CI), equations (4.31) get equation of state for different value of ψ
and α. We consider the simplest type

α = −m2ψ, m =const. (4.32)

Generally, (4.32) reduces to following equation of state when ψ 6= 0

µ = p(1 + 2m2), (4.33)

here m2 depends upon the energy conditions.
Now we discuss the another application, which is based on the Theorem 3.9. Similar work

has been given by G.S.Hall in [32]. Literature in [32] and [4] will be helpful for readers to
understand such an application.
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Let Gp be a the Grossman manifold of dimension four and of having 2-dimensional sub-
spaces of the tangent space Tp(M) at p ∈M . Mark Ḡp, the 4-dimensional open sub-manifold of
Gp. The sectional curvature is given by

Kp(E) =
EijEklRijkl

2EijEklgi[kgl]j
, (4.34)

where E ∈ Gp and Eij is any non-null simple bi-vector.
Let V4 admits a smooth vector field ξ, which is nowhere zero associated with ft a smooth and

local diffeomorphism. Further let E and ft∗(E) be generated by U & V which belong to Tp(M).
Also, ft∗(U) & ft∗(V ) belong to Tq(M), where ft∗ is the differential of ft. The vector field ξ
preserves the sectional curvature if

Kp(E) = Kq(ft∗(E)). (4.35)

Now, consider the metric of generalised plane-wave spacetime (V4, g) which is conformally
flat ([3]). It is defined that such spacetimes admit a nowhere zero, covariantly constant null
vector ξ, ξa;b = 0. The metric is given by the following equation

ds2 = dx2 + dy2 − 2du dv − 1
2
φ2(u)(x2 + y2)du2, (4.36)

for which
Rij = −φ(u)lilj , R = 0. (4.37)

Theorem 4.3. [32] Let (V4, g) be a conformally flat generalised plane-wave spacetime. Then, a
global smooth vector field ξ on M is sectional-preserving iff

(a) £ξgij = 2ψgij , (b) £ξRij = 2ψRij . (4.38)

Theorem 4.3 directly links with Theorem 3.3 in the following manner. Globally, a smooth
vector field ξ on a conformally flat generalized plane-wave spacetime is sectional-preserving.
In (4.38) (a) and (4.38) (b), ξ is a RIV and a CKV when ψ = α ( comparing with equations
(4.38), (3.17) and (3.8)). Furthermore, equations (4.38) hold in conformally flat spaces also.
From (3.17), we can easily show that (V4, g) admits conharmonic curvature inheritance iff it also
admits Ricci inheritance. Thus, under consideration of hypothesis of Theorem 4.3, M belongs to
Type- I (Mij = 0). It follows from equations(3.8), (4.37), and equation (4.38) that

ψ;ij = φψlilj , and �ψ = 0. (4.39)

5 Discussion and Conclusion

In this paper, we explore the conharmonic curvature inheritance symmetry of spacetime. From
(2.10)(a), we conclude that the conformal curvature tensor inherits the symmetry defined by
Conh CIV ξ. In contrast, from (2.10)(b), the Weyl projective curvature tensor is non-inheriting
due to the presence of tensor E, which is non-zero in general. Hence the natural problem arises :

“What condition(s) is to be applied on (V4, g), with a proper Conh CI symmetry, such that E
vanishes i.e. Weyl projective tensor inherits the symmetry.”

It is observed that Theorem 2.2 is similar to a result for CIV [4] and also the generalization
of result for a RCV [39] when α = 0. From the application point of view above result is quite
important as it generates the basis of new solutions for various fluid spacetimes. It is because
of the non-vanishing term αR on its right side. Dynamical equation derived from Einstein field
equations (1.3) by using (2.19) is,

[ξj(T
ij − 1

2
Tgij)];i = αR, R = −T. (5.1)

If α = 0, we observe as a geometrical point of view that, (3.8) (a) and (b) reduces to special
CKV for which ψ;ij=0 and also doesn’t look much helpful in physics. It means that there exists
a covariant constant hypersurface orthogonal and geodesic vector ψ;i. This type of spacetimes



394 Musavvir Ali and Mohammad Salman

must admit either a repeated null vector or two distinct null vectors of the energy-momentum
tensor. Their application is minimal in the theory of general relativity. Suppose α =0, then
perfect fluid spacetime and Friedman- Robertson-Walker(FRW) spacetimes do not admit special
CKV. On the other hand, proper CKV is more significant because of its spatial application in
cosmology. In particular, FRW and perfect fluid spacetimes admit CKV [43]. Thus, Conh CI
with proper CKV seems to be a very important, and such a study is highly desirable to further
research.

It is notable that the paper in [32], Hall et. al., have studied structure of Lie algebra for the
set of vector fields on V4, preserving the sectional curvature, satisfying Theorem 4.3. A structure
Lie algebra with finite-dimensional of Conh CIVs and its existence is an important reason for
our comparison with Theorem 3.3. For the better understanding of the readers, we state only
main part of the theorem in paper [32] as follows:

“ The set of (global) sectional curvature-preserving vector fields on a conformally flat gen-
eralised plane-wave spacetime is a finite dimensional sub-algebra of the Lie algebra of CKV’s.
The associated conformal function ξ satisfies (4.39)."
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