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Abstract In this paper, we consider quaternion-valued fuzzy recurrent neural networks with
time-varying delays on time scales. Different from the previous literature, we use a direct method
to obtain our theoretical results to avoid decomposing the model into real-valued or complex-
valued systems. Then, we obtain some sufficient conditions on the existence, uniqueness, and
Sp-global exponential stability of weighted Stepanov-like pseudo almost periodic solution on
time scales of the considered model by applying inequality analysis techniques on time scales,
a fixed point theorem, and composition theorem, and by constructing an appropriate Lyapunov
function. At the end of this work, we give a numerical example and simulations to illustrate the
effectiveness of the obtained results.

1 Introduction

In recent decades, neural networks that take value in real (RVNNs) and complex (CVNNs) do-
mains have been widely studied. However, sometimes RVNNs or CVNNs are not applicable
to certain engineering problems, especially when the data is three-dimensional or more. (For
example, four-dimensional signals, color images, and body images.) As a result, more general
and advanced NNs than CVNNs, which are quaternion-valued neural networks (QVNNs), have
been used. In addition, it should be noted that the quaternion was introduced in 1843 by the
British mathematician W.R. Hamilton ([18]) is widely used in several domains, such as physics,
computer graphics, and modern mathematics ([16, 24]), to generalize the properties of complex
numbers to multidimensional space. Moreover, the quaternion representation is more compact
and the calculation speed is faster than the matrix representation. QVNNs can therefore handle
multi-level information and require only half of the CVNN connection weight parameters ([20]).
Likewise, in the case of quaternion-valued recurrent neural networks (QVRNNs), everything
we have described remains valid because it is capable of learning characteristics and sequential
data modelling. Furthermore, QVRNNs contain other forms of NNs, such as QVNNs ([28]) and
quaternion-valued Hopfield NNs ([19]). Because all of these applications rely heavily on their
dynamics, the study of various dynamic behaviors for quaternionic neural networks has piqued
the interest of many researchers ([6, 29]).
The fuzzy theory was first conceived by L.A. Zadeh in the 1960s. However, it took almost 20
years before it became more widely used at a practical level. Not long ago, Yang and Yang ([31])
developed a fuzzy neural network (FNNs) based on conventional NNs that incorporates fuzzy
logic into the conventional NNs structure and preserves local cell-to-cell connectivity. Besides,
it is important to consider both the fuzzy logic and the delay effects on the dynamic behavior of
NNs ([21, 30]).
As we know, discrete and continuous recurrent neural networks play a key role in theoretical
research and applications. Also, discrete-time neural networks are more beneficial and conve-
nient for numerical simulation and computation than continuous-time NNs. Hence, not only
do we need to study continuous-time neural networks, but we also need to study discrete NNs.
To avoid the difficulties of studying the dynamic properties of continuous and discrete systems,
respectively, it is helpful to study these properties on time scales, which Stefan Hilger ([17])
introduced in his PhD thesis in order to unify continuous and discrete analysis. As a result, using
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time scale dynamic systems, subjects such as the existence of a solution, stability, floquet theory,
periodicity, and the dynamics of NNs can be studied more precisely and broadly. ([10, 11, 12]).
Recently, the existence and stability of the periodic solution on time scales has been one of
the most attractive themes in the context of various kinds of abstract dynamic equations ([9]),
partial dynamic equations ([13]), integro-dynamic equations ([2]) and general dynamic systems
([25]). For example, in ([22]) the authors studied the existence and global exponential sta-
bility of pseudo almost periodic solution for neutral QVNNs with delays in the leakage term,
and the authors in ([32]) obtained some sufficient conditions for the global asymptotic stabil-
ity of FNNs. Very recently, M. Es-saiydy and M. Zitane ([8]) introduced another notion called
weighted Stepanov-like pseudo almost periodicity on time scales (WSpPAP ), which naturally
generalizes the classical notion of periodicity and its various extensions (anti-periodicity, almost
periodicity, weighted pseudo almost periodicity, Stepanov pseudo almost periodicity, etc.).
To our knowledge, no paper has been published on the existence and Stepanov global exponential
stability of theWSpPAP solution of QVFRNNs with time-varying delays on time scales. This is
important both in terms of theory and application, which is also a very difficult issue. Motivated
by the above statement, we summarized the innovation points of this paper as follows : (I) we
integrate fuzzy operations into quaternion-valued RNNs with time-varying delays on time scales.
(II) For the time being, this is the first time that theWSpPAP dynamics of a delayed QVFRNNs
are being investigated on time scales, which can unify both continuous time and discrete time
cases of RNNs. The QVFRNNs proposed in this work also contain real-VFRNNs and complex-
VFCNNs as their special cases. (III) We take into account another oscillation space that has
never been taken into account in the different classes of recurrent neural networks.
The organization of this paper is briefly described as follows: In Section 2, we make some
preparations for the next sections. In Section 3, we will provide the model of QVFRNNs. In
Sections 4 and 5, some sufficient conditions are derived to ensure the existence and Sp-global
exponential stability of a unique weighted Stepanov-like pseudo almost periodic solution of
considered QVFRNNs. In Section 6, we provide a numerical example to illustrate the feasibility
of our abstract results.

2 Preliminaries and functions spaces

In this section, we shall first recall some fundamental definitions, lemmas which are used in what
follows. Throughout this paper we fix p ≥ 1 and (X, ‖ . ‖) is a Banach spaces. We denote by N,
Z, R and C the set of positive integers, the set of integers, the set of real and the set of complex
numbers respectively.

2.1 The algebra of quaternions

Definition 2.1 ([26]). The algebra of quaternions Q is an extension of complex numbers defined
in a space composed of four elements denoted 1, i, j, and k representing a rotation. Element 1
corresponds to identity. The skew field of the quaternion is determined by

Q := {x;x = xR + xI i+ xJj + xKk},

where xR, xI , xJ and xK are real numbers and the elements i, j, and k obey the Hamilton’s
multiplication rules:

• All possible products of i, j, and k:

ij = −ji = k, jk = −kj = i, ki = −ik = j, i2 = j2 = k2 = −1.

• The quaternion conjugate is defined by: x̄ = xR − xI i− xJj − xKk.
• The norm of x is defined by : | x |Q=

√
xx̄.

Lemma 2.2 ([26]). For any u, v ∈ Q, if P ∈ Qn×n is a positive-definite Hermitian matrix, then

ūv + v̄u ≤ ūPu+ v̄P−1v.
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2.2 Essentials of time scales

Definition 2.3 ([3]). Let T be a time scale, that is, a closed and nonempty subset of R.

(i) The forward and backward jump operators σ, ρ : T −→ T and the graininess µ : T −→ R+

are defined, respectively, by

σ(t) = inf{s ∈ T : s > t}, ρ(t) = sup{s ∈ T : s < t}, µ(t) = σ(t)− t.

(ii) The point t ∈ T is called left-dense, left-scattered, right-dense, or right-scattered if ρ(t) = t,
ρ(t) < t, σ(t) = t, or σ(t) > t, respectively

(iii) A function f : T −→ R is called right-dense continuous or rd-continuous provided that it
is continuous at all right-dense points in T and its left-side limits exist (finite) at left-dense
points in T. A function f : T −→ R is called continuous if and only if it is both left-dense
continuous and right-dense continuous.

(iv) If T has a left-scattered maximum m, then Tk = T \ {m}; otherwise Tk = T.
(v) A function p : T −→ R is called µ-regressive provided 1 + µ(t)p(t) 6= 0 for all t ∈ Tk.

The set of all regressive and rd-continuous functions p : T −→ R will be denoted by
R = R(T) = R(T;R).

(vi) We define the set R+ of all positively regressive elements by R+ = R+(T) = R+(T;R) =
{p ∈ R : 1 + µ(t)p(t) > 0 for all t ∈ T}.

(vii) Let a, b ∈ T, with a ≤ b, [a, b], [a, b), (a, b] and (a, b) being the usual intervals on the real
line. The intervals [a, a), (a, a], (a, a) are understood as the empty set, and we use the
following symbols :

[a, b]T = [a, b] ∩ T, [a, b)T = [a, b) ∩ T, (a, b]T = (a, b] ∩ T, (a, b)T = (a, b) ∩ T.

Definition 2.4 ([3]). A time scale T is called invariant under translations if

Π = {τ ∈ R : t± τ ∈ T; ∀t ∈ T} 6= {0}.

Definition 2.5 ([3]). If p ∈ R, then we define the exponential function by :

ep(t, s) = exp
{∫ t

s

ξµ(τ)(p(τ))∆τ

}
,

for s, t ∈ T, with the cylinder transformation

ξm(z) =

{
log(1+hz)

h , if h 6= 0,
z, if h = 0.

Definition 2.6 ([3]). For p ∈ R, define a circle minus p by

	p = − p

1 + µp
.

Lemma 2.7 ([3]). Let p, q ∈ R, So,

1) e0(t, s) = 1 and ep(t, t) = 1;

2) ep(t, s) = 1
ep(s,t)

= e	p(s, t);

3) (ep(t, s))∆ = p(t)ep(t, s);

4)
∫ b
a
ep(c, σ(t))p(t)∆t = ep(c, a)− ep(c, b), (a, b, c ∈ T).

Definition 2.8 ([3]). For f : T→ X and s ∈ T \ {maxT}, f∆(t) ∈ X is the ∆-derivative of f at
s if for ε > 0, there is a neighborhood V of s such that for t ∈ V,

‖ f (σ(s))− f(t)− f∆(s) (σ(s)− t) ‖< ε | σ(s)− t | .

Hence, f is ∆-differentiable on T provided that f∆(s) exists for s ∈ T.
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Definition 2.9 ([1]). f : T → X is a delta measurable function if there exists a simple function
sequence {fk : k ∈ N} such that fk(s)→ f(s) a.e. in T.

Definition 2.10 ([1]). f : T → X is a delta integrable function if there exists a simple function
sequence {fk : k ∈ N} such that fk(s)→ f(s) a.e. in T and,

lim
k→∞

∫
T
‖ fk(s)− f(s) ‖ ∆s = 0.

Then, the integral of f is defined as∫
T
f(s)∆s = lim

k→∞

∫
T
fk(s)∆s.

Definition 2.11 ([1]). For p ≥ 1, f : T→ X is called locallyLp ∆−integrable if f is ∆−measurable
and for any compact ∆−measurable set E ⊂ T, the ∆−integral∫

E

‖ f(s) ‖p ∆s <∞.

The set of all Lp ∆−integrable functions is denoted by Lploc (T;X) .

2.3 Weighted Stepanov-like pseudo almost periodic functions on T

This subsection is devoted to recall some definitions and the important properties of weighted
Stepanov-like pseudo almost periodic functions on time scales introduced by M. Es-saiydy and
M. Zitane ([8]).

Definition 2.12 ([27]). B ⊂ T is called relatively dense in T if there exists l > 0 such that
[a, a+ a]T ∩B 6= 0, a ∈ T. We call l the inclusion length.

Definition 2.13 ([8]). A function f ∈ BC(T,Q) is called almost periodic on T if for every ε > 0,
the ε−translation set of f :

E(f, ε) = {τ ∈ Π; ‖ f(t+ τ)− f(t) ‖Q< ε, ∀t ∈ T}

is relatively dense in Π. The space of all such functions is denoted by AP (T,Q).

Let U denote the collection of functions (weights) µ : T → (0,∞)T, which are locally
integrable over T such that µ > 0 almost everywhere. Let µ ∈ U, for r ∈ Π with r > 0, we
denote

µ(Ωr) =

∫
Ωr

µ(t)∆t,

where Ωr = [t0 − r, t0 + r]T
(
t0 = min{[0,∞)T}

)
.

Consequently, we define the space of weights by

M =

{
µ ∈ U : inf

t∈T
µ(t) > 0, lim

t→∞
µ(Ωr) =∞

}
.

Throughout this paper, we fix 1 ≤ p <∞, µ ∈M, and T be an almost periodic time scales.

Definition 2.14 ([8]). A function f ∈ BC(T,Q) is said to be µ−ergodic (f ∈ PAP0(T,Q, µ))
if

lim
r−→+∞

1
µ(Ωr)

∫
Ωr

‖ f(t) ‖Q µ(t)∆t = 0.

Definition 2.15 ([8]). A function such that f(.) ∈ BC(T,Q) is said to be weighted pseudo
almost periodic (f ∈ PAP (T,Q, µ)) if f is written in the following form:

f = g + φ,

where g ∈ AP (T,Q) and φ ∈ PAP0(T,Q, µ).
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We set,

K =

{
inf
{
| τ |; τ ∈ T, τ 6= 0

}
, if T 6= R,

1, if T = R.

Let f ∈ Lploc(T,Q). Define :

• ‖ . ‖Sp : Lploc(T,Q)→ R+ as : ‖ f ‖Sp= supt∈T

(
1
K

∫ t+K
t

| f(s) |pQ ∆s

) 1
p

.

• Crd (T;Q) = {f : T→ Q : f is rd-continuous} .
• BCrd (T;Q) = {f : T → Q : f is bounded and rd-continuous} .
• Lploc (T;Q) = {f : T→ Q : f is locally Lp ∆− integrable} .
• BSp (T;Q) = {f ∈ Lploc (T;Q) :‖ f ‖Sp<∞} .

Definition 2.16 ([8]). A function f ∈ BSp(T,Q) is called Stepanov-like almost periodic on T,
(f ∈ SpAP (T,Q)) if for every ε > 0, the ε−translation set of f :

T (f, ε) = {τ ∈ Π; ‖ f(t+ τ)− f(t) ‖Sp< ε, ∀t ∈ T}

is relatively dense in Π.

Lemma 2.17 ([27]). For ε > 0, T (f, ε) is relatively dense in R if and only if T (f, ε) is relatively
dense in Π.

Definition 2.18 ([8]). A function f ∈ BSp(T,Q) is said to be weighted Stepanov-like ergodic
on T (f ∈WSpPAP0(T,Q, µ)) if :

lim
r→+∞

1
µ(Ωr)

∫
Ωr

(
1
K

∫ t+K

t

| f(s) |pQ ∆s

) 1
p

µ(t)∆t = 0.

Definition 2.19 ([8]). A function f ∈ BSp(T,Q) is said to be weighted Stepanov-like pseudo
almost periodic on T or briefly Sp−weighted pseudo almost periodic (f ∈WSpPAP (T,Q, µ))
if f is written in the following form :

f = g + φ,

where g ∈ SpAP (T,Q) and φ ∈WSpPAP0(T,Q, µ).

Now, we recall the Bochner-like transform on time scales.

If T 6= R, we fix a left scattered point ω ∈ T, there is a unique nt ∈ Z such that t − ntK ∈
[ω, ω + k)T. Let

Nt =

{
t, T = R,
nt T 6= R.

Definition 2.20 ([27]). Let f ∈ BSp(T,Q). The Bochner-like transform of f is the function
f c : T× T→ X defined for all t, s ∈ T by

f c(t, s) = f(NtK + s).

And we have
‖ f ‖Sp=‖ f c ‖∞ .

Definition 2.21 ([8]). A function f ∈ BSp(T,Q) is said to be µ-Stepanov-like pseudo almost
periodic if its Bochner-like transform f c is µ-pseudo almost periodic in the sense that there
exist two functions g, h such that f c = gc + hc, where gc ∈ AP (T, BSp(T,Q)) and hc ∈
PAP0(T, BSp(T,Q), µ).

Lemma 2.22 ([8]). If f1, f2 ∈WSpPAP (T,Qn, µ), then f1 + f2, f1f2 ∈WSpPAP (T,Qn, µ).

Proposition 2.23 ([8]). (WSpPAP (T,Qn, µ), ‖ . ‖Sp) is a Banach space.
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3 Model Description And Hypotheses

In this paper, we consider the following quaternion-valued fuzzy recurrent neural networks
(QVFRNNs) with time-varying delays on time scales which are defined in the following lines:

x∆
l (t) = −alxl(t) +

n∑
m=1

αlm(t)fm(xm(t)) +
n∑

m=1

βlm(t)fm(xm(t− δm(t)))+

n∨
m=1

ηlm(t)hm (xm(t− δm(t))) +
n∧

m=1

λlm(t)hm (xm(t− δm(t))) + Il(t), t ∈ T.
(3.1)

where l ∈ {1, 2, ..., n}, n corresponds to the number of units in neural networks; T is an almost
periodic time scale; Q is a Quaternion algebra; xl(t) ∈ Q corresponds to the state of the lth unit
at time t; al(t) = diag(a1(t), a2(t), ..., an(t)) denotes the rate which the ith neuron will reset its
potential to the resting state in isolation when disconnected from the network and external input,
fm, and hm : Q→ Q are output transfer functions; ηlm(.), λlm(.) ∈ Q, are the elements of fuzzy
feedback MIN template and fuzzy feedback MAX template, respectively;

∨
,
∧

denote the fuzzy
AND and fuzzy OR operation, respectively; αlm(.), βlm(.), present the connection weights, the
discretely delayed connection weights, and the distributively delayed connection weights, of the
mth neuron on the l neuron, respectively. δm(.) corresponds to transmission delays at time t and
satisfy t− δm(t) ∈ T for t ∈ T; and Il(.) denote the state input of the lth neuron.

The initial condition of system (3.1) is of the form

xl(s) = ρl(s), s ∈ (−∞, 0]T,

where ρl is rd-continuous and ρl ∈ Lploc ((−∞, 0]T,Q) l = 1, ..., n.

Now, we will list a few hypotheses which will be used for the rest of this article.

(H1) : Let µ ∈M, for all t ∈ Π

lim
|t|→∞

µ(t+ τ)

µ(t)
<∞ and lim

|t|→∞

µ(Ωr+τ )

µ(Ωr)
<∞.

(H2) : For all 1 ≤ l,m ≤ n, the functions alm(.), αlm(.), βlm(.) ∈ WSpPAP (T,Q, µ) and
functions ηlm(.), λlm(.), δm(.) ∈ SpAP (T,Q) ∩ C1

rd(T,Q), such that

0 ≤ δm(.) ≤ δ, 0 ≤ δ∗ − δ∆
m(.) < 1− δ∆

m(.).

(H3) : There exist positive constants Lfl , Lhl such that for any u, v ∈ Q, the activity functions fl,
hl ∈ Crd(Q,Q) satisfying

| fl(u)− fl(v) |Q ≤ Lfl | u− v |Q,
| hl(u)− hl(v) |Q ≤ Lhl | u− v |Q .

Furthermore, we suppose that fl(0) = hl(0) = 0.
As a convenience, we have introduced these notations which simplify the writing of the equa-
tions:

f+ = sup
t∈T
| f(t) |Q, f = inf

t∈T
| f(t) |Q, a∗l = sup

t∈T
al(t) > 0, ǎl = inf

t∈T
al + inf

t∈T
al, µ̄ = sup

t∈T
µ(t),

and

L∗ = max
1≤l≤n

{
M

1
q

l (q)M
1
p

l (p)

[ n∑
m=1

α+
lmLfm+

n∑
m=1

β+
lmLfm

(1− δ∗m)
1
p

+
n∑

m=1

η+lmLhm

(1− δ∗m)
1
p

+
n∑

m=1

λ+lmLhm

(1− δ∗m)
1
p

]}
,

with Ml(q) =
2+alµ̄q
alq

.
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4 Weighted Stepanov-Like Pseudo Almost Periodic Solution on T

In this section, we will present a new conditions for the existence, uniqueness, and Sp-global
exponential stability of weighted Stepanov-like pseudo almost periodic solution of QVFRNNs
(3.1) on time scales based on the Banach fixed point theorem, composition theorem, and the
theory of calculus on time scales.

Lemma 4.1 ([5]). Suppose xm and ym are two states of system (3.1). Then we have∣∣∣∣ n∨
m=1

ulmhm(xm)−
n∨

m=1

ulmhm(ym)

∣∣∣∣ ≤ n∑
m=1

| ulm || hm(xm)− hm(ym) | 1 ≤ m ≤ n,

and∣∣∣∣ n∧
m=1

ulmhm(xm)−
n∧

m=1

ulmhm(ym)

∣∣∣∣ ≤ n∑
m=1

| ulm || hm(xm)− hm(ym) | 1 ≤ m ≤ n.

Lemma 4.2. Suppose that condition (H1) and (H2) hold. If function f ∈ WSpPAP (T,Q, µ),
then f(.− δ(.)) ∈WSpPAP (T,Q, µ).
Proof. Since f ∈ WSpPAP (T,Q, µ), we can write f = f1 + f2, such that f1 ∈ SpAP (T,Q)
and f2 ∈WSpPAP0(T,Q, µ). Obviously, for all t ∈ T

f(t− δ(t)) = f1(t− δ(t)) + f2(t− δ(t)) = F1(t) + F2(t),

where, F1(t) = f1(t− δ(t)) and F2(t) = f2(t− δ(t)). By the properties of Stepanov-like almost
periodic functions, thus F1(t) = f1(t− δ(t)) ∈ SpAP (T,Q).
It remains to show that F2 ∈ WSpPAP0(T,Q, µ). Indeed, since f2 ∈ WSpPAP0(T,Q, µ), we
get, for all t ∈ T

Γ(t) =

(
1
K

∫ t+K

t

| f2(s) |pQ ∆s

) 1
p

∈WSpPAP0(T,Q, µ).

Thus,

lim
r→+∞

1
µ(Ωr)

∫
Ωr

(
1
K

∫ t+K

t

| f2(s− δ(s)) |pQ ∆s

) 1
p

µ(t)∆t

=
1

(1− δ∆(s))
1
p

. lim
r→+∞

1
µ(Ωr)

∫
Ωr

(
1
K

∫ t+K−δ(t+k)

t−δ(t)
| f2(z) |pQ ∆z

) 1
p

µ(t)∆t,

≤ 1

(1− δ∗)
1
p

. lim
r→+∞

1
µ(Ωr)

∫
Ωr

(
1
K

∫ t+K−δ̄

t−δ̄
| f2(z) |pQ ∆z

) 1
p

µ(t)∆t,

≤ 1

(1− δ∗)
1
p

. lim
r→+∞

1
µ(Ωr)

∫
Ωr

| Γ(t− δ̄) |Q µ(t)∆t,

≤ 1

(1− δ∗)
1
p

. lim
r→+∞

1
µ(Ωr)

∫
[t0−r−δ̄,t0+r−δ̄]T

| Γ(t) |Q µ(t+ δ̄)∆t,

≤ 1

(1− δ∗)
1
p

. lim
r→+∞

1
µ(Ωr)

∫
Ωr+δ̄

| Γ(t) |Q µ(t+ δ̄)∆t,

It follows from condition (H1) that

lim
r→+∞

1
µ(Ωr)

∫
Ωr

(
1
K

∫ t+K

t

| f2(s− δ(s)) |pQ ∆s

) 1
p

µ(t)∆t

≤ 1

(1− δ∗)
1
p

. lim
r→+∞

1
µ(Ωr)

∫
Ωr+δ̄

| Γ(t) |Q µ(t+ δ̄)∆t,

=
1

(1− δ∗)
1
p

. lim
r→+∞

µ(Ωr+δ̄)

µ(Ωr)
.

1
µ(Ωr+δ̄)

∫
Ωr+δ̄

| Γ(t) |Q µ(t+ δ̄)∆t,

= 0.
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Which implies that F2 ∈WSpPAP0(T,Q, µ). Consequently, f(.− δ(.)) ∈WSpPAP (T,Q, µ).

Remark 4.3. Our previous composition theorem is more general than [theorem 3.23, ([8])] and
[lemma 3, ([5])].

Lemma 4.4. If a function f ∈ Crd(Q,Q) satisfies condition (H3) and h ∈ WSpPAP (T,Q, µ),
then f ◦ h ∈WSpPAP (T,Q, µ).

Proof. By the Stepanov-like pseudo almost periodicity of h, one can write h = h1 + h2 where
h1 ∈ SpAP (T,Q) and h2 ∈WSpPAP0(T,Q, µ). For all t ∈ T. We pose

f ◦ h(t) = f ◦ h1(t) + f ◦ h(t)− f ◦ h1(t) = H1(t) +H2(t),

where, H1(t) = f ◦ h1(t) and H2(t) = f ◦ h(t) − f ◦ h1(t). Since h1 ∈ SpAP (T,Q), then for
every ε > 0, T (h1, ε) = {τ ∈ Π; ‖ h1(t+ τ)− h1(t) ‖Sp< ε, ∀t ∈ T} is relatively dense in Π.
From Lemma (2.17) we have, T (h1(.), ε) is relatively dense in R i.e. ∀ε > 0, ∃l > 0, ∀a ∈ R,
∃τ ∈ [a, a+ l],

sup
t∈T

(
1
K

∫ t+K

t

| h1(s+ τ)− h1(s) |pQ ∆s

) 1
p

<
ε

Lf
.

Therefore,

sup
t∈T

(
1
K

∫ t+K

t

| f ◦ h1(s+ τ)− f ◦ h1(s) |pQ ∆s

) 1
p

< Lf .
ε

Lf
< ε.

Then, T (f ◦ h1(.), ε) is relatively dense in R, which shows that H1(.) ∈ SpAP (T,Q).
Now,

lim
r→+∞

1
µ(Ωr)

∫
Ωr

(
1
K

∫ t+K

t

| H2(s) |pQ ∆s

) 1
p

µ(t)∆t

= lim
r→+∞

1
µ(Ωr)

∫
Ωr

(
1
K

∫ t+K

t

| f ◦ h(s)− f ◦ h1(s) |pQ ∆s

) 1
p

µ(t)∆t,

≤ lim
r→+∞

Lf
µ(Ωr)

∫
Ωr

(
1
K

∫ t+K

t

| h(s)− h1(s) |pQ ∆s

) 1
p

µ(t)∆t,

≤ lim
r→+∞

Lf
µ(Ωr)

∫
Ωr

(
1
K

∫ t+K

t

| h2(s) |pQ ∆s

) 1
p

µ(t)∆t,

= 0.

Consequently, H2(.) ∈WSpPAP0(T,Q, µ), which ends the demonstration.

Lemma 4.5. If ρm(.) ∈WSpPAP (T,Q, µ), ηlm(.), λlm(.) ∈ SpAP (T,Q), δm(.) ∈ SpAP (T,Q)
and (H3) holds, then

n∨
m=1

ηlm(.)hm (ρm(.− δm(.))) ,
n∧

m=1

λlm(.)hm (ρm(.− δm(.))) ∈WSpPAP (T,Q, µ).

Proof. By using Lemmas (4.2) and (4.4), we get

Em(.) = hm (ρm(.− δm(.))) ∈WSpPAP (T,Q, µ).

So, Em(.) = Am(.) + Bm(.), where Am(.) ∈ SpAP (T,Q) and Bm(.) ∈ WSpPAP0(T,Q, µ).
Furthermore,

n∨
m=1

ηlm(t)Em(t) =
n∨

m=1

ηlm(t)Am(t) +
n∨

m=1

ηlm(t)Em(t)−
n∨

m=1

ηlm(t)Am(t),

= Ul(t) + Vl(t).
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Where Ul(t) =
∨n
m=1 ηlm(t)Am(t) and Vl(t) =

∨n
m=1 ηlm(t)Em(t)−

∨n
m=1 ηlm(t)Am(t). First,

let us show that Ul(.) ∈ SpAP (T,Q).We use the fact thatAm(.), ηlm(.) ∈ SpAP (T,Q), then for
all ε > 0 and n ∈ N∗, the following sets T

(
Am(.),

ε
2nη̄

)
, T
(
Am(.),

ε
2nĀ

)
are relatively dense

in R, where η̄ = max1≤l,m≤n sups∈T | η(s) |Q and Ā = max1≤l,m≤n sups∈T | A(s+ τ) |Q . Let

D = T

(
Am(.),

ε

2nη̄

)
∩ T

(
Am(.),

ε

2nĀ

)
.

Then, D is relatively dense in Π. Let τ ∈ D, t, s ∈ T, by using the Minkowski inequality, we
have

sup
t∈T

(
1
K

∫ t+K

t

| Ul(s+ τ)− Ul(s) |pQ ∆s

) 1
p

= sup
t∈T

(
1
K

∫ t+K

t

∣∣∣∣ n∨
m=1

ηlm(s+ τ)Am(s+ τ)−
n∨

m=1

ηlm(s)Am(s)

∣∣∣∣p
Q

∆s

) 1
p

= sup
t∈T

(
1
K

∫ t+K

t

∣∣∣∣ n∨
m=1

ηlm(s+ τ)Am(s+ τ)−
n∨

m=1

ηlm(s)Am(s+ τ)

+
n∨

m=1

ηlm(s)Am(s+ τ)−
n∨

m=1

ηlm(s)Am(s)

∣∣∣∣p
Q

∆s

) 1
p

,

= sup
t∈T

(
1
K

∫ t+K

t

∣∣∣∣ n∨
m=1

ηlm(s+ τ)Am(s+ τ)−
n∨

m=1

ηlm(s)Am(s+ τ)

∣∣∣∣p
Q

∆s

) 1
p

+ sup
t∈T

(
1
K

∫ t+K

t

∣∣∣∣ n∨
m=1

ηlm(s)Am(s+ τ)−
n∨

m=1

ηlm(s)Am(s)

∣∣∣∣p
Q

∆s

) 1
p

.

According to Lemma (4.1), we obtain

sup
t∈T

(
1
K

∫ t+K

t

| Ul(s+ τ)− Ul(s) |pQ ∆s

) 1
p

≤
n∑

m=1

sup
t∈T

(
1
K

∫ t+K

t

| ηlm(s+ τ)− ηlm(s) |pQ| Am(s+ τ) |pQ ∆s

) 1
p

+
n∑

m=1

sup
t∈T

(
1
K

∫ t+K

t

| Am(s+ τ)−Am(s) |pQ| ηlm(s) |
p
Q ∆s

) 1
p

,

≤ Ā

n∑
m=1

sup
t∈T

(
1
K

∫ t+K

t

| ηlm(s+ τ)− ηlm(s) |pQ ∆s

) 1
p

+η̄
n∑

m=1

sup
t∈T

(
1
K

∫ t+K

t

| Am(s+ τ)−Am(s) |pQ ∆s

) 1
p

,

≤ nĀ
ε

2nĀ
+ nη̄

ε

2nη̄
,

< ε.

This implies thatD ⊂ T (Ul(.), ε) .Accordingly, T (Ul(.), ε) is relatively dense in R, and Ul(.) ∈
SpAP (T,Q). It remains to show that Vl(.) ∈WSpPAP0(T,Q, µ). Indeed,

1
µ(Ωr)

∫
Ωr

(
1
K

∫ t+K

t

| Vl(s) |pQ ∆s

) 1
p

µ(t)∆t
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=
1

µ(Ωr)

∫
Ωr

(
1
K

∫ t+K

t

∣∣∣∣ n∨
m=1

ηlm(s)Em(s)−
n∨

m=1

ηlm(s)Am(s)

∣∣∣∣p
Q

∆s

) 1
p

µ(t)∆t,

≤
n∑

m=1

sup
t∈Ωr

sup
t≤s≤t+K

| ηlm(s) |Q
1

µ(Ωr)

∫
Ωr

(
1
K

∫ t+K

t

| Bm(s) |pQ ∆s

) 1
p

µ(t)∆t.

Notice that Bm(.) ∈WSpPAP0(T,Q, µ). Thus,

lim
r→∞

1
µ(Ωr)

∫
Ωr

(
1
K

∫ t+K

t

| Vl(s) |pQ ∆s

) 1
p

µ(t)∆t

≤ C1 lim
r→∞

1
µ(Ωr)

∫
Ωr

(
1
K

∫ t+K

t

| Bm(s) |pQ ∆s

) 1
p

µ(t)∆t,

= 0.

Where C1 =
∑n
m=1 supt∈Ωr

supt≤s≤t+K | ηlm(s) |Q . Hence, Vl(.) ∈WSpPAP0(T,Q, µ).

Ultimately, for 1 ≤ l,m ≤ m
n∨

m=1

ηlm(.)hm (ρm(.− δm(.))) ∈WSpPAP (T,Q, µ).

Similarly, we can get

n∧
m=1

λlm(.)hm (ρm(.− δm(.))) ∈WSpPAP (T,Q, µ).

Theorem 4.6. Let ρ = (ρ1, ..., ρn) ∈ WSpPAP (T,Q, µ). Under assumptions (H1 − H3), the
nonlinear operator defined by,

(Λρ)l(t) =

∫ t

−∞
ê	al(t, σ(s))ϒl(s)∆s, l = 1, ..., n.

where

ϒl(t) =
n∑

m=1

αlm(t)fm(ρm(t)) +
n∑

m=1

βlm(t)fm(ρm(t− δm(t)))

+
n∨

m=1

ηlm(t)hm (ρm(t− δm(t))) +
n∧

m=1

λlm(t)hm (ρm(t− δm(t))) + Il(t)

maps WSpPAP (T,Q, µ) into itself.

Proof. From previous assumptions one can easily see that (Λρ)l is well defined and continuous.
Applying the composition theorem of weighted Stepanov-like pseudo almost periodic functions
(Lemma (4.2)) and Lemma (4.5) it follows that the function ϒl(.) belongs toWSpPAP (T,Q, µ).
Now, let ϒl = Wl + Zl with Wl ∈ SpAP (T,Q), Zl(.) ∈ WSpPAP0(T,Q, µ). So, (Λρ)l(t) =
(Aρ)l(t) + (Bρ)l(t) with

(Aρ)l(t) =
∫ t

−∞
ê	al(t, σ(s))Wl(s)∆s,

and

(Bρ)l(t) =
∫ t

−∞
ê	al(t, σ(s))Zl(s)∆s.
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To complete the proof, we break the proof in two steps.
Step 1 : We will prove that (Aρ)l(.) ∈ SpAP (T,Q). Since Wl(.) is Stepanov-like almost peri-
odic then for all ε > 0, T (Wl(.), ε) is relatively dense in Π. Let t, s ∈ T and τ be a Stepanov-like
almost period of Wl(.) then,

| (Aρ)l(t+ τ)− (Aρ)l(t) |Q =

∣∣∣∣∫ t

−∞
ê	al(t, σ(s))Wl(s+ τ)∆s−

∫ t

−∞
ê	al(t, σ(s))Wl(s)∆s

∣∣∣∣
Q
,

≤
∫ t

−∞
ê	al(t, σ(s))

∣∣Wl(s+ τ)−Wl(s)
∣∣
Q∆s,

≤
∫ 0

−∞
ê	al(0, σ(s))

∣∣Wl(t+ s+ τ)−Wl(t+ s)
∣∣
Q∆s,

≤ M
1
q

l (q)

(∫ 0

−∞
ê	( alp2 )

(0, σ(s))
∣∣Wl(t+ s+ τ)−Wl(t+ s)

∣∣p
Q∆s

) 1
p

.

By using Fubini’s theorem, we have

sup
t1∈T

(
1
K

∫ t1+K

t1

∣∣∣∣(Aρ)l(t+ τ)− (Aρ)l(t)
∣∣∣∣p
Q

∆t

) 1
p

≤ sup
t1∈T

(
1
K

∫ t1+K

t1

M
p
q

l .

∫ 0

−∞
ê	( alp2 )

(0, σ(s))
∣∣∣∣Wl(s+ t+ τ)−Wl(s+ t)

∣∣∣∣p
Q

∆s∆t

) 1
p

,

≤ M
1
q

l (q)

(∫ 0

−∞
ê	( alp2 )

(0, σ(s)) sup
t1∈T

1
K

∫ t1+K

t1

∣∣∣∣Wl(s+ t+ τ)−Wl(s+ t)

∣∣∣∣p
Q

∆t∆s

) 1
p

,

≤ M
1
q

l (q)

(∫ 0

−∞
ê	( alp2 )

(0, σ(s)) sup
t̄∈T

1
K

∫ t̄+K

t̄

∣∣∣∣Wl(t+ τ)−Wl(t)

∣∣∣∣p
Q

∆t∆s

) 1
p

,

≤ M
1
q

l (q)M
1
p

l (p)ε < Mε.

Where M = max1≤l≤nM
1
q

l (q).M
1
p

l (p), which implies that T ((Aρ)l(.),Mε) is relatively dense
in Π. Hence, (Aρ)l(.) ∈ SpAP (T,Q).
Step 2 : The next step consists of showing that (Bρ)l(.) ∈ WSpPAP0(T,Q, µ). By using the
Hölder’s inequality and Fubini’s theorem we get,

∫
Ωr

(
1
K

∫ t+K

t

| (Bρ)l(s) |pQ ∆s

) 1
p

µ(t)∆t ≤ (µ(Ωr))
1
q

[∫
Ωr

(
1
K

∫ t+K

t

| (Bρ)l(s) |pQ ∆s

)
µ(t)∆t

] 1
p

.

In addition,∣∣∣∣∫ s

−∞
ê	al(s, σ(z))Zl(z)∆z

∣∣∣∣p
Q
≤M

p
q

l (q)

∫ 0

−∞
ê	( alp2 )

(0, σ(z)) | Zl(z + s) |pQ ∆z.

Which implies that∫
Ωr

(
1
K

∫ t+K

t

| (Bρ)l(s) |pQ ∆s

) 1
p

µ(t)∆t

≤ (µ(Ωr))
1
q

[∫
Ωr

(
1
K

∫ t+K

t

M
p
q

l (q)

∫ 0

−∞
ê	( alp2 )

(0, σ(z)) | Zm(s+ z) |pQ ∆z∆s

)
µ(t)∆t

] 1
p

,

≤ (µ(Ωr))
1
q M

1
q

l (q)

[∫ 0

−∞
ê	( alp2 )

(0, σ(z))
∫

Ωr

1
K

∫ t+K

t

| Zl(s+ z) |pQ ∆sµ(t)∆t∆z

] 1
p

.
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So, one has

1
µ(Ωr)

∫
Ωr

(
1
K

∫ t+K

t

| (Bρ)l(s) |pQ ∆s

) 1
p

µ(t)∆t

≤ 1
µ(Ωr)

(µ(Ωr))
1
q (µ(Ωr))

1
p M

1
q

l (q)

×

(∫ 0

−∞
ê	( alp2 )

(0, σ(z))
1

µ(Ωr)

∫
Ωr

1
K

∫ t+K

t

| Zl(s+ z) |pQ ∆sµ(t)∆t∆z

) 1
p

,

≤ M
1
q

l (q)

[∫ 0

−∞
ê	( alp2 )

(0, σ(z))
1

µ(Ωr)

∫
Ωr

1
K

∫ t+K

t

| Zl(s+ z) |pQ ∆sµ(t)∆t∆z

] 1
p

,

≤ M
1
q

l (q)

∫ 0

−∞
ê	( alp2 )

(0, σ(z))
1

µ(Ωr)

∫
Ωr

(
1
K

∫ t+K

t

| Zl(s+ z) |qQ ∆s

) p
q

µ(t)∆t∆z

 1
p

,

≤ M
1
q

l (q)

[ ∫ 0

−∞
ê	( alp2 )

(0, σ(z))
1

µ(Ωr)

∫
Ωr

(
1
K

∫ t+K

t

| Zl(s+ z) |qQ ∆s

) 1
q

×

(
1
K

∫ t+K

t

| Zl(s+ z) |qQ ∆s

) p−1
q

µ(t)∆t∆z

] 1
p

,

≤ M
1
q

l (q) | Zl |
p−1
p
∞

×

{∫ 0

−∞
ê	( alp2 )

(0, σ(z))
[

1
µ(Ωr)

∫
Ωr

(
1
K

∫ t+K

t

| Zl(s+ z) |qQ ∆s

) 1
q

µ(t)∆t

]
∆z

} 1
p

.

The Lebesgue dominated convergence theorem and Zl(.) ∈WSpPAP0(T,Q, µ) lead to

lim
r→∞

1
µ(Ωr)

∫
Ωr

(
1
K

∫ t+K

t

| (Bρ)l(s) |pQ ∆s

) 1
p

µ(t)∆t = 0.

Therefore, (Bρ)l(.) ∈WSpPAP0(T,Q, µ). Thus, the nonlinear operator (Λρ)l(.) maps
WSpPAP (T,Q, µ) into itself. This completes the proof of Theorem (4.6).

Lemma 4.7. Suppose that the assumptions (H1 − H3) hold. Then ‖ ρ0 ‖Sp≤ C. Where ρ0 =

{(ρ0)l}nl=1, and (ρ0)l(t) =
∫ t
−∞ ê	al(t, σ(s))Il(s)∆s 1 ≤ l ≤ n.

Proof. By using the Hölder’s inequality, we get

‖ ρ0(t) ‖Sp = sup
t1∈T

(
1
K

∫ t1+K

t1

∣∣∣∣∫ t

−∞
ê	al(t, σ(z))Il(z)

∣∣∣∣p
Q

∆z∆t

) 1
p

≤ M
1
q

l (q) sup
t1∈T

(∫ 0

−∞
ê	( alp2 )

(0, σ(z))
1
K

∫ t1+K

t1

| Il(z + t) |pQ ∆t∆z

) 1
p

≤ M
1
q

l (q) sup
t2∈T

(∫ 0

−∞
ê	( alp2 )

(0, I(z))
1
K

∫ t2+K

t2

| Il(t̄) |pQ ∆t̄∆z

) 1
p

,

≤ M
1
q

l (q)M
1
p

l (p). ‖ I ‖Sp≤ C.

with C = max1≤l≤nM
1
q

l (q)M
1
p

l (p). ‖ I ‖Sp .
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Lemma 4.8. Under assumptions (H1 −H3). For all l = 1, ..., n, the nonlinear operator (Λρ)l is
a self-mapping from D0 to D0. Where

D0 =

{
ρ : ρ ∈WSpPAP (T,Q, µ), ‖ ρ− ρ0 ‖Sp≤

CL∗

1− L∗

}
.

Proof. Let ρ ∈ D0 and q > 1 such that 1
q +

1
p = 1. It follows from Hölder’s inequality that

| (Λρ)l(t)− ρ0(t) |Q =

∣∣∣∣∣
∫ t

−∞
ê	al(t, σ(z))

[ n∑
m=1

αlm(z)fm (ρm(z)) +

n∑
m=1

βlm(z)fm(ρm(z − δm(z))) +
n∨

m=1

ηlm(z)hm (ρm(z − δm(z))) +

n∧
m=1

λlm(z)hm (ρm(z − δm(z)))
]

∆z

∣∣∣∣∣
Q

,

≤ M
1
q

l (q)

[ ∫ 0

−∞
ê	( alp2 )

(0, σ(z))

∣∣∣∣∣
n∑

m=1

αlm(z + t)fm (ρm(z + t))

+
n∑

m=1

βlm(z + t)fm(ρm(z + t− δm(z + t)))

+
n∨

m=1

ηlm(z + t)hm (ρm(z + t− δm(z + t)))

+
n∧

m=1

λlm(z + t)hm (ρm(z + t− δm(z + t)))

∣∣∣∣∣
p

Q

∆z

] 1
p

.

Which implies that

‖ (Λρ)l(t)− ρ0(t) ‖Sp

= sup
t1∈T

[
1
K

∫ t1+K

t1

∣∣∣∣∣
∫ t

−∞
ê	al(t, σ(z))

( n∑
m=1

αlm(z)fm (ρm(z))

+
n∑

m=1

βlm(z)fm(ρm(z − δm(z))) +
n∨

m=1

ηlm(z)hm (ρm(z − δm(z)))

+
n∧

m=1

λlm(z)hm (ρm(z − δm(z)))
]

∆z

∣∣∣∣∣
p

Q

∆t

] 1
p

,

≤ M
1
q

l (q) sup
t1∈T

[ ∫ 0

−∞
ê	( alp2 )

(0, σ(z))
1
K

∫ t1+K

t1

∣∣∣∣∣
n∑

m=1

αlm(z + t)fm (ρm(z + t))

+
n∑

m=1

βlm(z + t)fm(ρm(z + t− δm(z + t))) +
n∨

m=1

ηlm(z + t)hm (ρm(z + t− δm(z + t)))

+
n∧

m=1

λlm(z + t)hm (ρm(z + t− δm(z + t)))

∣∣∣∣∣
p

Q

∆(z + t)∆z

] 1
p

,

≤ M
1
q

l (q) sup
t2∈T

[ ∫ 0

−∞
ê	( alp2 )

(0, σ(z))
1
K

∫ t2+K

t2

∣∣∣∣∣
n∑

m=1

αlm(t̂)fm
(
ρm(t̂)

)
+

n∑
m=1

βlm(t̂)fm(ρm(t̂− δm(t̂)))
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+
n∨

m=1

ηlm(t̂)hm
(
ρm(t̂− δm(t̂))

)
+

n∧
m=1

λlm(t̂)hm
(
ρm(t̂− δmt̂))

) ∣∣∣∣∣
p

Q

∆t̂∆z

] 1
p

.

≤ M
1
q

l (q)M
1
p

l (p)

(
sup
t2∈T

[
1
K

∫ t2+K

t2

n∑
m=1

| αlm(t̂) |pQ| fm
(
ρm(t̂)

)
|pQ ∆t̂

] 1
p

+ sup
t2∈T

[
1
K

∫ t2+K

t2

n∑
m=1

| βlm(t̂) |pQ| fm(ρm(t̂− δm(t̂))) |
p
Q ∆t̂

] 1
p

+ sup
t2∈T

[
1
K

∫ t2+K

t2

n∑
m=1

| ηlm(t̂) |pQ| hm(ρm(t̂− δm(t̂))) |
p
Q ∆t̂

] 1
p

+ sup
t2∈T

[
1
K

∫ t2+K

t2

n∑
m=1

| λlm(t̂) |pQ| hm(ρm(t̂− δm(t2))) |
p
Q ∆t̂

] 1
p

)
,

≤ max
1≤l≤n

{
M

1
q

l (q).M
1
p

l (p)

[ n∑
m=1

α+
lmLfm +

n∑
m=1

β+
lmLfm

(1− δ∗m)
1
p

+
n∑

m=1

η+lmLhm

(1− δ∗m)
1
p

+
n∑

m=1

λ+lmLhm

(1− δ∗m)
1
p

]}
‖ ρ ‖Sp ,

≤ L∗. ‖ ρ ‖Sp .

In addition, for any ρ ∈ D0, we get
‖ ρ ‖Sp≤‖ ρ− ρ0 ‖Sp + ‖ ρ0 ‖Sp≤ CL∗

1−L∗ + C = C
1−L∗ . Otherwise,

‖ (Λρ)l(t)− ρ0(t) ‖Sp≤
CL∗

1− L∗
.

which implies that (Λρ)l ∈ D0, so the mapping (Λρ)l is a self-mapping from D0 to D0.

Theorem 4.9. Assume that (H1)-(H5) hold. Then, system (3.1) has a unique weighted Stepanov-
like pseudo almost periodic solution in the region D0, provided that L∗ < 1.

Proof. For any ρ, φ ∈ D0 and m = 1, ..., n we have

‖ (Λρ)l(t)− (Λφ)l(t) ‖Sp

= sup
t1∈T

[
1
K

∫ t1+K

t1

∣∣∣∣∣
∫ t

−∞
ê	al(t, σ(z))

( n∑
m=1

αlm(z) (fm(ρm(z))− fm(φm(z)))

+
n∑

m=1

βlm(z) (fm(ρm(z − δm(z)))− fm(φm(z − δm(z))))

+
n∨

m=1

ηlm(z)hm (ρm(z − δm(z)))−
n∨

m=1

ηlm(z)hm (φm(z − δm(z)))

+
n∧

m=1

λlm(z)hm (ρm(z − δm(z)))−
n∧

m=1

λlm(z)hm (φm(z − δm(z)))
)

∆z

∣∣∣∣∣
p

Q

∆t

] 1
p

,

≤ max
1≤l≤n

{
M

1
q

l (q).M
1
p

l (p)

[ n∑
m=1

α+
lmLfm +

n∑
m=1

β+
lmLfm

(1− δ∗m)
1
p

+
n∑

m=1

η+lmLhm

(1− δ∗m)
1
p

+
n∑

m=1

λ+lmLhm

(1− δ∗m)
1
p

]}
‖ ρ− φ ‖Sp ,
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≤ L∗. ‖ ρ− φ ‖Sp< 1.

According to the well-known contraction principle there exists a unique fixed point x∗(.) such
that (Λρ)lx∗(t) = x∗(t). Besides, x∗(.) is a weighted Stepanov-like pseudo almost periodic
solution of the system (3.1) on time scales in D0. This completes the proof of Theorem (4.9).

Remark 4.10. The models studied in ([23, 26]) are considered without fuzzy effects. If µ = 1
and T = R, then, our results is clearly more general and more sophisticated than results in
previous references.

5 Sp-Exponential Stability Of µ-Stepanov-like pseudo-almost periodic
solution

In this section, we will study the Sp-global exponential stability of weighted Stepanov-like
pseudo-almost periodic solution of QVFRNNs (3.1) on time scales.

Definition 5.1. The dynamical networks (3.1) is said to be Sp-globally exponentially stable, if
there exist positive constants α with 	α ∈ R+ and R > 0 such that

‖ y(t)− x(t) ‖Sp≤ Rê	α(t, 0), ∀t ∈ (0,∞)T.

Where x(.) = (x1(.), x2(.), ..., xn(.)) is a weighted Stepanov-like pseudo almost periodic so-
lution of QVFRNNs (3.1) on T and y(.) = (y1(.), y2(.), ..., yn(.)) is an arbitrary solution of
QVFRNNs (3.1) on T.

Theorem 5.2. Suppose that assumptions (H1)-(H5) hold, and L∗ < 1. Then the unique weighted
Sp-pseudo almost periodic solution of system (3.1) is Sp−globally exponentially stable on T
whenever

El = −
3
a∗l

+ ǎl −
n∑

m=1

a∗l
(
α+
lm

)2
(Lfl)

2

−
n∑

m=1

1
1− δ∗

(
a∗l
(
β+
lm

)2
(Lfl)

2
+ a∗l

(
λ+lm

)2
(Lhl)

2
+ a∗l

(
η+lm
)2
(Lhl)

2
)
> 0.

Proof. Let v ∈ [0,∞), we consider the function v 7→ Θl(v) defined by

Θl(v) = v +
3
a∗l
− ǎl +

n∑
m=1

a∗l
(
α+
lm

)2
(Lfl)

2
+

n∑
m=1

exp(vµ̄) exp(vδ̄)
1− δ∗

×
(
a∗l
(
β+
lm

)2
(Lfl)

2
+ a∗l

(
λ+lm

)2
(Lhl)

2
+ a∗l

(
η+lm
)2
(Lhl)

2
)
< 0.

We have

Θl(0) =
3
a∗l
− ǎl +

n∑
m=1

a∗l
(
α+
lm

)2
(Lfl)

2
+

n∑
m=1

1
1− δ∗

×
(
a∗l
(
β+
lm

)2
(Lfl)

2
+ a∗l

(
λ+lm

)2
(Lhl)

2
+ a∗l

(
η+lm
)2
(Lhl)

2
)
< 0.

Since the function Θl(.) is continuous on [0,∞). So, we can choose the positive constant
0 < α < min1≤l≤n al, such that

Θl(α) = α+
3
a∗l
− ǎl +

n∑
m=1

a∗l
(
α+
lm

)2
(Lfl)

2
+

n∑
m=1

exp(αµ̄) exp(αδ̄)
1− δ∗

×
(
a∗l
(
β+
lm

)2
(Lfl)

2
+ a∗l

(
λ+lm

)2
(Lhl)

2
+ a∗l

(
η+lm
)2
(Lhl)

2
)
< 0.
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Let x(.) be the weighted Sp-pseudo almost periodic solution on T, and let y(.) be an arbitrary
solution of QVFRNNs (3.1) on T.We set Yl(.) := xl(.)−yl(.) and construct a Lyapunov function
as follows :

V (t) =
n∑
l=1

| Yl(t) |2Q êα(t, 0) +
n∑
l=1

n∑
m=1

exp(αµ̄) exp(αδ̄)
1− δ∗

×
(
a∗l
(
β+
lm

)2
(Lfl)

2
+ a∗l

(
λ+lm

)2
(Lhl)

2
+ a∗l

(
η+lm
)2
(Lhl)

2
)∫ t

t−δ(t)
| Yl(z) |2Q êα(σ(z), 0)∆z.

Computing the ∆-derivative of V (.), we get

V ∆(t) = αêα(t, 0)
n∑
l=1

| Yl(t) |2Q +êα(t, 0)
n∑
l=1

Y ∆
l (t)Yl(t)

+
n∑
l=1

n∑
m=1

exp(αµ̄) exp(αδ̄)
1− δ∗

(
a∗l
(
β+
lm

)2
(Lfl)

2
+ a∗l

(
λ+lm

)2
(Lhl)

2
+ a∗l

(
η+lm
)2
(Lhl)

2
)

×
[
êα(t, 0) | Yl(t) |2Q −(1− δ∆

m(t)) exp(−αδm(t))êα(t, 0) | Yl(t− δ∆
m(t)) |2Q

]
.

We know that 1 − δ∆
m ≥ 1 − δ∗ and exp(αδ̄). exp(−αδm(t)) > 1, then it follows from Lemma

(2.2) that

V ∆(t) ≤ αêα(t, 0)
n∑
l=1

| Yl(t) |2Q −êα(t, 0)
n∑
l=1

ǎl | Yl(t) |2Q

+ êα(t, 0)
n∑
l=1

( n∑
m=1

αlm(t) (fm(xm(t))− fm(ym(t))) .αlm(t) (fm(xm(t))− fm(ym(t))).a∗l

+
Yl(t)Yl(t)

a∗l

)
+ êα(t, 0)

n∑
l=1

( n∑
m=1

βlm(t) (fm(xm(t− δm(t)))− fm(ym(t− δm(t))))

× βlm(t) (fm(xm(t− δm(t)))− fm(ym(t− δm(t)))) .a∗l +
Yl(t)Yl(t)

a∗l

)
+ êα(t, 0)

n∑
l=1

( n∨
m=1

ηlm(t)hm(xm(t− δm(t)))−
n∨

m=1

ηlm(t)hm(ym(t− δm(t)))
)

×
( n∨
m=1

ηlm(t)hm(xm(t− δm(t)))−
n∨

m=1

ηlm(t)hm(ym(t− δm(t)))
)
a∗l + êα(t, 0)

n∑
l=1

Yl(t)Yl(t)

a∗l

+ êα(t, 0)
n∑
l=1

( n∧
m=1

λlm(t)hm(xm(t− δm(t)))−
n∧

m=1

λlm(t)hm(ym(t− δm(t)))
)

×
( n∧
m=1

λlm(t)hm(xm(t− δm(t)))−
n∧

m=1

λlm(t)hm(ym(t− δm(t)))
)
a∗l + êα(t, 0)

n∑
l=1

Yl(t)Yl(t)

a∗l

+
n∑
l=1

n∑
m=1

exp(αµ̄)
1− δ∗

(
a∗l
(
β+
lm

)2
(Lfl)

2
+ a∗l

(
λ+lm

)2
(Lhl)

2
+ a∗l

(
η+lm
)2
(Lhl)

2
)

×
(
exp(αδ̄)êα(t, 0) | Yl(t) |2Q −(1− δ∆

m(t))êα(t, 0) | Yl(t− δ∆
m(t)) |2Q

)
≤ êα(t, 0)

n∑
l=1

(
α+

3
a∗l
− ǎl +

n∑
m=1

a∗l
(
α+
lm

)2
(Lfl)

2

+
n∑

m=1

exp(αµ̄) exp(αδ̄)
1− δ∗

(
a∗l
(
β+
lm

)2
(Lfl)

2
+ a∗l

(
λ+lm

)2
(Lhl)

2
+ a∗l

(
η+lm
)2
(Lhl)

2
))
| Yl(t) |2Q,

< 0.
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Otherwise, for l = 1, ..., n, we have
∑n
l=1 | Yl(t) |2Q≤ ê	α(t, 0)V (0), where 	α ∈ R+. Then

n∑
l=1

| Yl(t) |pQ≤ ê	pα(t, 0)V (0)
p, p ≥ 2.

Consequently,
n∑
l=1

1
K
| Yl(t) |pQ≤

ê	pα(t, 0)V (0)p

K
, p ≥ 2.

Hence,

n∑
l=1

1
K

∫ t−δ̄+K

t−δ̄
| Yl(z) |pQ ∆z ≤

n∑
l=1

1
K

∫ t+K

t

| Yl(z) |pQ ∆z ≤
∫ t+K

t

ê	pα(t, 0)V (0)p

K
.

Then,
n∑
l=1

1
K

∫ t+K

t

| Yl(z) |pQ ∆z ≤ V (0)pê	αp(t, 0)
K

(exp(−αpK)− 1)
	αp

.

According to the previous inequality, we can obtain

max
l=1,...,n

sup
t1∈T

(
1
K

∫ t1+K

t1

| xl(z)− yl(z) |pQ ∆z

) 1
p

≤ V (0)ê	α(t, 0)

K
1
p

(
exp(−αpK)− 1

	αp

) 1
p

.

Finally,

‖ x− y ‖Sp≤
V (0)ê	α(t, 0)

K
1
p

(
exp(−αpK)− 1

	αp

) 1
p

≤ Rê	α(t, 0).

Where R = V (0)

K
1
p

(
exp(−αpK)−1

	αp

) 1
p

. Therefore, the weighted Sp-pseudo almost periodic solution

x of QVFRNNs (3.1) is Sp-globally exponentially stable on time scales. This completes the
proof.

Remark 5.3. To our knowledge, there is no results concentrated on Stepanov-like almost peri-
odic, Stepanov-like pseudo almost periodic, and weighted Stepanov-like pseudo-almost periodic
solution for QVFRNNs with time varying delays on time scales. As a consequence, the obtained
results in this work are essentially new and the methods used in this paper can also be applied
to study the WSpPAP dynamic on time scales for some other models of dynamical neural net-
works.

6 Numerical Example

In this section, we give an example to illustrate the feasibility and effectiveness of our results
derived in the previous sections.

Example 6.1. Let n = l = m = 1, p = q = 2, α = 1 and the coefficients are taken as follows:

f1(x1) =
1
2
t+ i

1
4

sin(t) +
1
4
k, δ1 = 1, a1 = 8 + 2j cos(

√
7t),

h1(x1) =
1
40
xI1 +

1
40
i cos(πt) +

1
40
j sin(xR1 + xI1 + xJ1 + xK1 ) +

1
40
k tan(xJ1 + xK1 ),

α11(t) =
1
2
j sin(

√
7t) +

1
2
j exp(−t4), β11(t) = i cos(πt) + i exp(−t),

η11(t) =
1
40
k(cos(πt) + cos(

√
3t)), λ11(t) = −

1
60
k(cos(πt) + sin(

√
5t) +

1
1 + t2

),
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I11 =
1
2
i cos(

√
2t) +

3
8
j sin(πt) + k sin(t), µ(t) = 2 + sin(t).

By calculating, we have

Lf1 =
1
8
, Lh1 =

1
40
, δ∗1 = 0,

α+
11 = 1 β+

11 = 2, η+11 = λ+11 =
1
20
,

a1 = 6, a∗1 = ǎ1 = 10.

Case 1 : if T = R we have µ(t) = σ(t) − t = t − t = 0 ∀t ∈ T, then µ̄ = 0. Moroever,
L∗ ' 0.125 < 1.

Figure 1. Behavior of the state variables xR1 , x
I
1 , x

J
1 and xK1 of QVFRNNs (3.1) on

T = R.

Case 2 : if T = Z we have µ(t) = σ(t)− t = t+1− t = 1 ∀t ∈ T, then µ̄ = 1. In addition, we
have L∗ ' 0.157 < 1. Also, E1 ' 6.375 > 0. Finally, according to Theorem (4.9) and Theorem
(5.2), the system (3.1) has a unique (2 + sin(t))-Stepanov-like pseudo almost periodic solution
in the region D0, which is Sp-globally exponentially stable.

Figure 2. Behavior of the state variables xR1 , x
I
1 , x

J
1 and xK1 of QVFRNNs (3.1) on

T = Z
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Remark 6.2. For all we know, this is the first paper to study the weighted Stepanov-like pseudo
almost periodic dynamics of Quaternion-valued fuzzy recurrent neural networks with time scale
delays. There are no known outcomes that could lead to the conclusion of the example (6.1).

Conclusion

In this paper, some sufficient conditions are obtained by applying, the theory of time scales cal-
culations, the Banach fixed point theorem, and by constructing an appropriate Lyapunov function
to ensure the existence, uniqueness and stability of positive WSpPAP solution of QVFRNNs
(3.1).
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