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Abstract This article is concerned with the existence and uniqueness of solutions of fuzzy
fractional differential equations using fixed point theory. We provide some results answering
when we can expect a solution of the problem.

1 Introduction

Fractional order fuzzy differential equations provide us a tool for modelling which appears to
be better than that of the ordinary differential equations in the sense that the predictions made
using models involving fractional derivatives are more close to nature than the ones done using
ordinary differential equations. To work with models involving fuzzy fractional derivatives one
must be able to tell whether the model is well posed or not that is whether it has a unique solution
or not. Therefore it is necessary to study the restrictions and the properties of the models and to
give some sufficient conditions on them so they possess a unique solution.

Fractional differential equations find its applications in the problems arising in the fields
including but not limited to electrical and mechanical properties of materials, dynamics of turbu-
lence, electrochemistry, viscoelasticity. Literature for fractional calculus can be found in ([13],
[20] [23], [24], [26]). Further articles can be looked into ([16], [14], [15], [22]).

Letting fuzzy sets involve in our model allows us to harness the ability to handle the vague-
ness present in the nature. Since its introduction in 1965 by Lotfy Zadeh the literature for fuzzy
set theory has only grown and a useful amount of it can be found in ([6], [17], [31], [32]). Further
studies are referred in ([10], [19], [29]).

In 2010 Agarwal et. al.[2] merged fractional and fuzzy differential equation. Despite being
new, this topic is growing very fast and many articles related to this are published. Some early
works can be found in ([5], [28]). Useful surveys and collection of the literature for fuzzy frac-
tional differential equations is given in ([1], [4]). While, the literature for fixed point theory and
its application is vast, some of which, that is relevant to this paper, are referred in ([18], [3],
[12]). Many situations in the study of nonlinear equations, calculus of variations, partial differ-
ential equations, optimal control and inverse problems can be formulated in terms of fixed point
problems ([8], [7], [9], [21], [11], [30]).

Motivated by the work initiated by Agarwal et al.[2] in which they viewed the set of all fuzzy
numbers as a semi-linear space and constructed a fixed point theorem for the space in semi-linear
sense. It is known that the set of all fuzzy numbers is also a metric space and hence Banach
contraction principle can be straight forwardly used, so observing that the Banach contraction
principle is not straight-forwardly used, we study the fuzzy fractional initial value problem given
below:

C
t0
Dα
t x(t) = f(t, x(t)), x(t0) = x0 ∈ FR (1.1)
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Where, FR denotes the collection of all fuzzy numbers with universe R, t ∈ [t0, T ], x is the
unknown with codomain FR, Ct0

Dα
t denotes α order fractional derivative in Caputo sense with

0 < α < 1, f is also a fuzzy number valued function with the property that:

f ∈ C([t0, T ]×B(x0, η),FR) (1.2)

Here, B(x0, η) is a fuzzy ball with center x0 and radius η.

The paper is designed as follows; this Section 1 is devoted to introduction, Section 2 contains
preliminary definition to be used in the paper. The main result is contained in Section 3 and Sec-
tion 4 has an example supporting the results we established, the literature regarding the example
can be found in ([25], [27]). Section 5 concludes this article and then the useful reference are
listed.

2 Preliminary Supplements

With an intention to make this paper self-sufficient, the following definitions are given.

Definition 2.1. [4] “A fuzzy number is a fuzzy set P if for its membership function µP : R →
[0, 1] the following holds:

(i) P is normal. i.e, there exists a real member q0 such that µP (q0) = 1.

(ii) P is fuzzy convex. i.e,
for two arbitrary real numbers q1, q2 and l ∈ [0, 1] we have,

µP (lq1 + (1− l)q2) ≥Min{µP (q1), µP (q2)}.

(iii) P is upper semi-continuous.

(iv) The closure of Supp(P ) = {q ∈ R : µP (q) > 0} is compact.”

The Supp represents the support set of the fuzzy set P and is defined as in above.

Definition 2.2. [4] “The parametric form of a fuzzy number P is given by qP = [Pl(q), Pu(q)]
for any 0 ≤ q ≤ 1, iff,

(i) Pl(q) ≤ Pu(q).

(ii) Pl(q) increases with q and is left continuous function on [0, 1] and right continuous on 0
with respect to q.

(iii) Pu(q) decreases with q and is left continuous function on [0, 1] and right continuous on 0
with respect to q.

(iv) qP = [Pl(q), Pu(q)] is a compact interval for any 0 ≤ q ≤ 1.”

Definition 2.3. [4] “A singleton fuzzy number is a real number a, if qa = [al(q), au(q)] = [a, a]
i.e, the membership function at a is 1 and at other values is zero.”

For example, 0 denotes the singleton fuzzy zero with,

µ0(q) =

{
1, q = 0
0, otherwise.

Definition 2.4. [4] “Let P and Q be two fuzzy numbers in parametric form then the addition R
of P and Q is given by

P ⊕Q = R,

qR = [Rl(q), Ru(q)] = qP + qQ = [Pl(q), Pu(q)] + [Ql(q), Qu(q)],

where,
Rl(q) = Pl(q) +Ql(q), Ru(q) = Pu(q) +Qu(q).”
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Definition 2.5. [4] “Let P and Q be two fuzzy numbers in parametric form then the generalized
Hukuhara difference of P and Q is given by

P 	g Q = R⇔


(i)P = Q⊕R

or

(ii)Q = P ⊕ (−1)R.”

Definition 2.6. [4] “Let P and Q be two fuzzy numbers in parametric form then the multiplica-
tion of P and Q is given by

P �Q = R,

qR = [Rl(q), Ru(q)] = qP × qQ = [Pl(q), Pu(q)]× [Ql(q), Qu(q)],

where,

Rl(q) = min{Pl(q)×Ql(q), Pl(q)×Qu(q), Pu(q)×Ql(q), Pu(q)×Qu(q)},

Ru(q) = max{Pl(q)×Ql(q), Pl(q)×Qu(q), Pu(q)×Ql(q), Pu(q)×Qu(q)}.”

This is also valid if one of P and Q is a real number.

Definition 2.7. [4] “The Hausdorff distance DH : FR×FR → R, between two fuzzy numbers P
and Q is given by

DH(P,Q) = sup
q∈[0,1]

max{|Pl(q)−Ql(q)|, |Pu(q)−Qu(q)|}.”

Following are some properties satisfied by DH . Here P,Q,R, S ∈ FR and k ∈ R:

(i) DH(P ⊕R,Q⊕R) = DH(P,Q).

(ii) DH(k � P, k �Q) = |k|DH(P,Q).

(iii) DH(P ⊕Q,R⊕ S) ≤ DH(P,R) +DH(Q,S).

(iv) (FR,DH) is a complete metric space.

(v) DH(P 	g Q,R	g S) ≤ DH(P,R) +DH(Q,S).

(vi) DH(P 	g Q, 0) = DH(P,Q).

Last two properties are very useful as they relate the Hausdorff distance to the generalized
Hukuhara difference.

Definition 2.8. [4] “The generalized Hukuhara derivative of a fuzzy number valued function
x : [0, T ]→ FR at t0 ∈ [0, T ] is given by :

x′(t0) = lim
h→0

x(t0 + h)	g x(t0)
h

,

provided that the difference x(t0 + h) 	g x(t0) and the limit exists then the function x is called
gH-differentiable.”

The level-wise form of gH-differentiable function x is given in following two cases:
CASE I: x′(t, r) = [x′l(t, r), x

′
u(t, r)], if x is i− gH differentiable at t.

CASE II: x′(t, r) = [x′u(t, r), x
′
l(t, r)], if x is ii− gH differentiable at t.

Definition 2.9. [24] “The fractional integration of x ∈ L1,loc([t0, t],R) of order α > 0 in Riemann-
Liouville sense is given by

t0J
−α
t x(t) =

1
Γ(α)

∫ t

t0

(t− τ)α−1x(τ)dτ.”
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Definition 2.10. [24] “The fractional derivative of x ∈ L1,loc([t0, t],R) of order 0 ≤ α < 1 in
Riemann-Liouville sense is given by

RL
t0
Dαt x(t) =

d

dt
(t0J

−(1−α)
t x(t)) =

1
Γ(1− α)

d

dt

∫ t

t0

(t− τ)−αx(τ)dτ.”

Definition 2.11. [24] “The fractional derivative of a differentiable function x, such that x′ ∈
L1,loc([t0, t],R), of order 0 < α < 1 in Caputo sense is given by

C
t0
Dαt x(t) =t0 J

−(1−α)
t

d

dt
x(t) =

1
Γ(1− α)

∫ t

t0

(t− τ)−αx
′
(τ)dτ.”

Definition 2.12. [24] “The Mittag-Leffler function with two parameter for z ∈ C is given by

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)
, (α, β > 0)”

Definition 2.13. [4] “The fuzzy fractional Caputo derivative of order 0 < α < 1 of a fuzzy num-
ber valued function x, such that x is gH differentiable and x′ ∈ L1,loc([t0, t],FR), is defined as:

C
t0
Dα
t x(t) =

1
Γ(1− α)

�
∫ t

t0

(t− τ)−α � x′(τ)dτ.”

Definition 2.14. [4] “Let x be a fuzzy number valued function with parametric form x(t, r) =
[xl(t, r), xu(t, r)], then length of x is defined as:

length(x(t, r)) = xu(t, r)− xl(t, r).”

Note: The length function is monotonically increasing if the function x is i− gH differentiable
and is monotonically decreasing if it is ii− gH differentiable.

Lemma 2.1[4] “Let x(t) be a i or ii− gH differentiable fuzzy function. Then x(t) is the solution
of (1.1) iff, x(t) is the solution of the following integral equation:

x(t)	g x0 =
1

Γ(α)
�
∫ t

t0

(t− τ)α−1 � f(τ, x(τ))dτ.”

Definition 2.15. [18] “Let g : X → X and (X, d) a metric space then g is a contraction if there
exists a fixed constant l < 1 such that

d(g(a), g(b)) ≤ ld(a, b),∀a, b ∈ X.”

Theorem 2.16. [18] “Each contraction map g : X → X on a complete metric space (X,d) has a
unique fixed point.”

Definition 2.17. Let C([t0, T ],FR) be the set of all continuous functions from [t0, T ] to FR. De-
fine

H(x, y) = sup
t∈[t0,T ]

DH(x(t), y(t)).

Then (C([t0, T ],FR), H) is a complete metric space.

Theorem 2.18. [18] “Let g : X → X and (X, d) a complete metric space with the property that
for some positive integer n, gn is contraction on X . Then, g has a unique fixed point.”

Proof Let a be the fixed point of gn, then,

gn(a) = a =⇒ gn+1(a) = g(a) =⇒ gn(g(a)) = g(a)

This means that g(a) is also a fixed point of gn. But the fixed point is unique, hence g(a) = a
that is a is a unique fixed point of g.
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3 Main Result

In this section, we give existence and uniqueness results on the solutions of the fuzzy fractional
differential equation using Banach fixed point theorem or contraction principle.

Theorem 3.1. Let f be a continuous function in system (1.1) such that for any z,w ∈ C([t0, T ], B(x0, η))
and L > 0,

DH(f(t, z(t)), f(t,w(t))) ≤ LDH(z(t),w(t)), (3.1)

then the IVP (1.1) has a unique solution.

Proof We’ll exploit the Banach contraction principle to prove this result. Define, T : C([t0, T ],FR)→
C([t0, T ],FR) as

Tx(t) = x0 ⊕
1

Γ(α)
�
∫ t

t0

(t− τ)α−1 � f(τ, x(τ))dτ.

Since t ∈ [t0, T ], the right hand side is a continuous fuzzy number valued function on [t0, T ] and
hence is well defined. Now, consider the following,

DH(Tx(t),Ty(t)) = DH(x0 ⊕
1

Γ(α)
�
∫ t

t0

(t− τ)α−1 � f(τ, x(τ))dτ,

x0 ⊕
1

Γ(α)
�
∫ t

t0

(t− τ)α−1 � f(τ, y(τ))dτ),

using properties of the Hausdorff distance and assumptions on f ,

≤ 1
Γ(α)

∫ t

t0

(t− τ)α−1DH((τ, x(τ)), f(τ, y(τ)))dτ

≤ L

Γ(α)

∫ t

t0

(t− τ)α−1DH(x(τ), y(τ))dτ,

taking supremum over [t0, T ] both the sides,

sup
[t0,T ]

DH(Tx(t),Ty(t)) ≤
L

Γ(α)

∫ t

t0

sup
τ∈[t0,T ]

(t− τ)α−1DH(x(τ), y(τ))dτ

≤ L

Γ(α)
H(x, y)

[∫ t

t0

(t− τ)α−1dτ

]

H(Tx,Ty) ≤ L

Γ(α+ 1)
H(x, y)(t− t0)α

≤ L

Γ(α+ 1)
H(x, y)(T − t0)α.

(3.2)

Now,

DH(T
2x(t),T2y(t)) = DH(T(Tx(t)),T(Ty(t)))

≤ L

Γ(α)

∫ t

t0

(t− τ)α−1DH(Tx(t),Ty(t)),
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taking supremum over [t0, T ] both the sides,

sup
[t0,T ]

DH(T
2x(t),T2y(t)) ≤ L

Γ(α)

L

Γ(α+ 1)

∫ t

t0

(t− τ)α−1(τ − t0)αH(x, y)dτ

=
L2

Γ(α+ 1)
H(x, y)

( 1
Γ(α)

∫ t

t0

(t− τ)α−1(τ − t0)αdτ
)

=
L2

Γ(α+ 1)
H(x, y)

Γ(α+ 1)
Γ(α+ 1 + α)

(t− t0)α+α

=
L2

Γ(2α+ 1)
(t− t0)2αH(x, y)

H(T2x,T2y) ≤ L2

Γ(2α+ 1)
(T − t0)2αH(x, y).

Inductively,

H(Tnx,Tny) ≤ Ln

Γ(nα+ 1)
(T − t0)nαH(x, y).

But since
Ln(T − t0)nα

Γ(nα+ 1)
→ 0 as n→∞, ∃n ∈ N, sufficiently large such that

Ln(T − t0)nα

Γ(nα+ 1)
< 1.

This implies that Tn is a contraction.

Now, Theorem 2.18 implies that T has a fixed point which assures the existence of a unique
solution of 1.1 by Theorem 2.16.

4 Example

We are considering an example which satisfies the conditions of our Theorem 3.1 and works as
an illustration of the Theorem 3.1. For t ∈ [0, T ], we have:

C
0 D

α
t x(t) = p� x(t)	g x2(t), x(0) = [0.1 0.5 1] ∈ FR, (4.1)

here, p is a singleton fuzzy number. Since,

f(t, x(t)) = p� x(t)	g x2(t), x(t) ∈ B([0.1 0.5 1], η)

is a continuous function with fuzzy ball B([0.1 0.5 1], η) as its codomain and [0, T ] as its
domain, where η > 0 is the radius of the fuzzy ball B with centre [0.1 0.5 1], then it can be
shown that the natural map produced by 4.1 is a contraction and hence it has a unique solution.

5 Conclusion

Under the suitable restrictions on the function f we provide a result that tells when to expect a
unique solution for the fuzzy fractional IV P (1.1) using a variant 2.18 of the Banach contraction
principle stated in theorem 2.16. An example to support the theory is presented.
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