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Abstract: In this paper, we describe a new numerical approach for the solution of integral
equations with Abel type singularity based on normalized Euler polynomials. Euler’s opera-
tional matrix of integration is introduced and the Euler polynomials have been used to obtain
it. This polynomial is orthonormalized first, and then their operational matrix of integration is
obtained. The orthogonality approach is used to convert integral equations into a set of algebraic
equations in which it can be calculated fast. We demonstrated the accuracy and utility of the sug-
gested operational matrix of integration using numerical examples. A comparative study with
other methods reflects that the proposed algorithm has good degree of accuracy and also easy to
compute.

1 Introduction

Polynomial series and orthogonal functions have been studied extensively in the context of dy-
namic systems. Since a long time, approximations based on the orthonormal series of functions
have been applied to solve problems in mathematical modelling, simulation, as well as engi-
neering and technology. They have played an essential role in the evaluation of novel strategies
to tackle issues such as identification, differential equations, integral equations, and optimum
control since previous four decades. The key feature of this technique is that it simplifies these
problems by reducing them to a set of algebraic equations.

The main concept behind this method is to use several integrations to convert a differential
equation into an integral equation. Following that, the various parameters of the integral equa-
tions are then determined by defining them with linear combinations of the orthonormal basis
functions and modifying it to the desired accuracy. The integral equation is finally transformed
into an algebraic equation through inserting the operational matrix of integration of the basis
functions.

Singular integral equations are generally useful in physics and theoretical mechanics, espe-
cially in the fields of aerodynamics, elasticity and unstable aerofoil theory. Abel derived the
Abel integral equation in 1823 while making assumptions and solving the Tautochrone issue. It
makes things simpler to figure out how long it takes for a particle to drop along a certain curve.
This integral equation is written as follows:

q(r) =

∫ x

0

ζ(t)√
r − t

dt, 0 ≤ r ≤ 1 (1.1)

q(r) denotes a known function, whereas ζ(t) represents an unknown function. The exact solution
is given as follows:

ζ(r) =
1
π

∫ r

0

ζ(t)√
r − t

dq(t)

d(t)
dt, 0 ≤ r ≤ 1. (1.2)

It is simply assumed that q(0) = 0, without limiting consistency.

Abel integral equations can be found in many scientific fields such as electron radiation, atomic
scattering, X-ray radiography, radar coverage, plasma diagnostics, seismology, radio astronomy
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and optical fibre estimation. Abel’s equation is an integral equation that is created automatically
from a mechanics or physics problem (but without the use of a differential equation). The very
first example of an integral equation [10] is Abel’s integral equation. Orthogonal functions or
polynomials, such as Fourier series, Block Pulse functions, Walsh functions, Chebyshev polyno-
mials, Legendre polynomials, and Laguerre polynomials, have been mostly utilised to estimate
solutions of some systems, including the differential equations, integral equations and integro-
differential equations, in recent decades. Several numerical different approaches for estimating
the solution of integral equations using the polynomials stated above are discussed.

The Tau approach [16], Haar Wavelets operational matrix [6], iteration variation method
[31],[28], homotopy perturbation method [30],[8], Sine-Cosine Wavelets method [19], radial
basis functions method [11], collocation method [17], Homotopy analysis method [1],[12], Leg-
endre matrix method [20],[21], Homotopy analysis transform method [22], Bernoulli Wavelet
method [29, 25], Legendre Wavelets operational matrix [18], Wavelet Galerkin method [23],
Bernstein polynomials method [32], were used to analyze the differential, integral, and integro-
differential equations. Iterative approaches are used by [7] to transform an integral equation
into another system of nonlinear equations that must be easily solved. Baratella and Orsi [2]
introduced a numerical solution of weakly singular Volterra integral equations. Singh et al. [24]
described and developed a numerical solution to singular Volterra integral equations of Abel
type using the Bernstein polynomials. For solving fractional integro-differential equations with
weakly singular kernels, Wang et al. [27] proposed Fractional-order Euler functions.

In this article, an operational matrix of integration based on the Euler polynomial is derived.
This operational matrix is generated after the Euler polynomials have been orthonormalized.
We will solve Abel’s integral equation (1.1), commonly known as the singular Volterra integral
equation of first kind, using the formulated operational matrix. We will also solve Volterra’s
second-order integral equation, which is shown below:

ζ(r) = q(r) +

∫ r

0

ζ(t)√
r − t

dt, 0 ≤ r ≤ 1 (1.3)

where q(r) is in L2(R), in the range 0 ≤ r ≤ 1.

2 The Euler polynomials

Euler polynomials and numbers, first presented in 1740 by Euler, have unique features and appli-
cations in domains such as number theory, differential geometry, analysis and algebraic topology
[34]. They are closely related to Bernoulli’s polynomial theory in several ways [9], [13]. The
exponential generating functions are commonly used to determine the classical Euler polynomial
En(t) (see [5] for further details):

2ert

et + 1
=
∞∑
n=0

En(r)
tn

n!
, (|t| ≤ π) (2.1)

The explicit representation of well-known nth-degree Euler polynomials is written as:

En(r) =
n∑
k=0

(
n

k

)
Ek
2k

(
r − 1

2

)n−k
, n ∈ N (2.2)

WhereEk is Euler’s number for k = 0, 1, 2, · · · , n . Conversely, the Euler numbers are expressed
with the Euler polynomials by

Ek = 2kEk
(

1
2

)
Numerous useful and applicable characteristics and associations using these polynomials and
numbers can be further used also in these references [5], [9], [13].

The first Euler polynomial is E0(r) = 1 and the next five which are used in this paper, are
listed as follows

E1(r) = r − 1
2
, E2(r) = r2 − r, E3(r) = r3 − 3

2
r2 +

1
4
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E4(r) = r4 − 2r3 + r, E5(r) = r5 − 5
2
r4 +

5
2
r2 − 1

2
Euler polynomials satisfy the following interesting properties [14][15],[24].

E′n(r) = nEn−1(r), n = 1, 2, · · · (2.3)

n∑
k=0

(
n

k

)
Ek(r) +En(r) = 2rn (2.4)

En(1− r) = (−1)nEn(r) (2.5)

En(r + y) =
n∑
k=0

(
n

k

)
Ek(r)y

n−k (2.6)

En(r) =
1

n+ 1

n+1∑
k=1

(2− 2k+1)

(
n+ 1
k

)
Bk(0)rn+1−k (2.7)

where Bk(r), k = 0, 1, 2, · · · is the order k Bernoulli’s polynomial, which is denoted as:
n∑
k=0

(
n+ 1
k

)
Bk(r) = (n+ 1)rn.

The behavior of certain Euler polynomials in the interval is shown in Figure (1).

Figure 1. Behavior of the first five Euler polynomials.

3 The orthonormal Euler’s polynomials:

We generate a family of orthonormal polynomials by using the Gram-Schmidt orthonormaliza-
tion procedure to En and normalizing it.They are known as orthonormal Euler polynomials of
order n and represented by E0, E1, · · · , En.

The five orthonormal polynomials for n = 5 are listed as below:

E0(t) = 1,

E1(t) =
√

12
(
t− 1

2

)
,

E2(t) =
√

180
(
t2 − t+ 1

6

)
E3(t) =

√
2800

(
t3 − 3

2
t2 +

3
5
t− 1

20

)
,

E4(t) =
√

44100
(
t4 − 2t3 +

9
7
t2 − 2

7
t+

1
70

)
E5(t) =

√
698544

(
t5 − 5

2
t4 +

20
9
t3 − 5

6
t2 +

5
42
t− 1

252

)
.

(3.1)
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4 Function approximation

A function q ∈ L2[0, 1] can be expressed as

q(t) = lim
n→∞

n∑
k=0

CkEk(t), (4.1)

Where, Ck =< q,Ek > and <,> is the normal inner product with L2[0, 1].
If series (4.1) is truncated at n = m then we get

q(t) '
n∑
k=0

CkEk = CTE(t), (4.2)

where, C and E(t) are (m+ 1)× 1 matrices given by

C = [C0, C1, · · · , Cm]T (4.3)

and
E(t) = [E0(t), E1(t), · · · , Em(t)]T . (4.4)

5 Solution of Abel’s integral equation

We used orthonormal Euler polynomials in this section to evaluate Abel’s integral equation (1.1)
and singular Volterra integral equations (1.3).

Using equation (4.1), we approximate ζ(r) and q(r) as follows:

ζ(r) = CTE(r), q(r) = GTE(r) (5.1)

where, the matrixG can be obtained by approximating q(r) in terms of the basis given in equation
(3.1). Then from equations (1.1), (1.3) and (5.1) we have

For the first kind:

GTE(r) =

∫ r

0

CTE(t)√
r − t

dt (5.2)

and For the second kind:

CTE(r) = GTE(r) +

∫ r

0

CTE(t)√
r − t

dt. (5.3)

The orthonormal Euler’s polynomials operational matrix of order (m + 1) × (m + 1) will be
derived now. In order to obtain this, consider the following integral:

ζ(r) =

∫ r

0

Em(t)√
r − t

dt, 0 ≤ r ≤ 1

=
n∑
k=0

CkEk(t),

=[C0, C1, · · · , Cm]E(t). (5.4)

Using equations (4.4) and (5.4), we obtain∫ r

0

Em(t)√
r − t

dt = Pm+1E(r). (5.5)

Here Pm+1 is an operational matrix for singular Volterra integral equations with Abel kernel,
which we refer to as the Euler’s operational matrix of integration.

The matrix P6 is given by P and is presented as follows for m = 5 :
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P =



4
3

4
5
√

3
− 4

21
√

5
4

45
√

7
− 4

231
4

117
√

11
− 4

5
√

3
4
7

4
3
√

15
− 4

11
√

21
4

65
√

3
− 4

35
√

33

− 4
21
√

5
− 4

3
√

15
100
231

28
√

7
5

117
− 12

77
√

5

44
√

11
5

1989

− 4
45
√

7
− 4

11
√

21
−

28
√

7
5

117
4
11

308
√

7
3315

− 52
95
√

77

− 4
231

− 4
65
√

3
− 12

77
√

5
−308

√
7

3315
468
1463

44
√

11
663

− 4
117
√

11
− 4

35
√

33
−

44
√

11
5

1989
− 52

95
√

77
−44
√

11
663

884
3059



. (5.6)

Substituting (5.5) in (5.2) and (5.3), we get

CT = GTP−1 (for the first kind) (5.7)

and
CT = GT (I − P )−1 (for the second kind). (5.8)

Therefore, by substituting the values of CT from (5.7) and (5.8) into (5.1), the approximate
solutions ζ(t) of Abel’s integral equation (1.1) and the second kind singular Volterra integral
equation (1.3) are finally found.

6 Illustrative examples

This section includes three examples that illustrate the efficiency, applicability and accuracy of
the proposed numerical scheme, all of which have been created through using Wolfram Math-
ematica mathematical software.The approximate solutions to the examples are given here, and
they are compared to the exact solutions of the singular Volterra integral equation. The absolute
error between the exact and approximated solution has also been calculated. Consider absolute
error as generally follows:

Absolute error = |Y0(r)− Y1(r)|, a ≤ r ≤ b

Y0(r) and Y1(r) denote for exact and approximate solutions, respectively.

Example 6.1. Consider the singular Volterra integral equation below:

Y (r) = r2 +
16
15
r5/2 −

∫ r

0

Y (t)√
r − t

dt, (From [31]) (6.1)

Y0(r) = r2 is the exact solution to this problem. On applying proposed scheme with m = 5 we
obtain

CT =

[
1
3
,

1
2
√

3
,

1
6
√

5
, 0, 0, 0

]
,

GT =

[
67

105
,

127
126
√

3
,

551
1386

√
5
,

32
1287

√
7
,− 32

45045
,

32
69615

√
11

]
.

Equations (5.1) and (5.8) give the approximate solution Y1(r) = CTE(r) = r2 which is the
exact solution i.e. using this method we have no error while in many other methods in literature
has at least some error.
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Example 6.2. Consider the singular Volterra integral equation:

Y (r) = r +
4
3
r3/2 −

∫ r

0

Y (t)√
r − t

dt, (From [3]) (6.2)

and that has Y0(r) = r as an exact solution. Using the same procedure as used in example.1, we
get the following result as

CT =

[
1
2
,

1
2
√

3
, 0, 0, 0, 0

]
,

GT =

[
31
30
,

83
70
√

3
,

8
63
√

5
,− 8

195
√

7
,

8
5005

,− 8
4095

√
11

]
.

The approximate solution of this problem is Y1(r) = CTE(r) = r, which again gives exact
solution.

Example 6.3. Consider Abel’s integral equation, which is written as:∫ r

0

Y (t)√
r − t

dt = rs, 0 < r < 1(From [4]) (6.3)

where s is a positive number.This is a weakly singular first-order Volterra integral equation.
The exact solution of integral equation (6.3) is as described in the following:

Y0(r) =
22s−1

π
s
(Γ(s))2

Γ(2s)
rs−

1
2 (6.4)

We generally apply the proposed technique to try to analyze the Abel’s integral problem consid-
ering s = 1, 1.5, 5.
The given function q(r) = r having exact inverse Abel transform Y0(r) =

2
π

√
r, when r = 1.

Furthermore, using the same procedure as in example (6.1), we obtain

CT = [0.424560, 0.147281,−0.026761, 0.011154,−0.004904, 0.004176],

GT = [0.5, 0.288675, 0, 0, 0, 0].

Equations (5.1) and (5.7) give the approximate solution, which is

Y1(r) = 0.051550 + 1.933127r − 5.477178r2 + 10.406638r3 − 9.756223r4 + 3.490560r5.

The exact solution (solid line) and the approximate solution (dashed line) are shown in Figure
(2). Figure (3) depicts the difference in errors between exact and approximate solutions.The two
remaining cases for the presented function q(r) with s = 1.5 and 5 contain exact inversions
as Y0(r) = 3

4r and Y0(r) = 1280
315π r

9/2 respectively, and have also been considered in the same
manner as s = 1.
For s = 1.5,

CT = [0.375, 0.216506, 3.61274×10−8,−2.70615×10−8, 1.10093×10−8,−1.77776×10−8],

GT = [0.4, 0.296923, 0.0425918,−0.00458139, 0.0011988,−0.000441775].

For s = 5,

CT = [0.235175, 0.364063, 0.169899, 0..059130, 0.010594, 0.000570]

GT = [0.166667, 0.206197, 0.133099, 0.052495, 0.011905, 0.001196].

Hence the approximate solutions for s=1.5 and 5 are

Y1(r) =0.00000022 + 0.73741922r − 0.00884293r2 + 0.00001487r3 + 0.00000010r4

− 0.00001486r5,

Y1(r) =0.000087− 0.004184r + 0.049793r2 − 0.262794r3 + 1.034751r4 + 0.475985r5



Numerical method of Abel’s type integral equation 19

respectively. Figures (4),(5),(6),(7) demonstrate the comparison of exact and approximate solu-
tions, as well as their absolute error, for s=1.5 and s=5.

Figure 2. Comparison between the exact solution Y0(r) (solid line) and the approximate solu-
tions Y1(r) (dashed line) of the Abel’s integral equation (6.3) at s = 1.

Figure 3. The absolute error for the Abel’s integral equation (6.3) at s = 1.

Figure 4. Comparison between the exact solution Y0(r) (solid line) and the approximate solu-
tions Y1(r) (dashed line) of the Abel’s integral equation (6.3) at s = 1.5.
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Figure 5. The absolute error for the Abel’s integral equation (6.3) at s = 1.5

Figure 6. Comparison between the exact solution Y0(r) (solid line) and the approximate solu-
tions Y1(r) (dashed line) of the Abel’s integral equation (6.3) at s = 5.

Figure 7. The absolute error for the Abel’s integral equation (6.3) at s = 5
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Table 1. Numerical results of example (6.3) by using proposed method
r Exact solution Proposed method with

n=5 n=7
s =1 s =1.5 s =5 s =1 s =1.5 s = 5 s =1 s =1.5 s = 5

0.0 0.0 0.0 0.0 0.0515499 0.0 0.000087 0.038851 0.0 0.0
0.1 0.201317 0.075 0.000041 0.199556 0.075 0.000012 0.203329 0.075 0.000041
0.2 0.284705 0.15 0.000926 0.287847 0.15 0.000947 0.284235 0.15 0.000926
0.3 0.348691 0.225 0.005738 0.348976 0.225 0.005756 0.347688 0.225 0.005738
0.4 0.402634 0.30 0.020942 0.400459 0.30 0.020925 0.403541 0.30 0.020942
0.5 0.450158 0.375 0.057163 0.448962 0.375 0.057140 0.450719 0.375 0.057163
0.6 0.493124 0.45 0.129846 0.494492 0.45 0.129854 0.492159 0.45 0.129846
0.7 0.532634 0.525 0.259831 0.534584 0.525 0.259860 0.532373 0.525 0.259830
0.8 0.569410 0.60 0.473865 0.568490 0.60 0.473861 0.570618 0.60 0.473866
0.9 0.603951 0.675 0.805083 0.601367 0.675 0.805041 0.602691 0.675 0.805083
1.0 0.636620 0.75 1.293450 0.648468 0.75 1.293640 0.644333 0.75 1.293460

For different values of r , Table 1 represents the exact and approximate values of Y (r).

7 Conclusions

A numerical approach that is based on Normalized Euler polynomials has been developed in this
study for resolving singular Volterra integral equations of Abel type.

The unknown function is approximated with orthonormalized Euler’s polynomials in the
given technique, and also the integral equation is transformed to a system of algebraic equa-
tions. Some examples are used to test its applicability and accuracy. When the approximate
solution is compared to the exact solution in such examples, it is absolutely clear that the Euler
orthonormal matrix method can achieve very accurate and significant results. Examples (6.1)
and (6.2) gives exact solution and Example (6.3) gives very less error in comparison to exact
solutions. In Table (1), we can see as the order of operational matrix increases error decreases
rapidly. This numerical method has the benefit of being quite simple and clear to put into action
on a computer. One may apply this operational matrix technique to solve, partial differential
equations, integro-differential equations and differential equations of fractional order also.
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