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Abstract The approximate controllability of a class of fractional order semi-linear delay dif-
ferential control systems with random impulse is investigated in this study under the natural
premise that the linear system is approximately controllable. The existence and uniqueness of
the mild solution to the above-mentioned system were determined by using Banach contraction
principle. To demonstrate our analytical findings, we present an example.

1 Introduction

Fractional differential equations have been received more attention in recent years, and it plays a
significant role in real-world applications. Because, during the last few decades, all scientific and
engineering research have proved that the dynamics of many systems may be better described
by utilizing non-integer order differential equations. In fact, it has been used as an alternate
tool to model nonlinear differential equations. Many real-world situations are represented, inter-
preted, and conveyed using fractional differential equations to ensure that the physical meaning
is preserved and that the information is assimilated more correctly and realistically. Fractional
integrals and derivatives also emerge in the concept of control of dynamical systems, where frac-
tional differential equations are employed to describe the controlled system and the controller.
The fractional order nonlinear differential equations have been explored by many researchers
in [1, 7, 9, 12, 15, 19, 20]. The existence and controllability results of fractional differential equa-
tions receives very little attention in the study. When the operator (or) the C0 semigroup T (τ) is
compact, it is noticed in publications [8, 17, 30] that exact controllability of abstract differential
equations in infinite-dimensional space is lacking. In [10,13,27–29], authors studied the approx-
imate controllability of abstract semilinear differential equations. This encourages researchers
to investigate approximate controllability results for fractional differential equations in infinite-
dimensional space.
.

On the other hand, there are natural phenomena that can have their states changed instantly
at a specific point in time, such as automobile systems with impact, biological systems in par-
ticular, flow of blood, heartbeats, population dynamics, radio physics, medicine, and so on. It is
crucial to evaluate dynamical systems with discontinuous trajectories, also referred as differen-
tial equations with impulses, in order to achieve this idealistic view. Fixed and random impulses
are the two types of impulses available. There have already been numerous studies on impulsive
differential systems in history, see [14,26]. The majority of research articles treat the problem of
impulses as if it were a fixed-time instance, yet this is not always the case in real-time situations.
The solutions are a stochastic process due to the type of impulses as random time. As a result, the
random impulse dynamical system is much more realistic when compared with the deterministic
impulsive system.

The exponential stability of random impulsive differential equations is investigated in [2].
Pazy [18] has examined possible solutions to nonlinear and semilinear evolution equations us-
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ing the method of semigroup. Wu and Meng [31] studied random impulsive ordinary differen-
tial equations and used Liapunov’s direct technique to examine the boundedness of solutions.
The existence and stability of differential system with random impulse have been investigated
in [3–5]. Wu et al. first introduced the existence and uniqueness of functional differential equa-
tions with random impulse and analysed the p-moment stability, almost sure stability of solutions
using Liapunovs function connected with the Razumikhin strategy under Lipchitz conditions in
their papers [35–37]. The oscillation and boundedness of solutions in the system with the equiv-
alent non-impulsive differential system, as well as the stability with random impulses, were
discussed by Wu et al. in [32–34]. Previously in [21–25], Radhakrishnan et al investigated the
existence, uniqueness and stability results for semilinear, quasilinear differential equations, in-
clusions and also integrodifferential equations with random impulsive circumstances. Recently
in [6,11,16], the authors discusses about the approximate controllability of second order system
and hilfer fractional evolution equations and inclusions. The approximate controllability were
studied in the previous survey utilising fixed point theory, semigroup compactness, and uniform
boundedness for nonlinear term. In our proof, the compactness and uniform boundedness cri-
teria are waived. There is no publication that we are aware of that investigates the approximate
controllability of random impulsive fractional differential equations.

This article is structured in the following manner: Formulation of the research problem have
been described in section 2. The existence, uniqueness result, and approximate controllability of
a random impulsive fractional semilinear control system have been examined in sections 3 and
4, respectively. In the last part, an example of how to use the applicability of the obtained results
is given.

2 Problem Formulation

Let the two separable real Hilbert spaces be U and V with the property that V → U is
dense and continuous. Let κ be a non-empty set and ρk is a random variable defined from
κ → Dk ≡ (0, dk), where 0 < dk < +∞ with λ as the parameter for k = 1, 2, .... Also, for
µ, ν = 1, 2, ..., assume that ρµ and ρν are independent of each other as µ 6= ν. Let η, T ∈ R be
two constants that fulfill η < T .

Consider the fractional semi-linear delay differential equation with random impulsive

cDβ
τ u(τ) = Au(τ) +Bc(τ) + r(τ, uτ , c(τ)), τ 6= σk, τ ∈]0, η]

u(σk) = bk(ρk)u(σ
−
k ), k = 1, 2, ...

u0θ = ϕ(θ), θ ∈ [−h, 0]

 (2.1)

where cDβ
t is the Caputo fractional derivative of order β ∈ (0, 1). u is a state variable with values

in a Banach space U and c(·) is a control function with values in a Hilbert space C . The function
r is defined as r : [0, η]×C ([−h, 0]; U )×U → U in the sequel and B is a linear operator from
V into C ([−h, 0]; U ). Let uτ (θ) be the function defined as uτ (θ) = u(τ + θ), for τ is fixed and
θ ∈ [−h, 0] and ϕ ∈ C ([−h, 0],U ) for h > 0. σ0 = τ0 and σk = σk−1 + ρk, for k = 1, 2, ...
A sequence of random variables σk is strictly increasing, i.e, σ0 < σ1 < σ2 < ...σk < ...T ;
τ0 ∈ Rη is any arbitrary real number. Also, lim

k→∞
σk = ∞; u(σ−k ) = lim

τ→σk
u(τ) with the norm

||u||τ = sup
τ−r≤s≤τ

|u(τ)|, for each τ satisfying 0 ≤ τ ≤ T , ||.|| is any given norm in U .

The fundamental solution of the linear equation of (2.1) defined as T (τ) (where B = 0 and
r = 0), is an operator valued function in the form T (τ) = S(τ), τ ∈ [0, η], T (0) = I and
T (θ) = 0, for θ ∈ [−h, 0]. The C0− semigroup S(τ) is obviously bounded on [0, η], and also
that T (τ) is bounded on [0, η].
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3 Existence and Uniqueness

It is appropriate to recast the problem (2.1) in the equivalent integral equation using the fractional
integral and Caputo fractional derivative definitions [15].

u(τ) =
k∏
µ=1

bµ(ρµ)ϕ+
k∑
µ=1

k∏
ν=µ

bν(ρν)
1

Γ(β)

∫ σµ

σµ−1
(τ − s)β−1[Au(s) +Bc(s) + r(s, us, c(s))]ds

+
1

Γ(β)

∫ τ

σk

(τ − s)β−1[Au(s) +Bc(s) + r(s, us, c(s))]ds,

(3.1)

provided the integral (3.1) exists. Applying Laplace transform, we get

u(τ) =
k∏
µ=1

bµ(ρµ)X(τ)ϕ+
k∑
µ=1

k∏
ν=µ

bν(ρν)
1

Γ(β)

∫ σµ

σµ−1
(τ − s)β−1Y (τ − s)[Bc(s) + r(s, us, c(s))]dτ

+
1

Γ(β)

∫ τ

σk

(τ − s)β−1Y (τ − s)[Bc(s) + r(s, us, c(s))]dτ,

where X,Y : U → Uβ are operators such that X(τ) =

∫ ∞
0

ςβ(θ)S(τ
βθ)dθ : U → Uβ ,

Y (τ) = β

∫ ∞
0

θςβ(θ)S(τ
βθ)dθ, ςβ =

1
β
θ−1− 1

β ρβ(θ
−1
β ) ≥ 0 and

ρβ(θ) =
1
π

∞∑
α=1

(−1)α−1θ−βα−1 Γ(αβ + 1)
α!

sin(απβ).

Here ςβ is a probability density function defined on (0,∞), that is ςβ(θ) ≥ 0, θ ∈ (0,∞) and∫∞
0 ςβ(θ)dθ = 1. Here

α∏
ν=m

(·) = 1 as m > α,
k∏
ν=µ

bν(ρν) = bk(ρk)bk−1(ρk−1)...bµ(ρµ) and IΞ(.)

is an index function,

IΞ(τ) =

{
1, whenever τ ∈ Ξ

0, whenever t /∈ Ξ.

Now to prove the existence and uniqueness of the mild solution of the equation (2.1) by
assuming the following hypotheses.

(H1): A : D(A) ⊂ U → U is an infinitesimal generator of T (τ), τ > 0, a compact analytic
semigroup of a uniformly bounded linear operator in U , that is, for all τ ≥ 0, there exists
a constant M > 1 such that ‖T (τ)‖ ≤M .

(H2): The condition maxµ,k{
∏k
ν=µ ‖bν(ρν)‖} is uniformly bounded, that is there is some K > 0

such that

max
i,k
{
k∏
ν=µ

‖bν(ρν)‖} ≤ K, for all ρν ∈ Dν , ν = 1, 2, . . . .

(H3): The continuous function r : [0, η]×C ([−h, 0]; U )×U → U , satisfy the Lipchitz condition.
For u, v ∈ U and τ0 ≤ τ ≤ T there exists arbitrary constants Lr ≥ 0 such that

‖r(τ, uτ , c1(τ))− r(τ, vτ , c2(τ))‖ ≤ Lr[‖uτ − vτ‖+ ‖c1(τ)− c2(τ)‖]

Theorem: 3.1. Assume that the hypotheses (H1) - (H3) holds. Then, the integral equation (3.1)
has a unique mild solution on [τ0, T ].

Proof. The nonlinear operator Φ : C ([−h, 0]; U )→ C ([−h, 0]; U ) is defined as follows

(Φu)(τ) = ϕ(τ − τ0), for τ ∈ [−h, τ0].
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And, for τ ∈ [τ0, T ],

(Φu)(τ) =
+∞∑
k=0

[ k∏
µ=1

bµ(ρµ)T (τ0)ϕ+
k∑
µ=1

k∏
ν=µ

bν(ρν)
1

Γ(β)

∫ σµ

σµ−1
(τ − s)β−1T (τ − s)r(s, us, c(s))ds

+
1

Γ(β)

∫ τ

σk

(τ − s)β−1T (τ − τ)r(s, us, c(s))ds
]
I[σk,σk+1)(τ).

It is simple to examine the continuity of the operator Φ. Next to show that the mapping Φ is a
contraction. For any u, v ∈ C ([−h, 0]; U ), we have

E‖(Φu)(τ)− (Φv)(τ)‖2

≤ E‖
+∞∑
k=0

[ k∑
µ=1

k∏
ν=µ

bν(ρν)
1

Γ(β)

∫ σi

σi−1
(τ − s)β−1T (τ − s)[r(s, us, c(s))− r(s, vs, c(s))]ds

+
1

Γ(β)

∫ τ

σk

(τ − s)β−1T (τ − s)[r(s, us, c(s))− r(s, vs, c(s))]ds
]
I[σk,σk+1)(τ)‖

2

≤
+∞∑
k=0

E[max{1,
k∏
ν=µ

‖bν(ρν)‖2}]
( 1

Γ(β)

∫ τ

τ0

(τ − s)β−1 ×

E‖T (τ − s)[r(s, us, c(s))− r(s, vs, c(s))]‖2ds)I[σk,σk+1)(τ)

≤
+∞∑
k=0

[max{1,K2}] M
2

Γ(β)

∫ τ

τ0

(τ − s)β−1 ×

E‖r(s, us, c(s))− r(s, vs, c(s))‖2dτI[σk,σk+1)(τ)

≤ M2Lr[max{1,K2}] (τ − τ0)β

Γ(β + 1)
E‖u(τ)− v(τ)‖2.

Taking supremum over τ, we have

‖Φu−Φv‖2 ≤ 1
Γ(β + 1)

max (1,K2)M2Lr(T − τ0)
β‖u− v‖2

≤ Λ‖u− v‖2.

Repeating the process, we get

‖Φnu−Φ
nv‖2 ≤ 1

Γ(β + 1)
max (1,K2)M2Lr(T − τ0)

nβ‖u− v‖2.

For sufficiently large value of an integer n, Φn is a contraction mapping. Also, Φ is a contraction
on C ([−h, 0]; U )T . Hence, by using Banach contraction principle, attains a unique fixed point
u ∈ C ([−h, 0]; U )T , for the operator Φ, and hence Φu = u is a mild solution of the system.
This approach can be repeated in finitely many similar steps to extend the solution to the entire
interval [τ0, T ]. Therewith finalizing the proof for the existence and uniqueness of mild solutions
for the original system on the whole interval [0, T ].

4 Approximate Controllability

Assume that, corresponding to the control c ∈ C , the state value of system (2.1) at time τ with
the initial value ϕ(τ0), is defined as uτ (ϕ(τ0), c). The set of all possible trajectories, called as
the reachable set of trajectories, for the system (2.1), given by

∆β(F ) = {uβ(ϕ(τ0), c) ∈ C ([β?, T ],U ) : c ∈ C , 0 <?β ≤ T}. (4.1)

At time T,

∆T (F ) = {uT (ϕ(τ0), c) : c ∈ C }. (4.2)
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Whenever ∆T (F ) = U , then the control system is approximately controllable on [τ0, T ]. The
following few definitions are given to illustrate the approximate controllable results [18]:

• The solution for the system W : Z → C ([τ0, T ],U ) is specified by (W c)(τ) = u(ϕ(τ0), c)(·), c ∈
Z,Z = L2[τ, T ; U ].

• Q : Z → C ([τ0, T ], U), is a continuous operator, defined by

(Qp)(τ) =

∫ t

τ0

T (τ − s)p(s)dτ, p ∈ Z, τ ∈ [τ0, T ];

• The function, ζ : L2[τ0, T ; E ] → Z as (ζu)(τ) =

∫ τ

0
r(s, u(τ))dτ ; u ∈ L2[τ0, T ; E ] and

ω : V → L2[τ0, T ; U ], defined as (ωc)(τ) = Bc(τ).

Definition 4.1. A stochastic process {u(τ) ∈ Z, τ0 ≤ t ≤ T} for a given T ∈ (τ0,+∞), is called
as a mild solution to the equation (2.1) in (κ, P, {ζt}), if u(τ0 + s) = ϕ(s) ∈ L0

2(κ, ω), when
s ∈ [−h, 0]; and

u(τ) =
+∞∑
k=0

[ k∏
µ=1

bµ(ρµ)T (τ0)ϕ

+
k∑
µ=1

k∏
ν=µ

bν(ρν)
1

Γ(β)

∫ σµ

σµ−1
(τ − s)β−1[Bc(s) + r(s, us, c(s))]ds

+
1

Γ(β)

∫ τ

σk

(τ − s)β−1[Bc(s) + r(s, us, c(s))]ds
]
I[σk,σk+1)(τ), τ ∈ [τ0, T ]


(4.3)

Now, the following additional hypotheses are introduced for the further discussions:

(H4): There exists some control c(·) ∈ V , for all E > 0 and p(·) ∈ Z, such that

E‖Qp−QBc‖2 < E ;

(H5): R(ω) ⊇ R(ζ).

Lemma 4.1. Let the hypothesis (H4) be hold. Then ∆β(0) = U .

Proof. As D(A) is dense in U , it is enough to prove that the domain of A is a subset of ∆β(0).
For a given E > 0 and G ∈ D(A), there exists a control function c(.) ∈ V such that

E‖G−G−QBc‖2 < E ,

where G =
+∞∑
k=0

 k∏
µ=1

bµ(ρµ)T (τ0)ϕ

 I(τ), τ ∈ [τ0, T ]. Take G ∈ D(A), then G−G ∈ D(A). It

can be observed that there exists some control c(·) ∈ V such that

E‖Qp−QBc‖2 < E .

As E is arbitrary, ∆β(0) is a subset of D(A). The above lemma proves the approximate control-
lability of the linear system

cDβ
t u(τ) = Au(τ) +Bc(τ), t 6= σk, τ ∈ [τ0, T ]

u(σk) = bk(ρk)u(σ
−
k ), k = 1, 2, ...

uτ0 = ϕ,

 (4.4)

For the linear system (4.4), the densed domain D(A) in U implies the approximate con-
trollability. Next, the following theorem proves the approximate controllability of the fractional
random impulsive semilinear control system (2.1).
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Theorem: 4.2. Under the hypotheses (H1) - (H5), ∆β(0) ⊂ ∆β(f).

Proof. Let u(·) ∈ ∆β(0). Then there exists a c ∈ V , which can be defined as

u(τ) = ϕ(τ − τ0), for τ ∈ [−h, τ0],

For τ ∈ [τ0, T ], u(τ) =
+∞∑
k=0

[ k∏
µ=1

bµ(ρµ)T (τ0)ϕ

+
k∑
µ=1

k∏
ν=µ

bν(ρν)
1

Γ(β)

∫ σµ

σµ−1
(τ − s)β−1T (τ − s)Bc(s)ds

+
1

Γ(β)

∫ τ

σk

(τ − s)β−1T (τ − s)Bc(s)ds
]
I[σk,σk+1)(τ) (4.5)

As Fu ∈ R(B), there exists a w ∈ V for any given E > 0, such that

E‖Fu −Bw‖2
B ≤ E

Suppose let v(τ) be an another mild solution of (2.1) with respect to the control c− w, then

u(τ)− v(τ) =
+∞∑
k=0

[ k∏
µ=1

T (τ0)bµ(ρµ)ϕ

+
1

Γ(β)

k∑
µ=1

k∏
ν=µ

bν(ρν)

∫ σµ

σµ−1
(τ − s)β−1T (τ − s)Bc(s)ds

+
1

Γ(β)

∫ τ

σk

(τ − s)β−1T (τ − s)Bc(s)ds
]
I[σk,σk+1)(τ)

−
+∞∑
k=0

[ k∏
µ=1

bµ(ρµ)T (τ0)ϕ

+
1

Γ(β)

k∑
µ=1

k∏
ν=µ

bν(ρν)

∫ σµ

σµ−1
(τ − s)β−1T (τ − s)[Fv](s)ds

+
1

Γ(β)

∫ τ

σk

(τ − s)β−1T (τ − s)[Fv](s)ds
]
I[σk,σk+1)(τ)

≤
+∞∑
k=0

[ 1
Γ(β)

k∑
µ=1

k∏
ν=µ

bν(ρν)

∫ σµ

σµ−1
(τ − s)β−1T (τ − s)[Bw − Fu](s)ds

+
1

Γ(β)

∫ τ

σk

(τ − τ)β−1T (τ − s)[Bw − Fu](s)ds
]
I[σk,σk+1)(τ)

+
+∞∑
k=0

[ 1
Γ(β)

k∑
µ=1

k∏
ν=µ

bν(ρν)

∫ σµ

σµ−1
(τ − s)β−1T (τ − s)[Fu− Fv](s)dτ

+
1

Γ(β)

∫ τ

σk

(τ − s)β−1T (τ − s)[Fu− Fv](s)dτ
]
I[σk,σk+1)(τ)
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E‖u(τ)− v(τ)‖2

≤ E

+∞∑
k=0

[ 1
Γ(β)

k∑
µ=1

k∏
ν=µ

bν(ρν)

∫ σµ

σµ−1
(τ − s)β−1‖T (τ − s)‖‖Bw − Fu‖(s)ds

+
1

Γ(β)

∫ τ

σk

(τ − s)β−1‖T (τ − s)‖‖Bw − Fu‖(s)ds
]2
I[σk,σk+1)(τ)

+E
+∞∑
k=0

[ 1
Γ(β)

k∑
µ=1

k∏
ν=µ

bν(ρν)

∫ σµ

σµ−1
(τ − s)β−1‖T (τ − s)‖‖Fu− Fv‖(s)ds

+
1

Γ(β)

∫ τ

σk

(τ − s)β−1‖T (τ − s)‖‖Fu− Fv‖(s)ds
]2
I[σk,σk+1)(τ)

By using Grownwal’s inequality and taking supremum over t, we get

‖u− v‖2 ≤ N
∫ τ

τ0

E‖u− v‖2ds,

where N > 0 is the constant. It is clear from the inequality above that ‖u− v‖2. By selecting the
appropriate control w, it can be done arbitrarily small. As a result, Theorem 4.3 is established.

Corollary: 4.3. System (2.1) is approximately controllable on the assumptions of the above
theorem.

Proof. At β = T , the proof is a special case of Theorem 3.1.

Under adequate conditions with fixed time impulses, the system (2.1) is generalized as fol-
lows.

Remark 4.4. With the same arguments as Corollary 4, if the impulses exist at fixed times, the
system (2.1) is approximately controllable.

If the system does not have an impulsive condition, the problem is reduced to abstract frac-
tional semi-linear differential equations with delays.

Remark 4.5. If no impulses are present, the system (2.1) will be

cDβ
τ u(τ) = Au(τ) +Bc(τ) + r(τ, uτ , c(τ)), τ 6= σk, τ ∈ [τ0, T ]

uτ0 = ϕ,

}
(4.6)

Theorem: 4.6. The system (4.6) is approximately controllable under the assumptions (H1)-(H2)
and (H4)-(H5).

Proof. At β = T, the proof is a special instance of Theorem 3.1.

5 Example

Let X = L2(0, π) and A = d2

dx2 with the domain D(A) consisting of all g ∈ X with the
condition g(0) = 0 = g(π). Assume that φp(x) = ( 2

π )
1/2sin(px); 0 ≤ x ≤ π is an orthonormal

base for X for p = 1, 2, ...and φ is the eigenfunction with respect to the eigenvalue Λp = −p2

of the operator A, p = 1, 2, .... Then the C0- semigroup S(τ) has exp(Λpt).
Assume that the infinite-dimensional space X̄ is

Ū = {u|u =
∞∑
p=2

upφp, with
∞∑
p=2

u2
p <∞}.
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Define the norm in X̄ as

‖u‖X̄ = (
∞∑
p=2

u2
p)

1/2.

Let B : X̄ →X be a linear continuous map defined as

Bu = 2u2φ1 +
∞∑
p=2

upφp, for u =
∞∑
p=2

upφp ∈X .

It is obvious that ‖Bu‖ ≥ σ‖u‖, where σ = 1.
Consider the semi-linear partial differential random impulsive control system of the form

∂γ

∂tγ
g(t, x) =

∂2

∂t2
g(t, x) + (Bu)(t, x) + r(t, g(t, x), u(t, x)), 0 < x < π

g(σk, x) = p(k)ρkg(σ
−
k , x), t = σk, k = 1, 2, ...

g(0, l) = g(π, l) = 0,
g(x, t) = Φ(x, t), τ ∈ [−r, 0], 0 ≤ x ≤ π


(5.1)

where p is a function of k;σk = σk−1+ρk for k = 1, 2, ...;σ0 = τ0 ∈ R+ is an arbitrary real num-
ber. As i 6= j, ρi and ρν are independent of each other for i, j = 1, 2, ... and φ(x, t) is continuous.

By our result, if the assumptions (H4) and (H5) are true, then the conditions for the approx-
imate controllability results are obtained. For example, suppose that the function f is given
as

r(t, g, u) = l[‖g‖φ+ ‖u‖φ],

l ∈ (0, 1). Now r satisfies (H1) with Lipchitz constant l < 1. Also, r and B satisfies the assump-
tion (H3). Since l < β from Theorem (4.2), the approximate controllability of the system (5.1)
follows.

6 Conclusion

In this study, an approximate controllability of fractional random impulsive semi-linear delay
differential control system is investigated by assuming that the linear system is approximately
controllable. The existence and uniqueness of the mild solution to the above said system were
determined using Banach contraction principle. An example is provided at the end to verify the
analytical findings.
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